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1 Introduction

In this note “ring” means a not necessarily commutative ring. If A is a commutative ring then an
A-algebra is a ring morphism A −→ B whose image is contained in the center of B. A morphism
of A-algebras is a ring morphism compatible with these morphisms (TES,Definition 1). We de-
note the category of A-algebras by AnAlg and the full subcategory of commutative A-algebras
by AAlg. We only consider algebras over commutative rings.

By (MOS,Corollary 26) we can generalise the definition of quasi-coherent modules to modules
over a sheaf of rings, with no risk of ambiguity.

Definition 1. Let X be a topological space and S a sheaf of rings. We say a sheaf F of S -
modules is quasi-coherent if every point x ∈ X has an open neighborhood U such that F |U can be
written as the cokernel of free objects in the abelian category Mod(S |U ). This property is stable
under isomorphism. The full replete subcategory of Mod(S ) consisting of the quasi-coherent
sheaves of modules is denoted Qco(S ).

Definition 2. Let X be a topological space and S a sheaf of graded rings. We say a sheaf F
of graded S -modules is quasi-coherent if it is quasi-coherent as a sheaf of S -modules. The full
replete subcategory of GrMod(S ) consisting of the quasi-coherent sheaves of graded modules is
denoted QcoGrMod(S ).
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2 Sheaves of Algebras

Definition 3. Let (X,OX) be a ringed space. A presheaf of OX-algebras is a presheaf of F of
abelian groups onX, such that for each open set U ⊆ X the group F (U) is an OX(U)-algebra, and
for each inclusion of open sets V ⊆ U the restriction morphism F (U) −→ F (V ) is a morphism
of rings, and for r ∈ OX(U) and m ∈ F (U) we have (r · m)|V = r|V · m|V . A morphism of
presheaves of OX -algebras is a morphism of OX -modules which is also a morphism of presheaves
of rings. This defines the category nAlg(X) of presheaves of OX -algebras. Let nAlg(X) denote
the full subcategory of all sheaves of OX -algebras. Note that a sheaf of OX -algebras is a sheaf of
OX -modules and also a sheaf of rings

We say a presheaf of OX -algebras F is commutative if F (U) is a commutative ring for every
open set U , and we denote the full subcategory of commutative presheaves of OX -algebras by
Alg(X). Similarly the full subcategory of sheaves of OX -algebras is denoted by Alg(X). We say a
presheaf of commutative OX -algebras F is a domain, or is a presheaf of OX-domains, if for every
nonempty open set U , F (U) is an integral domain.

If X is a scheme then we say that a sheaf F of OX -algebras is quasi-coherent or coherent if
it has these properties when considered as a sheaf of OX -modules. Let QconAlg(X) denote the
full subcategory of nAlg(X) consisting of the quasi-coherent sheaves of OX -algebras, and similarly
let QcoAlg(X) denote the full subcategory of Alg(X) consisting of the quasi-coherent sheaves of
commutative OX -algebras.

Definition 4. Let X be a scheme and F a sheaf of commutative OX -algebras. We say that F
is locally finitely generated as an OX-algebra if for every open affine subset U ⊆ X, F (U) is a
finitely generated OX(U)-algebra. We say F is locally an integral domain if F (U) is an integral
domain for every nonempty open affine subset U ⊆ X.

There are obvious forgetful functors Alg(X) −→ Mod(X) and nAlg(X) −→ Mod(X), and we
will discuss the adjoints of these functors later. If F is a presheaf of OX -algebras then for every
point x ∈ X the stalk Fx is an OX,x-algebra, which is commutative if F is. This gives functors
Alg(X) −→ OX,xAlg and nAlg(X) −→ OX,xnAlg.

Definition 5. Let (X,OX) be a ringed space and F a sheaf of commutativeOX -algebras. AnOX-
subalgebra of F is a monomorphism φ : G −→ F in the category Alg(X) with the property that
φU is the inclusion of a subset for every open U ⊆ X. In that case G (U) is an OX(U)-subalgebra
of F (U) and we can identify Gx with an OX,x-subalgebra of Fx for every x ∈ X. Every subobject
of F in the category Alg(X) is equivalent as a subobject to a unique OX -subalgebra.

If F is a presheaf of OX -algebras then there is a canonical morphism of presheaves of rings
OX −→ F given pointwise by the canonical algebra morphism OX(U) −→ F (U). In fact this
is a morphism of presheaves of OX -algebras. Giving the structure of a presheaf of OX -algebras
to a presheaf of rings F is equivalent to giving a morphism of presheaves of rings OX −→ F in
the obvious way. If F,G are presheaves of rings with morphisms OX −→ F,OX −→ G then a
morphism of presheaves of rings F −→ G is a morphism of presheaves of OX -algebras if and only
if the following diagram commutes

F // G

OX

aaBBBBBBBB

==||||||||

In other words:

Lemma 1. Let Rng(X) and Rng(X) denote the categories of presheaves and sheaves of com-
mutative rings on X respectively. Let OX be a sheaf of rings. Then mapping a presheaf (sheaf)
of commutative OX-algebras F to the canonical morphism OX −→ F defines isomorphisms of
categories

OX/Rng(X) ∼= Alg(X)
OX/Rng(X) ∼= Alg(X)
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Let F be a presheaf of OX -algebras. The sheafification F has a canonical structure as a sheaf
of OX -modules, and using the OX,x-algebra structure on Fx it is clear that F becomes a sheaf of
OX -algebras. If F is commutative then so is F . The canonical morphism F −→ F is a morphism
of presheaves of OX -algebras.

If φ : F −→ G is a morphism of presheaves of OX -algebras then the morphism aφ : F −→ G
between the sheafifications of presheaves of modules is a morphism of sheaves of algebras, so
sheafification gives a functor a : nAlg(X) −→ nAlg(X). This functor is left adjoint to the inclusion
i : Alg(X) −→ nAlg(X). Let η : 1 −→ ia be the natural transformation that is pointwise the
canonical morphism ηF : F −→ F above. Then if H is any sheaf OX -algebras and F −→ H a
morphism of presheaves of algebras, there is a unique morphism of sheaves of algebras F −→ H
making the following diagram commute

F

��

// H

F

==||||||||

Similarly sheafification gives a functor a : Alg(X) −→ Alg(X) which is left adjoint to the inclusion
Alg(X) −→ Alg(X) with the unit being the same morphisms F −→ F defined above.

