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1 Sheaves of Sets

Definition 1. Let X be a topological space and U ⊆ X an open subset. An open cover of U is a
set S of open subsets of U , with the property that the union set of S is U . Note that the empty
set S = ∅ is an open cover of ∅, as is the set S = {∅}. If we want to exclude the trivial case where
S is empty, we refer to a nonempty open cover.

Let S be an open cover of U and P a presheaf of sets on X. A matching family for the
cover S and presheaf P is a function f : S −→

∐
U∈S P (U) with f(U) ∈ P (U) for each U ∈ S,

with the property that f(U)|U∩V = f(V )|U∩V for every pair U, V ∈ S. Observe that if S is
empty then there is precisely one matching family for S and P , given by the empty function
f : ∅ −→ ∅. Also notice that a matching family cannot contain two sections over the same open
set. An amalgamation of such a matching family is an element s ∈ P (U) with s|U = f(U) for
every U ∈ S.

Definition 2. Let X be a topological space and U ⊆ X an open subset. An indexed open cover
of U is an index set I (possibly empty) together with a function c : I −→ {V |V ⊆ U is open}
with the property that the union set of Im(c) is U . Note that the empty set I together with the
unique function c : ∅ −→ {V |V ⊆ U is open} is an open cover of ∅. Any open cover S becomes
an indexed open cover in the obvious way.

Let (I, c) be an indexed open cover of U and P a presheaf of sets on X. An indexed matching
family for the cover (I, c) and presheaf P is a function f : I −→

∐
i∈I P (c(i)) with f(i) ∈ P (Ui)

for each i ∈ I, with the property that f(i)|c(i)∩c(j) = f(j)|c(i)∩c(j) for every pair i, j ∈ I. Observe
that if I is empty then there is precisely one matching family for (I, c) and P , given by the empty
function f : ∅ −→ ∅. Notice that indexed matching families may contain multiple sections over
the same open set. An amalgamation of such a matching family is an element s ∈ P (U) with
s|c(i) = f(i) for every i ∈ I.
Definition 3. Let X be a topological space, and let O(X) denote the category obtained from
the partially ordered set of open sets of X. A presheaf of sets on X is a contravariant functor
P : O(X) −→ Sets, and a morphism of presheaves of sets is a natural transformation. This
defines the category P (X) of presheaves of sets on X.

A presheaf P is a sheaf if for any open set U and open cover S of U there is a unique
amalgamation of every matching family for the cover S and presheaf P . A morphism of sheaves
is a morphism of presheaves, and this defines the category Sh(X) of sheaves of sets on X.
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Remark 1. Let X,P be as in Definition 3. Then P is a sheaf if and only if for every open set
U and indexed open cover (I, c) of U there is a unique amalgamation of every indexed matching
family for the cover (I, c) and presheaf P .

Remark 2. In practice, the following characterisation is more convenient. A presheaf P of sets
on X is a sheaf if and only if

(i) P (∅) is a singleton.

(ii) For every nonempty open set U and open cover {Vi}i∈I by nonempty open sets Vi together
with matching sections si ∈ P (Vi), then there is a unique amalgamation s ∈ P (V ).

Remark 3. Since P (X) is a functor category and Sets is complete and cocomplete, the category
P (X) is complete and cocomplete. Limits and colimits are computed pointwise.

Remark 4. Throughout our notes, when we say “pointwise” we mean “for every open set” (the
notation comes from category theory, where we view open sets as objects of the category O(X)).
In particular, “pointwise” does not mean “for the stalk at every point”.

Remark 5. Let X be a topological space and P a presheaf of sets on X. If U, V ⊆ X are open
and s ∈ P (U), t ∈ P (V ) then the set {x ∈ U ∩ V | germxt = germxs} is clearly open.

Definition 4. Let X be a topological space and P a presheaf of sets on X. For each x ∈ X let
Px be the usual stalk and define ΛP =

∐
x∈X Px (this is the usual disjoint union). Given an open

set U ⊆ X we say a function t : U −→ ΛP is regular if satisfies the following two conditions

(i) t(x) ∈ Px for every x ∈ U .

(ii) For each x ∈ U there is an open neighborhood x ∈ V ⊆ U and s ∈ P (V ) such that
t(y) = germys for each y ∈ V .

This says that t is locally an element of P . Let aP (V ) denote the set of all regular functions
V −→ ΛP . The restriction of a regular function is regular, and aP (V ) is a sheaf of sets. Let
φ : P −→ Q be a morphism of presheaves of sets. Then we define a morphism of sheaves of sets

a(φ) : aP −→ aQ

a(φ)U (t)(x) = φx(t(x))

This defines the functor a(−) : P (X) −→ Sh(X), called the sheafification functor. For any
presheaf P there is a canonical morphism of presheaves of sets natural in P

η : P −→ aP

ηU (s)(x) = germxs

Throughout our notes, we denote the section ηU (s) ∈ Γ(U,aP ) by ṡ.

Proposition 1. Let φ : P −→ Q be a morphism of presheaves of sets on a topological space X,
where Q is a sheaf. Then there is a unique morphism of presheaves of sets ψ : aP −→ Q making
the following diagram commute

P

η

��

φ // Q

aP
ψ

>>}}}}}}}}

Proof. Let an open set U ⊆ X and t ∈ aP (U) be given. We can find a nonempty open cover
{Wi}i∈I of U together with ti ∈ P (Wi) such that t|Wi

= ṫi for each i ∈ I. Then the sections
φWi

(ti) form a matching family for Q, with a unique amalgamation t′ ∈ Q(U). If we define
φU (t) = t′ then t′ is the unique element of Q(U) with germxt

′ = φx(t(x)) for every x ∈ U (so t′

does not depend on the choice of cover) and this defines a morphism of sheaves of sets ψ with the
necessary property.
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Corollary 2. Let X be a topological space. Then we have an adjoint pair

Sh(X)

a
))
P (X)

i

jj a � i (1)

where i : Sh(X) −→ P (X) is the inclusion. The functor a preserves finite limits and monomor-
phisms, so Sh(X) is a giraud subcategory of P (X).