If U ⊆ X is an open subset then restriction defines functors nAlg(X) −→ nAlg(U) and
Alg(X) −→ Alg(U). Obviously restricting to U = X is the identity, and if V ⊆ U ⊆ X then
the composite of the restrictions is restriction from X to V .

Lemma 2. Let φ : F −→ G be a morphism in nAlg(X) or nAlg(X). Then

• φ is a monomorphism ⇐ φU is injective for all U ⊆ X.

• φ is an isomorphism ⇔ φU is bijective for all U ⊆ X.

Let φ : F −→ G be a morphism in Alg(X). Then

• φ is a monomorphism ⇔ φU is injective for all U ⊆ X.

• φ is an epimorphism ⇔ φU is a ring epimorphism for all U ⊆ X.

• φ is an isomorphism ⇔ φU is bijective for all U ⊆ X.

Let φ : F −→ G be a morphism in Alg(X). Then

• φ is a monomorphism ⇔ φU is injective for all U ⊆ X ⇔ φx is injective for all x ∈ X.

• φ is an isomorphism ⇔ φU is bijective for all U ⊆ X ⇔ φx is bijective for all x ∈ X.

Proof. The statements for nAlg(X) and nAlg(X) are trivial. One could probably also show
injective ⇔ monic, using a sheafified version of the free algebra Z〈x〉, but I haven’t checked this.

Since the category of commutative rings is complete and cocomplete, the same is true of
Rng(X) and RngX. It follows from Lemma 1 and our notes on Coslice categories that a morphism
in Alg(X) is a monomorphism, epimorphism or isomorphism iff. it has this property as a morphism
of Rng(X). In which case the claims follow from our “Morphism cheat sheet” in Section 2.1. The
claims for Alg(X) follow in the same way.

Lemma 3. Let U ⊆ X be an open subset. Then the following diagrams of functors commute up
to canonical natural equivalence

nAlg(X)

|U
��

a // nAlg(X)

|U
��

nAlg(U)
a

// nAlg(U)

Alg(X)

|U
��

a // Alg(X)

|U
��

Alg(U)
a

// Alg(U)
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Proof. The analogous result for presheaves of sets, groups or rings is easily checked (see p.7 of
our Section 2.1 notes). Let F be a presheaf of algebras on X, and let φx : (F |U )x −→ Fx be
the canonical isomorphism of rings (compatible with the ring isomorphism (OX |U )x ∼= OX,x) for
x ∈ U . Then we define

η : a(F |U ) −→ (aF )|U
ηW (s)(x) = φx(s(x))

This is a morphism of sheaves of OX -algebras, which is clearly an isomorphism. Naturality in F
is also easily checked. The same argument applies to the second diagram.

If X = SpecA is an affine scheme then there are additive functors −̃ : AMod −→ Mod(X)
and Γ : Mod(X) −→ AMod which form an adjoint pair. We want to extend this adjunction to
algebras. Let A be a commutative ring and B an A-algebra (so B may be noncommutative). If S
is a multiplicatively closed subset of A then the S−1A-module S−1B can be given a ring structure
via b/s · c/t = bc/st. This makes S−1B into a (noncommutative) S−1A-algebra.

Definition 6. Let A be a commutative ring and set X = SpecA. Let B be an A-algebra (B
may be noncommutative). For a prime ideal p ∈ SpecA the module Bp is canonically an Ap-
algebra, and we make the sheaf of OX -modules B̃ into a sheaf of OX -algebras using this pointwise
structure. If φ : B −→ C is a morphism of A-algebras then the morphism B̃ −→ C̃ of sheaves of
modules is clearly a morphism of sheaves of algebras. If B is commutative then clearly so is B̃,
so we have defined functors −̃ : AnAlg −→ nAlg(X) and −̃ : AAlg −→ Alg(X). If F is a sheaf
of OX -algebras then Γ(F ) is an A-algebra via the ring morphism A ∼= Γ(X,OX) −→ Γ(X,F ),
so taking global sections defines functors Γ : nAlg(X) −→ AnAlg and Γ : Alg(X) −→ AAlg.

Proposition 4. Let A be a commutative ring, B an A-algebra and B̃ the sheaf of algebras on
X = SpecA corresponding to B. Then

(a) For each p ∈ X there is an isomorphism of rings B̃p
∼= Bp compatible with the ring isomor-

phism OX,p ∼= Ap.

(b) For any f ∈ A there is an isomorphism of rings B̃(D(f)) ∼= Bf compatible with the ring
isomorphism OX(D(f)) ∼= Af .

(c) In particular Γ(X, B̃) ∼= B as A-algebras.

Proof. The isomorphisms in (5.1) give the necessary ring isomorphisms in the current context.

Proposition 5. Let A be a commutative ring and set X = SpecA. Then we have two pairs of
adjoint functors of the form ˜ � Γ

AnAlg
e --

nAlg(X)
Γ

mm AAlg
e --

Alg(X)
Γ

ll

In both cases the unit B −→ Γ(B̃) and counit Γ̃(F ) −→ F are as for modules, so F is a
quasi-coherent sheaf of algebras iff. the counit is an isomorphism.

Proof. For an A-algebra B let η : B −→ Γ(B̃) be the morphism of A-modules given in our solution
to Ex 5.3 (where we established the adjunction for modules). This is clearly a morphism of A-
algebras natural in B. Suppose we are given a morphism of A-algebras φ : B −→ Γ(F ) for a sheaf
of algebras F . Let ψ : B̃ −→ F be the morphism of sheaves of modules defined in Ex 5.3, where
we showed that this is the unique morphism of sheaves of modules making the following diagram
commute

B

η

��

φ // Γ(F )

Γ(B̃)

ψX

;;xxxxxxxx
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So to complete the proof (for both noncommutative and commutative sheaves of algebras) it
suffices to show that ψ is a morphism of sheaves of algebras. This is easy to check, given the
explicit definition in Ex 5.3.

Lemma 6. Let A be a commutative ring and set X = SpecA. The functors −̃ : AnAlg −→
nAlg(X) and −̃ : AAlg −→ Alg(X) are fully faithful and preserve epimorphisms and all colimits.

Proof. We showed in (5.2) that the functor AMod −→ Mod(X) is fully faithful, from which it
follows immediately that the two functors above are fully faithful. The other properties follow
directly from Proposition 5.

Lemma 7. Let A be a commutative ring and set X = SpecA. The functors −̃ give equivalences

AnAlg ∼= QconAlg(X) AAlg ∼= QcoAlg(X)

2.1 Direct and inverse image

Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces. Then there is a pair of adjoint
functors

Mod(X)
f∗ --

Mod(Y )
f∗

mm f∗ � f∗

We want to define direct and inverse image for sheaves of algebras. Let F be a sheaf of algebras on
X, and let OX −→ F be the canonical morphism of sheaves of rings (remember that F is allowed
to be noncommutative). Then the composite OY −→ f∗OX −→ f∗F makes f∗F into a sheaf of
OY -algebras, so this defines the functors f∗ : nAlg(X) −→ nAlg(Y ) and f∗ : Alg(X) −→ Alg(Y ).

If S is a sheaf of rings on Y then we can define a sheaf of rings f−1S as in Section 2.1, since
the definition there does not depend on S being commutative. So we get a functor from sheaves
of rings on Y to sheaves of rings on X.

Now let G be a sheaf of OY -algebras. The morphism of sheaves of rings OY −→ G gives a
morphism of sheaves of rings f−1OY −→ f−1G and together with f−1OY −→ OX (the adjoint
partner of OY −→ f∗OX) we see that the rings f−1G (U) and OX(U) are f−1OY (U)-algebras for
every open subset U ⊆ X. Therefore the tensor product f−1G (U)⊗f−1OY (U)OX(U) is canonically
a OX(U)-algebra. See our Tensor, Exterior, Symmetric algebra notes for the construction of this
algebra. We already know that P (U) = f−1G (U)⊗f−1OY (U)OX(U) is a presheaf of OX -modules,
so it is clearly a presheaf of OX -algebras. Therefore the sheaf of OX -modules f∗G is canonically
a sheaf of OX -algebras. If G is commutative then so is f∗G . If φ : G −→ H is a morphism
of sheaves of OY -algebras then f∗φ : f∗G −→ f∗H , which we know to be a morphism of
modules, is easily seen to be a morphism of sheaves of algebras. So we have the desired functors
f∗ : nAlg(Y ) −→ nAlg(X) and f∗ : Alg(Y ) −→ Alg(X). By construction the following two
diagrams of functors commute:

nAlg(X)

��

f∗ --
nAlg(Y )

��

f∗
mm

Mod(X)
f∗ --

Mod(Y )
f∗

mm

Alg(X)

��

f∗
--
Alg(Y )

��

f∗
mm

Mod(X)
f∗ --

Mod(Y )
f∗

mm

Proposition 8. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces. Then for a sheaf of
algebras G on Y the canonical morphism of modules η : G −→ f∗f

∗G is a morphism of algebras,
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and these morphisms are the unit of an adjunction f∗ �f∗ (for sheaves of commutative algebras
also). That is, we have two adjoint pairs of functors

Alg(X)
f∗

--
Alg(Y )

f∗
mm f∗ � f∗

nAlg(X)
f∗ --

nAlg(Y )
f∗

mm f∗ � f∗

Proof. Using our explicit definition in Section 2.5 it is easy to check that η is a morphism of
sheaves of OY -algebras, and these morphisms therefore give a natural transformation 1 −→ f∗f

∗.
Let F be a sheaf of OX -algebras and φ : G −→ f∗F a morphism of sheaves of algebras. Then
there is a unique morphism of sheaves of modules ψ : f∗G −→ F making the following diagram
commute

G

η

��

φ // f∗F

f∗f
∗G

f∗ψ

;;vvvvvvvvv

To complete the proof, it suffices to check that ψ is a morphism of sheaves of algebras. Using our
explicit definition in Section 2.5 this is easily checked.

Proposition 9. Let f : (X,OX) −→ (Y,OY ) and g : (Y,OY ) −→ (Z,OZ) be morphisms of ringed
spaces. Then g∗f∗ = (gf)∗ for functors between the categories of sheaves of algebras, and sheaves
of commutative algebras.

Proof. We know that (gf)∗ = g∗f∗ as functors between the categories of sheaves of modules, and
it is not hard to see the equality holds in our current context as well.

Corollary 10. If f : (X,OX) −→ (Y,OY ) is an isomorphism of ringed spaces then we have
isomorphisms of categories f∗ : nAlg(X) −→ nAlg(Y ) and f∗ : Alg(X) −→ Alg(Y ).

Lemma 11. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces and F a sheaf of
OY -algebras. Then for x ∈ X there is a canonical isomorphism of OX,x-algebras

τ : (f∗F )x −→ Ff(x) ⊗OY,f(x) OX,x
germx([V, s] ⊗̇ b) 7→ germf(x)s⊗ germxb

Proof. It is easily checked that the isomorphism of (MRS,Proposition 20) is an isomorphism of
rings.

Lemma 12. Let f : (X,OX) −→ (Y,OY ) be an isomorphism of ringed spaces. Then the following
diagrams of functors commute up to canonical natural equivalence

Alg(X)

f∗

��

a // Alg(X)

f∗

��
Alg(Y )

a
// Alg(Y )

nAlg(X)

f∗

��

a // nAlg(X)

f∗

��
nAlg(Y )

a
// nAlg(Y )

Proof. The isomorphism given in (MRS,Lemma 25) gives the necessary isomorphism of sheaves
of algebras.

6
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Theorem 13. Let f : (X,OX) −→ (Y,OY ) and g : (Y,OY ) −→ (Z,OZ) be morphisms of schemes
and consider the following diagrams of functors

nAlg(X) nAlg(Y )
f∗oo

nAlg(Z)
(gf)∗

eeLLLLLLLLLL g∗

99rrrrrrrrrr

Alg(X) Alg(Y )
f∗oo

Alg(Z)
(gf)∗

eeJJJJJJJJJ g∗

::ttttttttt

We claim that both diagrams commute up to a canonical natural equivalence.