Proof. The adjunction is an immediate consequence of Proposition 1. You need to see our topos
notes to check that a preserves finite limits, which shows that Sh(X) is a giraud subcategory of
P (X).

Corollary 3. A morphism in Sh(X) is a monomorphism in Sh(X) iff. it is a monomorphism
in P (X), so iff. it is a pointwise injective map. A morphism in Sh(X) is an isomorphism iff. it
is an isomorphism in P (X), so iff. it is pointwise bijective.

Remark 6. If D is a diagram of sheaves and morphisms then the limit in P (X) is a sheaf and
is a limit in Sh(X). So limits in Sh(X) are computed pointwise. Let L be the colimit for D in
P (X). Then aL together with the morphisms Di −→ L −→ aL are a colimit for D in Sh(X).

1.1 Direct and Inverse Image

Definition 5. Let f : X −→ Y be a continuous map of spaces and P a sheaf of sets on X. Then
define a sheaf of sets f∗P on Y by (f∗P )(V ) = P (f−1V ) with the obvious restriction maps. If
φ : P −→ P ′ is a morphism of sheaves of sets then define a morphism of sheaves of sets

f∗φ : f∗P −→ f∗P
′

(f∗φ)V = φf−1V

This defines the functor f∗(−) : Sh(X) −→ Sh(Y ), called the direct image functor

Definition 6. Let f : X −→ Y be a continuous map of spaces and Q a sheaf of sets on Y . Define
a presheaf of sets QX on X by QX(U) = lim−→V⊇f(U)

Q(V ) and let f−1Q be the sheaf of sets aQX .
If φ : Q −→ Q′ is a morphism of sheaves of sets, define a morphism of presheaves of sets

φX : QX −→ Q′
X

(φX)U (V, t) = (V, φV (t))

and let f−1φ : f−1Q −→ f−1Q′ be aφX . This defines the functor f−1(−) : Sh(Y ) −→ Sh(X),
called the inverse image functor. Given open sets U ⊆ X and V ⊇ f(U) together with s ∈ Q(V )
we denote the image of the equivalence class of (V, s) in Γ(U, f−1Q) by [V, s]. In this notation,
(f−1φ)U ([V, s]) = [V, φV (s)].

Proposition 4. Let f : X −→ Y be a continuous map of spaces and let Q be a sheaf of sets on
Y . Then for x ∈ X there is a canonical isomorphism natural in Q

λ : (f−1Q)x −→ Qf(x)

germx[V, s] 7→ germf(x)s

Proof. Let Q be a sheaf of sets on X. Then (U, s) 7→ s(x) defines an isomorphism (f−1Q)x −→
(QX)x. We define

φ : (QX)x −→ Qf(x)

(V, (W, t)) 7→ (W, t)

It is not hard to check that this is a well-defined isomorphism. Composed with the isomorphism
(f−1Q)x ∼= (QX)x this gives the desired natural isomorphism.
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Proposition 5. Let f : X −→ Y be a continuous map of spaces. Then we have an adjoint pair

Sh(X)

f∗
**
Sh(Y )

f−1

jj f−1 � f∗ (2)

For sheaves P,Q on X,Y respectively the unit and counit are defined by

η : Q −→ f∗f
−1Q ε : f−1f∗P → P

ηV (s) = [V, s] εU ([V, s]) = s|U

Proof. We already know that η is the unit of the adjunction. Given a morphism of sheaves
φ : Q −→ f∗P the morphism ψ : f−1Q −→ P corresponding to φ under the adjunction is defined
as follows. The morphism ψ is induced by the following morphism of presheaves

ψ′ : QX −→ P

ψ′U (V, s) = φV (s)|U

In particular, we have ψU ([V, s]) = φV (s)|U . Taking φ = 1 gives the definition of the counit.

Lemma 6. Let X be a topological space and U ⊆ X an open subset with inclusion i : U −→ X.
For any sheaf of sets P on X there is a canonical isomorphism of sheaves of sets natural in P

α : P |U −→ i−1P

αV (s) = [V, s]

That is, there is a canonical natural equivalence (−)|U ∼= i−1.

Proof. See our Section 2.5 notes p.29.

Definition 7. LetX be a topological space and U ⊆ X an open subset with inclusion j : U −→ X.
Let P be a sheaf of sets on U and let PE be the following presheaf on X

PE(V ) =

{
P (V ) V ⊆ U

0 otherwise

with the obvious restriction maps, where 0 denotes the singleton {∅}. We denote the sheaf of sets
aPE by j!P and call it the extension by zero of P to X. Let φ : P −→ P ′ be a morphism of
sheaves of sets, and define a morphism of presheaves

φE : PE −→ P ′
E

(φE)V =

{
φV V ⊆ U

0 otherwise

Let j!φ : j!P −→ j!P
′ be the morphism aφE . This defines the functor j!(−) : Sh(U) −→ Sh(X).

Proposition 7. Let X be a topological space and U ⊆ X an open subset with inclusion j : U −→
X. Then we have an adjoint pair

Sh(X)

(−)|U
**
Sh(U)

j!

jj j!
� (−)|U (3)
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Proof. Let P be a sheaf of sets on X and F the presheaf (P |U )E on X. There is an obvious
morphism of presheaves F −→ P which is the identity for V ⊆ U and zero otherwise. Denote
by ε : j!(P |U ) −→ P the induced morphism of sheaves of sets, which is natural in P . If Q is a
sheaf of sets on U and b : j!Q −→ P a morphism of sheaves of sets, there is a unique morphism of
sheaves of sets c : Q −→ P |U making the following diagram commute

j!Q

j!c

��

b // P

j!(P |U )

ε

<<xxxxxxxxx

Therefore ε is the counit of an adjunction j!(−) �(−)|U , as required. Let Q be a sheaf of
sets on U . The unit of this adjunction is the canonical isomorphism η : Q −→ (j!Q)|U defined by
ηV (s) = ṡ.