Proof. Given a sheaf of (commutative) OZ-algebras F we need only show the isomorphism of
sheaves of modules α : (gf)∗F −→ f∗g∗F given in our Inverse and Direct Image notes is a
morphism of sheaves of rings. It therefore suffices to show the morphism α′ : Q −→ Q′ given there
is a morphism of presheaves of rings, and this comes down to showing κ : g−1F −→ g∗F is a
morphism of sheaves of rings, which is trivial.

Lemma 14. Let (X,OX) be a ringed space and U ⊆ X an open subset with inclusion i :
(U,OX |U ) −→ (X,OX). Then we have the following functors

nAlg(U)

i∗
**
nAlg(X)

−|U

jj i∗
oo Alg(U)

i∗
**
Alg(X)

−|U

jj i∗
oo

We claim that in both cases there is a canonical natural equivalence i∗ ∼= −|U .

Proof. In our Section 2.5 notes we give a natural isomorphism of sheaves of modules γ : F |U −→
i∗F and it is easy to check this is an isomorphism of sheaves of algebras.

Proposition 15. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces, U ⊆ X and
V ⊆ Y open subsets with f(U) ⊆ V . Let g : U −→ V be morphism induced by f . Then the
following diagram on the left commutes up to canonical natural equivalence, and if U = f−1V
then the diagram on the right commutes

nAlg(X)

|U
��

nAlg(Y )
f∗oo

|V
��

nAlg(U) nAlg(V )
g∗

oo

nAlg(X)

|U
��

f∗ // nAlg(Y )

|V
��

nAlg(U)
g∗

// nAlg(V )

The same is true with nAlg(X) replaced by Alg(X).

Proof. If U = f−1V then it is easy to see that (−|V )f∗ = g∗(−|U ). If i : U −→ X and j : V −→ Y
are the inclusions then using Lemma 14, Theorem 13 and the fact that jg = fi we have a natural
equivalence

(−|U )f∗ ∼= i∗f∗ ∼= (fi)∗ = (jg)∗

∼= g∗j∗ ∼= g∗(−|V )

as required.

Proposition 16. Let ϕ : A −→ B be a morphism of commutative rings, X = SpecA, Y = SpecB
and f : Y −→ X the corresponding morphism of schemes. Then the following diagrams commute
up to canonical natural equivalence

nAlg(Y )
f∗ // nAlg(X)

BnAlg

e
OO

A−
// AnAlg

e
OO

nAlg(Y ) nAlg(X)
f∗oo

BnAlg

e
OO

AnAlg
−⊗AB
oo

e
OO

7



The same is true with nAlg(−) replaced by Alg(−) and nAlg replaced by Alg.

Proof. Let N be a B-algebra, and η : (AN)˜−→ f∗(Ñ) the natural isomorphism of sheaves of
modules given in our Section 2.5 notes. It is not difficult to check this is also a morphism of
sheaves of rings, which shows the first diagram commutes up to a canonical natural equivalence.
The argument for the second diagram is similar.

We say a morphism of ringed spaces f : (Y,OY ) −→ (X,OX) is an open immersion if there is
an open subset U ⊆ X such that f(Y ) = U and the induced morphism (Y,OY ) −→ (U,OX |U ) is
an isomorphism.

Proposition 17. Let f : (Y,OY ) −→ (X,OX) be an open immersion of ringed spaces and let
h : (Y,OY ) −→ (U,OX |U ) be the induced isomorphism with inverse g. We claim that there is a
canonical natural equivalence f∗ ∼= g∗ ◦ (−)|U of functors nAlg(X) −→ nAlg(Y ). The same is also
true with nAlg(−) replaced by Alg(−).

Proof. In our Section 2.5 notes we define a natural isomorphism κ : g∗F |U −→ f∗F of sheaves
of modules, and it is not difficult to check that this is also a morphism of sheaves of rings, which
completes the proof.

Corollary 18. Let f : (Y,OY ) −→ (X,OX) be an isomorphism of ringed spaces with inverse
h. Then there is a canonical natural equivalence f∗ ∼= h∗ of functors nAlg(X) −→ nAlg(Y ) and
Alg(X) −→ Alg(Y ).

2.2 Modules

If X is a scheme and S a sheaf of OX -algebras, then in particular S is a sheaf of rings on X, so
we stated in Definition 1 what it means to say that a sheaf of S -modules is quasi-coherent. Since
any sheaf of S -modules can be considered as a sheaf of OX -modules, if we simply state that a
sheaf of modules is “quasi-coherent” there is some possible ambiguity. The next result shows that
if S itself is quasi-coherent, there is no possibility of confusion.

Proposition 19. Let X be a scheme and S a quasi-coherent sheaf of OX-algebras. A sheaf of
S -modules M is quasi-coherent as a sheaf of S -modules if and only if it is quasi-coherent as a
sheaf of OX-modules.

Proof. Suppose that M is quasi-coherent as a sheaf of S -modules. Then by definition for every
point x ∈ X there is an open neighborhood U and an exact sequence in Mod(S |U )

S |IU −→ S |JU −→ M |U −→ 0

The coproducts in this sequence are coproducts in Ab(X), and the sequence is exact as a sequence
of sheaves of abelian groups, so it follows that it is exact as a sequence in Mod(U). Therefore
M |U is a quasi-coherent sheaf of modules on U by (MOS,Proposition 25) and (H,5.7). Since x
was arbitrary, this shows that M is a quasi-coherent OX -module.

Since the converse is local we can reduce to showing that if A is a commutative ring, B an A-
algebra andM a B-module, then there is an exact sequence of A-modules BI −→ BJ −→M −→ 0
for some index sets I, J . The functor BMod −→ AMod induced by the ring morphism A −→ B
is exact and preserves coproducts, so this is trivial.

Corollary 20. Let X be a scheme and S a quasi-coherent sheaf of OX-algebras. Then Qco(S )
is an abelian subcategory of Mod(S ).

Proof. Kernels, cokernels, images and finite products are computed in Mod(S ) in the same way
as Mod(X), so the claim follows from (AC,Lemma 39), Proposition 19 and the fact that Qco(X)
is an abelian subcategory of Mod(X).