Corollary 8. With the notation of Proposition 7 we have the following facts

(i) For any sheaf of sets Q on U there is a canonical bijection Qx −→ (j!Q)x natural in Q for
every x ∈ U . For x /∈ U we have (j!Q)x = 0.

(ii) For any sheaf of sets P on X the counit ε : j!(P |U ) −→ P is a monomorphism.

Proof. (i) is a trivial consequence of the fact that the unit η : Q −→ (j!Q)|U is an isomorphism.
As for (ii), we need only show that εx is injective for every x ∈ X. For x /∈ U this is trivial since
j!(P |U )x = 0, and for x ∈ U the map εx is an isomorphism.

2 Abelian groups

Definition 8. Let X be a topological space and C the small category of open sets of X. In our
Algebra in a Category notes we defined presheaves of abelian groups and sheaves of abelian groups.
Let Ab(X) denote the complete grothendieck abelian category of all presheaves of abelian groups
on X (ALCAT,Corollary 3) and Ab(X) the complete grothendieck abelian category of all sheaves
of abelian groups on X (ALCAT,Corollary 4).

Let P be a presheaf of abelian groups on X and aP the sheafification of P considered as a sheaf
of sets. For x ∈ X the stalk Px is an abelian group in a canonical way, and by adding sections
pointwise aP becomes a sheaf of abelian groups and η : P −→ aP a morphism of presheaves of
abelian groups. If φ : P −→ Q is a morphism of presheaves of abelian groups, then aφ : aP −→ aQ
is a morphism of sheaves of abelian groups, and this defines an additive functor

a : Ab(X) −→ Ab(X)

The natural transformation η : 1 −→ ia is the unit of an adjunction

Ab(X)

i
**
Ab(X)

a

jj a � i (4)

where i is the inclusion.
The subobjects SubF of a sheaf F form a set (here SubF consists of equivalence classes of

monics with codomain F under the subobject equivalence relation). A morphism φ : F −→ G
is a monomorphism in Ab(X) iff. φU is injective for all open U . A subsheaf is a monomorphism
φ : F −→ G in Ab(X) such that φU is the inclusion of a subset for all open U . Every equivalence
class of subobjects contains precisely one subsheaf. For some more details see our Hartshorne
Section 2.1 notes.
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Lemma 9. Let φ : F −→ G be a morphism of sheaves. Then the subsheaf Imφ is defined by the
following condition: given an open set U and s ∈ G (U) we have s ∈ (Imφ)(U) if and only if for
every point x ∈ U there is an open set V with x ∈ V ⊆ U and s|V ∈ Im(φV ).

Lemma 10. Let φ : G −→ F be a monomorphism of presheaves with G(U) ⊆ F (U) for all U ,
where F is a sheaf. Then the induced morphism of sheaves aG −→ F is a monomorphism whose
image I is defined by the following condition: given an open set U and s ∈ F (U) we have s ∈ I(U)
if and only if for every point x ∈ U there is an open set V with x ∈ V ⊆ U and s|V ∈ G(V ).

As usual in a grothendieck abelian category, we can define the union of any set {Gi}i∈I of
subobjects of a sheaf F . This is denoted by

∑
i Gi. For the empty set this is just the zero sheaf,

so let I be nonempty. The subsheaf
∑
i Gi is the image of the induced morphism

⊕
i Gi −→ F

(coproduct in Ab(X)). We can describe the subsheaf
∑
i Gi explicitly as follows.

Lemma 11. Let {Gi}i∈I be a nonempty set of subsheaves of a sheaf F . Then the subsheaf
∑
i Gi

is defined by the following condition: given an open set U and s ∈ F (U) we have s ∈ (
∑
i Gi)(U)

if and only if for every point x ∈ U there exists an open neighborhood V with x ∈ V ⊆ U and
elements ai1 , . . . , ain with aik ∈ Gik(V ) such that s|V = ai1 + · · ·+ ain .

Proof. The easiest way to see this is to take the sum in Ab(X), then since the reflection functor
a is exact you just have to sheafify the image of the morphism P −→ F out of the presheaf
coproduct P .

We say the sum is direct if the induced morphism
⊕

i Gi −→ F is a monomorphism. If
U ⊆ X is an open subset, restricting sheaves and their morphisms defines an additive functor
−|U : Ab(X) −→ Ab(U). If U = X this is the identity, and for W ⊆ U it is clear that Ab(X) −→
Ab(U) → Ab(W ) is the functor associated to the inclusion W ⊆ X.

Since Ab(X) is a grothendieck abelian category it follows from Mitchell III 1.2 that if Fi are a
nonempty direct family of subsheaves of a sheaf of abelian groups F then the induced morphism
lim−→Fi −→ F is in fact a monomorphism, equal as a subobject to the categorical union

∑
i Fi.

In the case where X is a noetherian space we can give a nice characterisation of this submodule.

Lemma 12. Let {αi : Fi −→ F}i∈I be a nonempty family of subsheaves of a sheaf of abelian
groups F . Then the intersection is the following subsheaf(⋂

i

Fi

)
(U) =

⋂
i

Fi(U)

If X is a noetherian topological space and the Fi are a direct family of subsheaves, then the union
is the following subsheaf (∑

i

Fi

)
(U) =

⋃
i

Fi(U)

Proof. A subsheaf of G of F is determined by the subsets G (U) ⊆ F (U), although not all such
assignments of subsets arise from a subsheaf. Clearly for any open set U , ∩iFi(U) is a subgroup of
F (U). These subgroups close under restriction and the presheaf of abelian groups

⋂
i Fi defined

in this way is clearly a sheaf with the property of the intersection.
Now suppose that X is noetherian and that the Fi are a direct family of subsheaves (that

is, for every pair i, j ∈ I there is k with Fi ≤ Fk,Fj ≤ Fk) then for every open U , the Fi(U)
form a direct family of subgroups of F (U). Therefore the union ∪iFi(U) is a subgroup of F (U).
These subgroups close under restriction and to give a presheaf

∑
i Fi of abelian groups. By (H,

Ex II.2.13(a)) every open subset of X is quasi-compact. So in showing that
∑
i Fi is a sheaf we

can restrict to considering a finite family of matching sections sk ∈ Γ(
∑
i Fi, Uk) where 1 ≤ k ≤ n

and the Uk are an open cover of a nonempty open set U . Suppose that si ∈ Fik(Uk) for 1 ≤ k ≤ n
and let ` ∈ I be such that Fik ≤ F` for 1 ≤ k ≤ n. Then the sk are a matching family for F`

which can be amalgamated to give s ∈ F`(U) ⊆ Γ(
∑
i Fi, U) which shows that

∑
i Fi is a sheaf.