8
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Lemma 21. Let X be a scheme, S a quasi-coherent sheaf of commutative OX-algebras and M
a quasi-coherent sheaf of S -modules. If U ⊆ X is affine and f : U −→ SpecOX(U) the canonical
isomorphism, then we claim the canonical isomorphism of sheaves of modules on SpecOX(U)

ε : M (U)˜ −→ f∗M |U

is an isomorphism of sheaves of S (U)˜-modules.

Proof. By Proposition 19, M is a quasi-coherent, so we certainly have an isomorphism ε. Also
S (U)˜ is a sheaf of quasi-coherent OX -algebras, so it makes sense to talk about modules over
this sheaf of rings. Moreover, the isomorphism of sheaves of modules S (U)˜ ∼= f∗S |U is an
isomorphism of sheaves of rings by Proposition 5, so f∗M |U becomes a sheaf of S (U)˜-modules
via its module structure over f∗S |U . To check ε is a morphism of sheaves of S (U)˜-modules it
suffices to check that ε( ˙b/s · ṁ/t) = ˙b/s · ε(ṁ/t), as follows

germpε( ˙bm/st) = κp(b ·m/st) = (D(st), ˙1/st · (b ·m)|D(st))

and

germp( ˙b/s · ε(ṁ/t)) = germp( ˙b/s) · germpε(ṁ/t) = κ′p(b/s) · κp(m/t)

= (D(s), ˙1/s · b|D(s)) · (D(t), ˙1/t ·m|D(t))

= (D(st), ˙1/st · (b ·m)|D(st))

where we have used the definition of the counit ε given in our Section 2.5 notes, and κp :
M (U)p −→ (f∗M |U )p and κ′p : S (U)p −→ (f∗S |U )p are the morphisms given there.

Corollary 22. Let X be a scheme and S a quasi-coherent sheaf of commutative OX-algebras.
If M ,N are quasi-coherent sheaves of S -modules then M ⊗S N is a quasi-coherent sheaf of
S -modules.

Proof. In light of Proposition 19, the sheaves M ,N are quasi-coherent as OX -modules, and it
suffices to show that M ⊗S N is a quasi-coherent sheaf of OX -modules. Given x ∈ X let U
be an affine open neighborhood with canonical isomorphism f : U −→ SpecOX(U) such that
f∗M |U ∼= M (U)˜ , f∗N |U ∼= N (U)˜ and f∗S |U ∼= S (U)˜ , where the latter isomorphism is
of sheaves of algebras on SpecOX(U) by Proposition 5. Then using (MAS,Proposition 3) and
Lemma 21 we have an isomorphism of sheaves of S (U)˜ -modules (and therefore of sheaves of
modules over the scheme SpecOX(U))

f∗ ((M ⊗S N )|U ) ∼= f∗(M |U ⊗S |U N |U ) ∼= f∗M |U ⊗f∗S |U f∗N |U (1)
∼= M (U)˜⊗S (U)e N (U)˜ ∼= (M (U)⊗S (U) N (U))˜ (2)

This shows that M ⊗S N is quasi-coherent, and completes the proof.

2.3 Ideals

Throughout this section let (X,OX) be a ringed space and S a commutative sheaf of OX -algebras.

Definition 7. If F ,G are submodules of S then there is a canonical morphism of sheaves of
OX -modules

F ⊗OX
G −→ S

a ⊗̇ b 7→ ab

Let FG denote the submodule of S given by the image of this morphism. If S = OX then this is
the ideal product defined in (MRS,Section 1.9). It follows from the next result and (MRS,Lemma
2) that FG is the submodule of S given by sheafifying the presheaf U 7→ F (U)G (U) and
is therefore the smallest submodule of S containing the products F (U)G (U) for every open
U . We denote by Fn the n-fold product for n ≥ 1. It is clear that if U ⊆ X is open then
(FG )|U = F |UF |U . If S ∼= T is an isomorphism of commutative sheaves of OX -algebras let
F ′,G ′ denote the corresponding submodules of T . Then (FG )′ = F ′G ′.

9
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Lemma 23. Let F ,G be submodules of S . For open U ⊆ X and s ∈ S (U) we have s ∈ (FG )(U)
if and only if for every x ∈ U there is an open neighborhood x ∈ V ⊆ U such that s|V = s1+· · ·+sn
where each si is of the form si = fg for some f ∈ F (V ) and g ∈ G (V ).

Lemma 24. We have the following properties of this product

(i) If F ,G are submodules of S then FG = G F .

(ii) If F ,G ,H are submodules of S then (FG )H = F (G H ).

(iii) If F ,G are submodules of S then (FG )x = FxGx.

(iv) If F ,G ,H are submodules of S with F ⊆ G then FH ⊆ G H . In particular if F ⊆ G
then Fn ⊆ G n for all n ≥ 1.

Proof. (i),(ii) and (iv) follow from Lemma 23. For (iii) use the fact that the stalk functor
Mod(X) −→ OX,xMod is exact to see that (FG )x is the image of the morphism Fx⊗Gx −→ Sx,
which is obviously FxGx.

Lemma 25. Let f : X −→ Y be an isomorphism of ringed spaces, S a commutative sheaf of
OX-algebras and F ,G submodules of S . Then f∗(FG ) = f∗F · f∗G .

Proof. Immediate from Lemma 23.

Lemma 26. Let f : X −→ Y be a morphism of ringed spaces, S a commutative sheaf of OX-
algebras and F a submodule of S . For d > 0 there is a canonical monomorphism of sheaves of
modules on Y natural in F

α : f∗(F )d −→ f∗(F d)

If f is an isomorphism of ringed spaces, then α is also an isomorphism.

Proof. In fact for any d > 0, we have f∗(F )d ⊆ f∗(F d) as submodules of the commutative sheaf
of OY -algebras f∗S , so the inclusion gives a monomorphism α. If f is an isomorphism, then it is
easily checked that α is an isomorphism.

Lemma 27. Let A be a commutative ring, S a commutative A-algebra and M,N A-submodules
of S. Then M˜ ·N˜ = (MN)˜.

Proof. Set X = SpecA and observe that since the functor −̃ : AMod −→ Mod(X) is exact we
can identify M ˜ , N ˜ and (MN) ˜ with submodules of S ˜ in the usual way. The fact that
M˜ ·N˜ = (MN)˜ follows from commutativity of the following diagram

M̃ ⊗OX
Ñ

��

// S̃

(M ⊗A N)˜
::uuuuuuuuuuu

which we can check by reducing to special sections.