It clearly has the property of the union.
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Definition 9. Let X be a topological space, F a sheaf of abelian groups on X and {si}i∈I a
nonempty set of sections si ∈ F (Ui) over open subsets Ui ⊆ X. The subsheaf of F generated by
the set {si} is the intersection of all subsheaves of F containing all the si. This is the smallest
subsheaf containing the si, in the sense that it precedes any other such subsheaf. We say F is
finitely generated if there is a nonempty finite set of sections {s1, . . . , sn} generating F .

Lemma 13. Let X be a topological space and F a sheaf of abelian groups on X. Then F is the
direct limit of all its finitely generated subsheaves.

Proof. Let {Fα}α∈Λ be the set of all finitely generated subsheaves. This is certainly a direct
family of subsheaves of F . To show that the inclusion Fα −→ F are a direct limit, it suffices to
show that F =

∑
i Fi. But any section s ∈ F (U) generates a finitely generated subsheaf, so this

is trivial.

Lemma 14. Let ψ : F −→ G be a morphism of sheaves of abelian groups on a topological space
X and suppose H is a subsheaf of G . Then the inverse image ψ−1H is the subsheaf defined by

(ψ−1H )(U) = ψ−1
U (H (U))

Proof. This clearly defines a subsheaf of F . The morphism ψ−1H −→ H defined by restricting
ψ to give ψ−1

U H (U) −→ H (U) clearly fits into a commutative diagram

ψ−1H

��

// H

��
F

ψ
// G

It is not difficult to check that this is a pullback, as required.

2.1 Stalks

Throughout this section X denotes a fixed topological space. All sheaves of abelian groups will
be over X.

Lemma 15. Suppose we have a sequence of sheaves of abelian groups

F ′ −→ F −→ F ′′

This sequence is exact if and only if F ′
x −→ Fx −→ F ′′

x is an exact sequence of abelian groups
for every x ∈ X.

Proposition 16. Let D be a diagram of sheaves of abelian groups. A cocone {H, ρi : Di −→
H}i∈D in Ab(X) is a colimit if and only if {Hx, ρi,x : Di,x −→ Hx}i∈D is a colimit in Ab for
every x ∈ X.

Proof. The categories Ab(X),Ab are complete, so let µi : Di −→ Y be a colimit for D in Ab(X).
There is an induced morphism η : Y −→ H with ηµi = ρi, and the morphisms ρi are a colimit
iff. η is an isomorphism. But this is iff. ηx is an isomorphism for all x ∈ X, which is iff. the
morphisms ρi,x are a colimit for all x ∈ X. This completes the proof.

For any point x ∈ X we have the additive stalk functor

(−)x : Ab(X) −→ Ab

which is exact. Given an abelian group M we define a sheaf of abelian groups by

Γ(U, Skyx(M)) =

{
M x ∈ U
0 otherwise
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One defines Skyx on morphisms in the obvious way, so that we have an additive functor

Skyx(−) : Ab −→ Ab(X)

For a sheaf of abelian groups F and abelian group M we have natural morphisms

η : F −→ Skyx(Fx), ηU (m) = (U,m)
ε : (SkyxM)x −→M, ε(U,m) = m

In fact these are the unit and counit of an adjunction (−)x
�
Skyx . It is clear that ε is a

natural equivalence, from which we deduce that Skyx is fully faithful (AC,Proposition 21). Let Z
be the closure of the point x ∈ X, and define for a sheaf of abelian groups F

ΓZ(F ) = {s ∈ Γ(X,F ) | s|X\Z = 0}

For a morphism of sheaves of abelian groups F −→ G we have a morphism of abelian groups
ΓZ(F ) −→ ΓZ(G ) and this defines an additive functor

ΓZ(−) : Ab(X) −→ Ab

Clearly ΓZ(SkyxM) = M for any abelian group M , so the identity is a trivial natural transfor-
mation η : M −→ ΓZ(SkyxM). Given a sheaf of abelian groups G , an abelian group M and a
morphism of abelian groups α : M −→ ΓZ(G ) we define a morphism of sheaves of abelian groups

φ : SkyxM −→ G

φU (m) = α(m)|U

for open U containing x. The condition on elements of ΓZ(G ) makes this a morphism of sheaves
of abelian groups, and it is certainly unique such that ΓZ(φ) = α. In other words, η is the unit of
an adjunction Skyx(−) �ΓZ(−), and we have a triple of adjoints

(−)x
� Skyx(−) � ΓZ(−)

which in particular means that Skyx(−) is exact and preserves all limits and colimits.

2.2 Sheaf Hom

Let X be a topological space and F ,G sheaves of abelian groups on X. Define the following
presheaf of abelian groups

Hom(F ,G )(U) = HomAb(U)(F |U ,G |U )
(φ|V )W = φW

We showed in (H,Ex.1.15) that this is a sheaf of abelian groups. If φ : F −→ F ′ is a morphism
of sheaves of abelian groups, we define a morphism of sheaves of abelian groups

Hom(φ,G ) : Hom(F ′,G ) −→ Hom(F ,G )
Hom(φ,G )U (ψ) = ψφ|U

this defines the additive contravariant functor Hom(−,G ) : Ab(X) −→ Ab(X). If φ : G −→ G ′

is a morphism of sheaves of abelian groups, we define a morphism of sheaves of abelian groups

Hom(F , φ) : Hom(F ,G ) −→ Hom(F ,G ′)
Hom(F , φ)U (ψ) = φ|Uψ

this defines the additive covariant functor Hom(F ,−) : Ab(X) −→ Ab(X).