Proposition 28. Let X be a scheme, S a commutative quasi-coherent sheaf of OX-algebras and
F ,G quasi-coherent submodules of S . Then FG is a quasi-coherent submodule of S . If X is
noetherian and F ,G coherent, then so is FG .

Proof. Let U ⊆ X be an affine open subset with canonical isomorphism f : U −→ SpecOX(U).
Then using Lemma 25 and Lemma 27 we have an isomorphism of sheaves of modules on SpecOX(U)

f∗(FG )|U = f∗(F |UG |U )
= f∗(F |U ) · f∗(G |U )
∼= F (U)˜ · G (U)˜
∼= (F (U) · G (U))˜

10



This shows that FG is quasi-coherent. If X is noetherian and F ,G coherent, then F (U),G (U)
are finitely generated and therefore so is F (U)G (U), so FG is also coherent.

Definition 8. Let F ,G be submodules of S . Then we define a submodule of S by

(F :S G )(U) = {r ∈ S (U) | r|V G (V ) ⊆ F (V ) for all open V ⊆ U}

It is clear that (F :S G )G ⊆ F . If H is another submodule of S then H ⊆ (F :S G ) if and
only if H G ⊆ F . If U ⊆ X is an open subset then (F :S G )|U = (F |U :S |U G |U ).

Lemma 29. Let f : X −→ Y be an isomorphism of ringed spaces and S a commutative sheaf of
OX-algebras. If F ,G are submodules of S then f∗(F :S G ) = (f∗F :f∗S f∗G ).

Lemma 30. Let A be a commutative ring, S a commutative A-algebra and F,G A-submodules
of S with G a finitely generated A-module. If p ∈ SpecA then (F :S G)p = (Fp :Sp Gp) as
Ap-submodules of Sp.

Proof. If y ∈ (F :S G)p then y = x/s for some x ∈ (F :S G) so it is not hard to see that
x/sGp ⊆ Fp, so y ∈ (Fp :Sp Gp). For the converse, suppose that G is generated as an A-module
by g1, . . . , gn and let y ∈ (Fp :Sp Gp), say y = b/t. Then for every i we have bxi/t = ai/si for
some ai ∈ F , and therefore (siqb)xi = qtai ∈ F for some q /∈ p. Taking z = s1 · · · sn it is not hard
to see that zqb ∈ (F :S G) and therefore since y = b/t = (zqb)/(zqt) we have y ∈ (F :S G)p as
required.

Proposition 31. Let X be a scheme and F ,G submodules of a commutative sheaf of OX-algebras
S . If x ∈ X then we have (F :S G )x ⊆ (Fx :Sx Gx) as submodules of Sx. If X is noetherian,
F ,S quasi-coherent and G coherent this is an equality.

Proof. The inclusion (F :S G )x ⊆ (Fx :Sx
Gx) is easily checked. Now suppose that X is

noetherian, F ,H quasi-coherent and G coherent. For the reverse inclusion we can reduce to
the following situation: X = SpecA for a commutative noetherian ring A, S is a commutative
A-algebra, F,G are A-submodules of S with G finitely generated, p ∈ SpecA and we have to show
that the ring isomorphism (S˜)p

∼= Sp identifies the submodules (F˜ :Se G˜)p and (Fp :Sp Gp).
From Lemma 30 we know that (Fp :Sp Gp) = (F :S G)p. Given a ∈ (F :S G)p and s /∈ p it is

easy to see that the section ˙a/s ∈ Γ(D(s), S˜) has the property that ˙a/sG˜(V ) ⊆ F˜(V ) for any
open V ⊆ D(s), and therefore ˙a/s ∈ Γ(D(s), (F˜ :Se G˜)) which completes the proof.

Corollary 32. Let A be a commutative noetherian ring, S a commutative A-algebra and M,N
A-submodules of S. If N is finitely generated then we have (M ˜ :Se N ˜ ) = (M :S N)˜ as
submodules of S˜.

Proof. It suffices to show that (M ˜ :Se N ˜)p = (M :S N)˜p as submodules of (S˜)p for every
point p ∈ X. But the proof of Proposition 31 shows that the isomorphism (S˜)p

∼= Sp identifies
both these ideals with (M :S N)p, so they must be equal.

Corollary 33. Let X be a noetherian scheme and F ,G quasi-coherent submodules of a commu-
tative quasi-coherent sheaf of OX-algebras S . If G is coherent then (F :S G ) is a quasi-coherent
submodule of S .

Proof. If U ⊆ X is an affine open subset and f : U −→ SpecOX(U) the canonical isomorphism,
then we have using Lemma 29 and Corollary 32 an isomorphism of sheaves of modules

f∗(F :S G )|U = f∗(F |U :S |U G |U )
= (f∗F |U :f∗S |U f∗G |U )
∼= (F (U)˜ :S (U)e G (U)˜)
∼= (F (U) :S (U) G (U))˜

This shows that (F :S G ) is quasi-coherent.
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2.4 Generating Algebras

Lemma 34. Let (X,OX) be a ringed space and F a sheaf of commutative OX-algebras. The
following conditions on two OX-subalgebras G ,H of F are equivalent:

(i) G precedes H as a subobject in the category Alg(X);

(ii) G (U) ⊆ H (U) for all open U ;

(iii) Gx ⊆ Hx as OX,x-subalgebras of Fx for all x ∈ X.

Proof. Follows immediately from (MRS,Lemma 8).

Definition 9. Let (X,OX) be a ringed space and F a sheaf of commutative OX -algebras. Given
sections si ∈ F (Ui) let Gx ⊆ Fx be the OX,x-subalgebra generated by the set {germxsi |x ∈ Ui}.
For U ⊆ X let

G (U) = {s ∈ F (U) | germxs ∈ Gx for all x ∈ U}

Then G is a OX -subalgebra of F which precedes any other OX -subalgebra containing the si. We
call G the OX-subalgebra generated by the set {si}. It is easy to see that Gx = Gx for every
x ∈ X.