8
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2.3 Tensor products

Let X be a topological space and F ,G sheaves of abelian groups on X. Define the following
presheaf of abelian groups

Z(U) = F (U)⊗Z G (U)
(a⊗ b)|V = a|V ⊗ b|V

Let F ⊗Z G be the associated sheaf of abelian groups. If φ : F −→ F ′ is a morphism of sheaves
of abelian groups and Z ′ sheafifies to give F ′ ⊗Z G then φ′ : Z −→ Z ′ defined by φ′U = φU ⊗ 1
is a morphism of presheaves of abelian groups, which sheafifies to give a morphism of sheaves of
abelian groups

φ⊗Z G : F ⊗Z G −→ F ′ ⊗Z G

a ⊗̇ b 7→ φ(a) ⊗̇ b

This defines the additive covariant functor − ⊗Z G : Ab(X) −→ Ab(X). If φ : G −→ G ′ is a
morphism of sheaves of abelian groups and Z ′ sheafifies to give F ⊗Z G ′ then φ′ : Z −→ Z ′

defined by φ′U = 1⊗ φU is a morphism of presheaves of abelian groups, which sheafifies to give a
morphism of sheaves of abelian groups

F ⊗Z φ : F ⊗Z G −→ F ⊗Z G ′

a ⊗̇ b 7→ a ⊗̇ φ(b)

This defines the additive covariant functor F ⊗Z − : Ab(X) −→ Ab(X). If φ : F −→ F ′ and
ψ : G −→ G ′ are morphisms of sheaves of abelian groups then

(φ⊗Z G ′)(F ⊗Z ψ) = (F ′ ⊗Z ψ)(φ⊗Z G )

and we denote this morphism by φ⊗Z ψ. This defines a covariant functor

−⊗Z − : Ab(X)× Ab(X) −→ Ab(X)
(φ⊗Z ψ)U (a ⊗̇ b) = φU (a) ⊗̇ ψU (b)

Lemma 17. For any sheaves of abelian groups F ,G there is an isomorphism of sheaves of abelian
groups natural in F ,G

τ : F ⊗Z G −→ G ⊗Z F

a ⊗̇ b 7→ b ⊗̇ a

called the twist

Proof. For a sheaf of abelian groups G let Z sheafify to give F ⊗Z G and Z ′ sheafify to give
G ⊗Z F . Define the isomorphism of presheaves of abelian groups τ ′ : Z −→ Z ′ to be the twist
F (U) ⊗Z G (U) −→ G (U) ⊗Z F (U) for every open set U ⊆ X. Clearly the sheafification of τ ′ is
the required natural isomorphism τ .

Proposition 18. For sheaves of abelian groups F ,E ,G there is an isomorphism of abelian groups
natural in all three variables

ζ : HomAb(X)(F ⊗Z E ,G ) −→ HomAb(X)(F ,Hom(E ,G ))

Proof. Let φ : F ⊗Z E −→ G , U ⊆ X and s ∈ F (U) be given. We define ζ(φ)U (s) : E |U −→ G |U
by

ζ(φ)U (s)V (e) = φV (s|V ⊗̇ e)

It is not difficult to check that ζ(φ)U (s) and ζ(φ) : F −→ Hom(E ,G ) are morphisms of sheaves
of abelian groups. So our map ζ is a well-defined morphism of abelian groups. Naturality in all
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three variables is not difficult to check. It is clear that ζ is injective. To see that it is surjective,
let α : F −→ Hom(E ,G ) be given. For U ⊆ X define a bilinear map

F (U)× E (U) −→ G (U)
(s, e) 7→ αU (s)U (e)

This induces a morphism of presheaves of abelian groups P −→ G where P sheafifies to give
F ⊗Z E . So finally we induce a morphism of sheaves of abelian groups

φ : F ⊗Z E −→ G

φU (s ⊗̇ e) = αU (s)U (e)

It is easy to check that ζ(φ) = α, which completes the proof that ζ is an isomorphism.

Corollary 19. For any sheaf of abelian groups E there is an adjunction of covariant additive
functors

Ab(X)
−⊗ZE

,,
Ab(X)

Hom(E ,−)

ll −⊗Z E
� Hom(E ,−)

In particular E ⊗Z − and −⊗Z E preserve all colimits.

Proof. The adjunction follows from Proposition 18, and since − ⊗Z E is naturally equivalent to
E ⊗Z −, if one has a right adjoint so does the other.

Proposition 20. Let F ,G be sheaves of abelian groups. Then for x ∈ X there is an isomorphism
of abelian groups natural in F ,G

α : (F ⊗Z G )x −→ Fx ⊗Z Gx

(U, a ⊗̇ b) 7→ (U, a)⊗ (U, b)

Proof. Let Z be the presheaf of abelian groups Z(U) = F (U)⊗Z G (U). Define

ε : Fx × Gx −→ Zx

((U, s), (V, t)) 7→ (U ∩ V, s|U∩V ⊗ t|U∩V )

It is easily checked that ε is bilinear, and we claim that ε is actually a tensor product. SupposeM is
an abelian group and φ : Fx×Gx −→M is bilinear. For x ∈ U the map θ′U : F (U)×G (U) −→M
defined by (s, t) 7→ φ((U, s), (U, t)) is bilinear and hence induces θU : Z(U) −→ M . Since θ
commutes with restriction, we get a morphism of abelian groups ψ : Zx −→M given by

ψ((U, s⊗ t)) = φ((U, s), (U, t))

Clearly ψε = φ and ψ is unique, so ε is a tensor product and there is an isomorphism of abelian
groups α′ : Zx −→ Fx ⊗Z Gx defined by (U, s⊗ t) 7→ (U, s)⊗ (U, t). Combined with the canonical
isomorphism of abelian groups (F ⊗Z G )x ∼= Zx this gives the desired isomorphism α. Naturality
is easily checked.