Lemma 35. Let X be a quasi-compact scheme and F a quasi-coherent sheaf of commutative
OX-algebras. Consider the following conditions

(i) F is locally finitely generated as an OX-algebra;

(ii) There is an affine open cover U1, . . . , Un of X such that F (Ui) is a finitely generated OX(Ui)-
algebra for 1 ≤ i ≤ n.

(iii) There is a finite nonempty set of sections si ∈ F (Ui) such that the OX-subalgebra of F
generated by the set {si} is F .

(iv) For every x ∈ X, Fx is a finitely generated OX,x-algebra.

We claim that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv).

Proof. (i) ⇒ (ii) is trivial. (ii) ⇒ (iii) For 1 ≤ i ≤ n let si1, . . . , siqi
be a set of generators

for F (Ui) as an OX(Ui)-algebra. Let G be the OX -subalgebra of F generated by the sections
{sij}1≤i≤n,1≤j≤qi

. We show that G = F by proving that Gx = Fx for every x ∈ X. Given
x ∈ X, find an index with x ∈ Ui and let f : Ui −→ SpecOX(Ui) be the canonical isomorphism.
By Proposition 5 there is a canonical isomorphism of sheaves of algebras f∗F |Ui

∼= F (Ui) ˜ .
If x corresponds to the prime p ∈ SpecOX(Ui) then there is an isomorphism of OX,x-algebras
Fx

∼= F (Ui)p where we identify OX,x and OX(Ui)p. This isomorphism identifies germxsij with
sij/1 for 1 ≤ j ≤ qi. Since F (Ui) is generated by the sij as an OX(Ui)-algebra, it follows that
F (Ui) is generated by the sij/1 as an OX(Ui)p-algebra, and therefore Fx is generated by the
germxsij as a OX,x-algebra, as required. (iii) ⇒ (iv) is trivial.

Lemma 36. Let (X,OX) be a ringed space and F a sheaf of commutative OX-algebras. If M is
a OX-submodule of F then the OX-subalgebra of F generated by M is B, where

B =
∑
n≥0

Im(M⊗n −→ F ) (3)

Proof. For n ≥ 0 the morphism φ0 : OX −→ F is canonical and for n = 1 the morphism
φ1 : M −→ F is the inclusion. For n ≥ 2 we define φn : M⊗n −→ F by induction, using the fact
that M⊗n = M ⊗M⊗(n−1). Having defined φn−1 consider the following OX(U)-bilinear map

M (U)×M⊗(n−1)(U) −→ F (U)

(m,n) 7→ mφn−1
U (n)

12
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This induces a morphism out of the tensor product, which is natural in U and therefore induces a
morphism of sheaves of OX -modules φn : M⊗n −→ F . By the “OX -subalgebra generated by M ”
we mean the OX -subalgebra of F generated by the sections m ∈ M (U) for every open U ⊆ X,
in the sense of Definition 9. In other words, the smallest OX -subalgebra of F preceded by M as
OX -submodules.

If we define B to be the OX -submodule of F in (3) then for every x ∈ X we have

Bx =
∑
n≥0

Im((Mx)⊗n −→ Fx)

using (MRS,Lemma 69) and the fact that the stalk functor (−)x : Mod(X) −→ OX,xMod is exact
and preserves all colimits. In other words Bx is the subgroup of Fx generated by the elements of
OX,x and arbitrary products of elements from Mx, which is of course the OX,x-subalgebra of Fx

generated by Mx. If G is the OX -subalgebra of F generated by M , then it follows immediately
from Definition 9 that Gx = Bx for all x ∈ X and therefore G = B as OX -submodules of F ,
which completes the proof.

Lemma 37. Let A be a commutative ring and set X = SpecA. Let B be a commutative A-algebra,
M an A-submodule of B and C the A-subalgebra of B generated by M . Then the OX-subalgebra
of B˜ generated by the OX-submodule M˜ is the OX-subalgebra C˜.

Proof. The monomorphism of A-algebras C −→ B gives a monomorphism of sheaves of commu-
tative OX -algebras C ˜ −→ B ˜ , so we can identify C ˜ with an OX -subalgebra of B ˜ . By
assumption C =

∑
n≥0 Im(M⊗n −→ B), and since the functor −̃ : AMod −→ Mod(X) is exact

and commutes with tensor products and colimits, we have

C̃ =
∑
n≥0

Im(M̃⊗n −→ B̃)

So the result follows from Lemma 36.

2.5 Tensor Products

Let (X,OX) be a ringed space and G ,H sheaves of OX -algebras. For each open set U ⊆ X the
OX(U)-module G (U)⊗OX(U) H (U) becomes a OX(U)-algebra in a canonical way (TES,Lemma
12) and this defines a presheaf of OX -algebras. Therefore the sheafification G ⊗OX

H becomes
a sheaf of OX -algebras in a canonical way, and we have canonical morphisms of sheaves of OX -
algebras

G −→ G ⊗OX
H , a 7→ a ⊗̇ 1

H −→ G ⊗OX
H , b 7→ 1 ⊗̇ b

If R is a commutative ring, G,H commutative R-algebras and M,N modules over G,H respec-
tively, then the R-module M ⊗RN is a module over the commutative ring G⊗RH in a canonical
way, with action (g ⊗ h) · (m⊗ n) = (g ·m)⊗ (h · n). There is an analog for sheaves of algebras.
With the above notation, suppose that G ,H are commutative and let M ,N be sheaves of mod-
ules over G ,H respectively. Then M (U) ⊗OX(U) N (U) is a module over G (U) ⊗OX(U) H (U)
and therefore the sheafification M ⊗OX

N is a sheaf of modules over the sheaf of commutative
OX -algebras G ⊗OX

H , with action (g ⊗̇ h) · (m ⊗̇ n) = (g ·m) ⊗̇ (h · n).

3 Sheaves of Graded Algebras

Definition 10. Let (X,OX) be a ringed space. A sheaf of graded OX-algebras is a sheaf of OX -
algebras B together with a set of subsheaves of abelian groups Bd, d ≥ 0 making B into a sheaf
of graded rings, such that for open U , d ≥ 0 and r ∈ OX(U), s ∈ Bd(U) we have r · s ∈ Bd(U).
The following are equivalent definitions:
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(a) A sheaf of OX -algebras B together with subsheaves of OX -modules Bd such that the mor-
phisms Bd −→ B induce an isomorphism

⊕
d≥0 Bd

∼= B and BdBe ⊆ Bd+e, 1 ∈ B0(X).