2.4 Inverse and Direct Image

Definition 10. Let f : X −→ Y be a continuous map of spaces and F a sheaf of abelian groups
on X. Then the sheaf of sets f∗F of Definition 5 is a sheaf of abelian groups in the obvious way. If
φ : F −→ F ′ is a morphism of sheaves of abelian groups, then so is f∗φ. This defines an additive
functor f∗ : Ab(X) −→ Ab(Y ), which we still call the direct image functor.

Definition 11. Let f : X −→ Y be a continuous map of spaces and G a sheaf of abelian groups
on Y . Then the sheaf of sets f−1G of Definition 6 is a sheaf of abelian groups in the obvious
way. If φ : G −→ G ′ is a morphism of sheaves of abelian groups, then so is f−1φ. This defines an
additive functor f−1 : Ab(Y ) −→ Ab(X), which we still call the inverse image functor.

10



Proposition 21. Let f : X −→ Y be a continuous map of spaces and let G be a sheaf of abelian
groups on Y . Then for x ∈ X there is a canonical isomorphism of abelian groups natural in G

λ : (f−1G )x −→ Gf(x)

germx[V, s] 7→ germf(x)s

Proof. The map λ of Proposition 4 is clearly a morphism of abelian groups, and gives the desired
natural isomorphism.

Lemma 22. Let f : X −→ Y be a continuous map of spaces. Then the functor f−1 : Ab(Y ) −→
Ab(X) is exact.

Proof. This follows immediately from Lemma 15 and Proposition 21.

Proposition 23. Let f : X −→ Y be a continuous map of spaces. Then we have an adjoint pair

Ab(X)

f∗
**
Ab(Y )

f−1

jj f−1 �
f∗ (5)

For sheaves F ,G of abelian groups on X,Y respectively the unit and counit are defined by

η : G −→ f∗f
−1G ε : f−1f∗F → F

ηV (s) = [V, s] εU ([V, s]) = s|U

Proof. Given a sheaf of abelian groups G on Y the morphism of sheaves of sets η : G −→ f∗f
−1G

defined in Proposition 5 is a morphism of sheaves of abelian groups natural in G . Let φ : G −→
f∗F be a morphism of sheaves of abelian groups. The morphism ψ : f−1G −→ F defined in
Proposition 5 by ψU ([V, s]) = φV (s)|U is a morphism of sheaves of abelian groups, and this defines
the required adjunction with the counit given above.

Lemma 24. Let X be a topological space and U ⊆ X an open subset with inclusion i : U −→ X.
Then for any sheaf of abelian groups F on X there is a canonical isomorphism of sheaves of
abelian groups natural in F

α : F |U −→ i−1F

αV (s) = [V, s]

That is, there is a canonical natural equivalence (−)|U ∼= i−1 of additive functors Ab(X) −→
Ab(U).

Proof. The isomorphism of sheaves of sets α defined in Lemma 6 is easily checked to be a morphism
of sheaves of abelian groups.

Definition 12. Let X be a topological space and U ⊆ X an open subset with inclusion j : U −→
X. If F is a sheaf of abelian groups on U then the sheaf of sets j!F of Definition 7 is a sheaf of
abelian groups in the obvious way. If φ : F −→ F ′ is a morphism of sheaves of abelian groups,
then so is j!φ : j!F −→ j!F ′. This defines an additive functor j!(−) : Ab(U) −→ Ab(X).

Proposition 25. Let X be a topological space and U ⊆ X an open subset with inclusion j : U −→
X. Then we have an adjoint pair

Ab(X)

(−)|U
**
Ab(U)

j!

jj j!
� (−)|U (6)
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Proof. Let G be a sheaf of abelian groups on X. The morphism ε : j!(G |U ) −→ G of Proposition
7 is easily seen to be a morphism of sheaves of abelian groups natural in G . If H is a sheaf of
abelian groups on U and b : j!H −→ F a morphism of sheaves of abelian groups, there is a unique
morphism of sheaves of abelian groups c : H −→ F |U making the following diagram commute

j!H
b //

j!c

��

F

j!(F |U )

ε

;;wwwwwwwww

Therefore ε is the counit of an adjunction j!(−) �(−)|U . For a sheaf of abelian groups H on
U the unit of this adjunction is the canonical isomorphism η : H −→ (j!H )|U .

Remark 7. With the notation of Proposition 25 the unit gives a canonical isomorphism of abelian
groups Hx −→ (j!H )x for x ∈ U , for any sheaf of abelian groups H on U . If x /∈ U then we have
(j!H )x = 0. By the same argument as Corollary 8 one checks that the counit ε : j!(F |U ) −→ F
is a monomorphism for any sheaf of abelian groups F on X.

Lemma 26. Let X be a topological space with open subset U ⊆ X and set Z = X \ U . If F is a
sheaf of abelian groups on X then there is an exact sequence

0 −→ j!(F |U ) −→ F −→ i∗(i−1F ) −→ 0 (7)

where j : U −→ X, i : Z −→ X are the inclusions.

Proof. We know that the canonical morphism ε : j!(F |U ) −→ F is a monomorphism with εx an
isomorphism for x ∈ U and zero otherwise. It is not hard to see that the unit η : F −→ i∗(i−1F )
is an epimorphism with ηx an isomorphism for x /∈ U and zero otherwise. Exactness of (7) is now
easily checked by looking at exactness on stalks.

Lemma 27. Let X be a topological space with open subset U ⊆ X and set Z = X \ U . If F is a
sheaf of abelian groups on X with F |U = 0 then there is a canonical isomorphism F ∼= i∗(i−1F )
where i : Z −→ X is the inclusion.

Lemma 28. The functor j! : Ab(U) −→ Ab(X) is exact.

Proof. This is a trivial consequence of Lemma 15.

Lemma 29. Let X be a topological space, U an open subset, Y a closed subset and assume
U ⊆ Y . Let j : U −→ X, i : Y −→ X and k : U −→ Y be the inclusions. Then for any sheaf of
abelian groups F on U there is a canonical isomorphism j!F ∼= i∗k!F natural in F . That is, the
following diagram of functors commutes up to canonical natural equivalence

Ab(X)

Ab(U)

j!
::uuuuuuuuu

k!

// Ab(Y )

i∗

OO

Proof. Let F be a sheaf of abelian groups on U . Let η : F −→ (k!F )|U be the canonical
morphism, which we showed above is an isomorphism. Since (k!F )|U = (i∗k!F )|U we can use
the adjunction j!

�(−)|U to produce a morphism τ : j!F −→ i∗k!F . We show that this is an
isomorphism of sheaves of abelian groups.

Just to be clear, let P be the presheaf on X sheafifying to give j!F . Define a morphism of
presheaves P −→ i∗k!F on open V ⊆ U to be ηV : F (V ) −→ Γ(V, k!F ). This induces the
morphism τ out of the sheafification. We show that τ is an isomorphism by showing that τx is an
isomorphism of abelian groups for all x ∈ X. There are three cases:

12



• (x /∈ Y ). Then (j!F )x = (i∗k!F )x = 0 so τx is trivially an isomorphism.

• (x ∈ Y \U). Then (j!F )x = 0 and (i∗k!F )x ∼= (k!F )x = 0 so τx is trivially an isomorphism.

• (x ∈ U). Then (j!F )x ∼= Fx and (i∗k!F )x ∼= (k!F )x ∼= Fx and it is not hard to see that τx
corresponds to the identity under these isomorphisms, and therefore τx is an isomorphism.

It is not hard to check that τ is natural in F , completing the proof.

In a sense to be made precise in the next lemma, the group Γ(V, j!F ) consists of all sections
in Γ(U ∩ V,F ) which can be extended by zero to all of V . That is, those sections that “fade out”
towards the edge of U ∩ V inside V .

Lemma 30. Let X be a topological space and U an open subset with inclusion j : U −→ X. For
any sheaf of abelian groups F on U there is a canonical monomorphism of sheaves of abelian
groups natural in F

ψ : j!F −→ j∗F

whose image is the subsheaf G defined by

Γ(V,G ) = {s ∈ Γ(V ∩ U,F ) | for every x ∈ V \ U there is an open set
x ∈W ⊆ V such that s|W∩U = 0}

Proof. Let FE be the presheaf of abelian groups on X defined by Γ(V,FE) = Γ(V,F ) for V ⊆ U
and zero otherwise. This is a subpresheaf of j∗F and the induced morphism of sheaves ψ : j!F −→
j∗F has an image G defined by the condition of Lemma 10. Examining this condition one checks
that Γ(V,G ) ⊆ Γ(V, j∗F ) consists of the sections satisfying the given condition.

Definition 13. LetX be a topological space and Z ⊆ X a closed subset with inclusion i : Z −→ X
and open complement U . If G is a sheaf of abelian groups onX then we define a presheaf of abelian
groups i?G on Z by

Γ(V, i?G ) = {s ∈ G (V ∪ U) | s|U = 0}

That is, the sections with support in Z. Together with the obvious restriction maps, this defines
a sheaf of abelian groups on Z. If φ : G −→ G ′ is a morphism of sheaves of abelian groups, then
we define a morphism of sheaves of abelian groups

i?φ : i?G −→ i?G ′

(i?φ)V (s) = φV ∪U (s)

This defines an additive functor i?(−) : Ab(X) −→ Ab(Z).

Proposition 31. Let X be a topological space and Z ⊆ X a closed subset with inclusion i : Z −→
X. Then we have an adjoint pair

Ab(X)

i?

**
Ab(Z)

i∗

jj i∗
�
i? (8)

Proof. Let F be a sheaf of abelian groups on Z. It is clear that i?i∗F = F and we let η : F −→
i?i∗F be the identity. If G is a sheaf of abelian groups on X and ϕ : F −→ i?G a morphism of
sheaves of abelian groups, then we define a morphism of sheaves of abelian groups

ψ : i∗F −→ G

ψT (s) = ϕT∩Z(s)|T

13



which is unique making the following diagram commute

F

��

ϕ // i?G

i?i∗F

ψ

;;xxxxxxxx

which shows that η is the unit of an adjunction i∗
�
i? . For a sheaf of abelian groups G on X

the counit ε : i∗i?G −→ G is defined by εT (s) = s|T .

In summary, we have the following result

Theorem 32. Let X be a topological space with open subset U and closed complement Z. Let
j : U −→ X and i : Z −→ X be the inclusions. Then we have six additive functors

j! : Ab(U) −→ Ab(X) i−1 : Ab(X) −→ Ab(Z)

j−1 : Ab(X) −→ Ab(U) i∗ : Ab(Z) −→ Ab(X)

j∗ : Ab(U) −→ Ab(X) i? : Ab(X) −→ Ab(Z)

and two triples of adjunctions

j!
�
j−1 � j∗ i−1 �

i∗
�
i?

And the functors j!, j−1 and i∗, i−1 are exact.

U U

X

ZZ

Ab(U)

j∗

!!

j!

==
Ab(X)

j−1
oo

i−1

==

i?

!!
Ab(Z)

i∗oo

More generally, we can define the functors j! and i? for open and closed embeddings respectively.

Definition 14. Let f : X −→ Y be a continuous map of spaces. We say f is an open embedding if
f induces a homeomorphism of X with an open subset of Y . We say that f is a closed embedding
if f induces a homeomorphism of X with a closed subset of Y . We say that f is an embedding if
f induces a homeomorphism of X with a subspace of Y .

Definition 15. Let f : X −→ Y be an open embedding. If G is a sheaf of abelian groups on
Y , then we write G |f (or more commonly just G |X) to denote the sheaf of abelian groups on X
defined by Γ(U,G |X) = Γ(f(U),G ). This defines an additive functor (−)|X : Ab(Y ) −→ Ab(X)
which is canonically naturally equivalent to f−1 : Ab(Y ) −→ Ab(X).
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Definition 16. Let f : X −→ Y be an open embedding and F a sheaf of abelian groups on X.
Let FE be the following presheaf of abelian groups on Y

FE(V ) =

{
F (f−1V ) V ⊆ f(X)
0 otherwise

with the obvious restriction maps. We denote the sheaf of abelian groups aFE by f!F . Let
φ : F −→ F ′ be a morphism of sheaves of abelian groups, and define a morphism of presheaves

φE : FE −→ F ′
E

(φE)V =

{
φf−1V V ⊆ f(X)
0 otherwise

Let f!φ : f!F −→ f!F ′ be the morphism aφE . This defines an additive functor f!(−) : Ab(X) −→
Ab(Y ). If G is a sheaf of abelian groups on Y we define a morphism of presheaves of abelian
groups (G |X)E −→ G to be the identity on open sets contained in f(X), and zero otherwise.
Denote by ε : f!(G |X) −→ G the induced morphism of sheaves of abelian groups, which is natural
in G . As before, one checks that ε is the counit of an adjunction f!

�(−)|X . So once again
we have a triple of adjoints

Ab(X)

f∗

!!

f!

==
Ab(Y )

f−1
oo f!

�
f−1 � f∗

The functors f! and f−1 are exact.

Lemma 33. Let f : X −→ Y be an open embedding. Then the functor (−)|X : Ab(Y ) −→ Ab(X)
preserves injectives.

Proof. This follows immediately from the fact that (−)|X has an exact left adjoint (AC,Proposition
25).

Definition 17. Let f : X −→ Y be a closed embedding with closed image Z and set U = Y \Z.
Let G be a sheaf of abelian groups on Y and define a sheaf of abelian groups on X by

Γ(V, f?G ) = {s ∈ G (f(V ) ∪ U) | s|U = 0}

If φ : G −→ G ′ is a morphism of sheaves of abelian groups, then we define a morphism of sheaves
of abelian groups

f?φ : f?G −→ f?G ′

(f?φ)V (s) = φf(V )∪U (s)

This defines an additive functor f?(−) : Ab(Y ) −→ Ab(X). Let F be a sheaf of abelian groups
on X. It is clear that f?f∗F = F , and we let η : F −→ f?f∗F be the identity. As before, this
is the unit of an adjunction f∗

�
f? . So once again we have a triple of adjoints

Ab(Y )

f?

!!

f−1

==
Ab(X)

f∗oo f−1 � f∗
�
f?

The functors f∗ and f−1 are exact.
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Definition 18. Let X be a topological space and Z ⊆ X a closed subset with open complement
U . If F is a sheaf of abelian groups on X we define a subsheaf H 0

Z (F ) by

Γ(V,H 0
Z (F )) = {s ∈ F (V ) |Supp(s) ⊆ Z ∩ V }

= {s ∈ F (V ) | s|U∩V = 0}

If φ : F −→ G is a morphism of sheaves of abelian groups, then there is an induced morphism
of sheaves of abelian groups H 0

Z (φ) : H 0
Z (F ) −→ H 0

Z (G ), and this defines an additive functor
H 0
Z (−) : Ab(X) −→ Ab(X).

In the next result, we show that the functor f? consists of taking the subsheaf with supports
in the image of f , and then applying the usual inverse image functor.

Lemma 34. Let f : X −→ Y be a closed embedding and F a sheaf of abelian groups on Y . Then
there is a canonical isomorphism of sheaves of abelian groups natural in F

λ : f?(F ) −→ f−1H 0
Z (F )

λV (s) = [f(V ) ∪ U, s]

where Z is the closed image of f and U = Y \ Z.

Proof. By definition we have Γ(V, f?(F )) = Γ(f(V ) ∪ U,H 0
Z (F )) for any open set V ⊆ X. Let

Q be the presheaf of abelian groups on X which sheafifies to give f−1H 0
Z (F ). Then τV (s) =

(f(V )∪U, s) defines a morphism of presheaves of abelian groups τ : f?(F ) −→ Q. We claim that
τ is an isomorphism.

If τV (s) = 0 then s|T = 0 for some open set f(V ) ⊆ T ⊆ f(V ) ∪ U . Then U, T is an open
cover of f(V ) ∪ U and s restricts to zero on both these open sets, so s = 0. To see that τV is
surjective, let an open set T ⊇ f(V ) and s ∈ Γ(T,H 0

Z (F )) be given. We may as well assume
T ∩ f(X) = f(V ). Then U, T is an open cover of f(V ) ∪ U and the sections 0, s agree on the
overlap, so there is a unique section t ∈ Γ(f(V )∪U,H 0

Z (F )) with t|T = s. Then clearly τV (t) = s
and the proof is complete. Since Q is a sheaf, the canonical morphism Q −→ f−1H 0

Z (F ) is an
isomorphism, and we let λ be the composite f?(F ) −→ Q ∼= f−1H 0

Z (F ), which is clearly natural
in F .

Lemma 35. Let f : X −→ Y be a closed embedding, set Z = f(X), U = Y \ Z and let F be a
sheaf of abelian groups on Y with F |U = 0. Then there is a canonical isomorphism of sheaves of
abelian groups natural in F

λ : f?(F ) −→ f−1(F )

In particular for x ∈ X there is a canonical isomorphism of abelian groups natural in F

δ : f?(F )x −→ Ff(x)

germxs 7→ germf(x)s

Proof. If F |U = 0 then H 0
Z (F ) = F so Lemma 34 gives an isomorphism of sheaves of abelian

groups f?(F ) −→ f−1F . The isomorphism on stalks follows immediately from Proposition
21.
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