(b) A morphism of sheaves of graded rings OX −→ B where we grade OX canonically.

A morphism of graded OX -algebras is a morphism of graded rings B −→ C which is also a
morphism of sheaves of OX -algebras. This makes the sheaves of graded OX -algebras into a
category, denoted GrnAlg(X). We denote the full subcategory of commutative gradedOX -algebras
by GrAlg(X).

The image of the canonical morphism of sheaves of algebras OX −→ B is contained in the
submodule B0. If the factorisation OX −→ B0 is an isomorphism then we write B0 = OX . If
X is a scheme then we say that a sheaf of graded OX -algebras is quasi-coherent or coherent if
it has this property as a sheaf of OX -algebras. Let QcoGrnAlg(X) denote the full subcategory
of GrnAlg(X) consisting of the quasi-coherent sheaves of graded OX -algebras, and similarly let
QcoGrAlg(X) denote the full subcategory of GrAlg(X) consisting of the quasi-coherent sheaves
of commutative graded OX -algebras.

Definition 11. Let (X,OX) be a ringed space. A presheaf of graded OX-algebras is a presheaf of
OX -algebras F together with sub-presheaves of OX -modules Fd, d ≥ 0 such that the morphisms
Fd −→ F induce an isomorphism

⊕
d≥0 Fd

∼= F , and FdFe ⊆ Fd+e, 1 ∈ F0(X). A morphism of
presheaves of graded OX -algebras is a morphism of presheaves of OX -algebras which preserves
grade. This defines the category GrnAlg(X) of presheaves of graded OX -algebras.

If F is a presheaf of graded OX -algebras then the sheafification F of F is a sheaf of OX -
algebras, and we let Fd be the submodule of F given by the image of the sheafified inclusion
aFd −→ aF = F . Then the inclusions Fd −→ F induce an isomorphism

⊕
d≥0 Fd

∼= F , and
it is clear that F together with the Fd is a sheaf of graded OX -algebras. This defines a functor
a : GrnAlg(X) −→ GrnAlg(X).

If U ⊆ X and B together with subsheaves Bd is a sheaf of graded OX -algebras, then B|U
together with the subsheaves Bd|U is a sheaf of graded OX |U -algebras. Therefore restriction
defines functors GrnAlg(X) −→ GrnAlg(U) and GrAlg(X) −→ GrAlg(U). Clearly these functors
are the identity if U = X, and the composite of the restriction functors for V ⊆ U and U ⊆ X is
the functor for V ⊆ X.

If B is a sheaf of graded OX -algebras and x ∈ X, then Bx is a graded OX,x-algebra with
the grading given by the images of the monomorphisms Bd,x −→ Bx for d ≥ 0. If φ : B −→ C
is a morphism of sheaves of graded OX -algebras then φx : Bx −→ Cx is a morphism of graded
OX,x-algebras. So taking stalks defines a functor (−)x : GrnAlg(X) −→ OX,xGrnAlg.

Lemma 38. Let U ⊆ X be an open subset. Then the following diagram of functors commutes up
to canonical natural equivalence

GrnAlg(X)

|U
��

a // GrnAlg(X)

|U
��

GrnAlg(U)
a

// GrnAlg(U)

Proof. If F is a presheaf of graded OX -algebras then the isomorphism of sheaves of algebras
a(F |U ) ∼= (aF )|U clearly preserves grade.

Definition 12. Let X be a scheme and F a sheaf of commutative graded OX -algebras. We say
F is locally generated by F1 as an F0-algebra if for every open affine subset U ⊆ X, F (U) is
generated by F1(U) as an F0(U)-algebra. We say F is locally finitely generated by F1 as an
F0-algebra if for every open affine subset U ⊆ X, F (U) is finitely generated by F1(U) as an
F0(U)-algebra.

Proposition 39. Let X be a scheme and F a quasi-coherent sheaf of graded OX-modules. Then
the component sheaves of modules Fd are quasi-coherent for all d ≥ 0. If X is noetherian and F
is coherent, then so are all the Fd.
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Proof. This follows immediately from (MOS,Lemma 1).

Proposition 40. Let X be a scheme and F a quasi-coherent sheaf of graded OX-algebras. If
U ⊆ X is an affine open subset then F (U) is a graded OX(U)-algebra with degree d component
Fd(U). If M is a quasi-coherent sheaf of graded F -modules then M (U) is a graded F (U)-module
with degree n component Mn(U).

Proof. We may assume U is nonempty. We need only show that F (U) is the internal direct sum of
the submodules Fd(U) for d ≥ 0. By assumption the morphisms Fd −→ F are a coproduct, and
since restriction −|U : Mod(X) −→ Mod(U) has a right adjoint the morphisms Fd|U −→ F |U
are also a coproduct. Since the modules Fd are quasi-coherent, there is a commutative diagram
for every d ≥ 0 (identifying Mod(U) with Mod(SpecOX(U)))

Fd|U // F |U

F̃d(U)

KS

// F̃ (U)

KS

See our solution of Ex.5.3 for the definition of the vertical morphisms, and (5.4) for the proof
they are isomorphisms. Therefore the morphisms on the bottom row are a coproduct, and since
−̃ : OX(U)Mod −→ Mod(U) is fully faithful it reflects all colimits, and therefore the morphisms
Fd(U) −→ F (U) are a coproduct of OX(U)-modules, which proves the first claim.

Since F is a graded OX -algebra, for every open V the image of OX(V ) is contained in F0(V ),
and therefore the subsheaves of abelian groups Mn are all OX -submodules. Therefore M is
a quasi-coherent sheaf of graded OX -modules with degree n component Mn. Using the above
argument, it is easy to check the second claim.

Definition 13. Let A be a commutative ring and set X = SpecA. Let B be a graded A-algebra
(B may be noncommutative). Then B˜ becomes a sheaf of OX -algebras in a canonical way, and
together with the image of the monomorphism Bd ˜ −→ B ˜ for d ≥ 0, this defines a sheaf of
graded OX -algebras. If B is commutative then B˜ is a sheaf of commutative graded OX -algebras.
This defines functors

−̃ : AGrnAlg −→ GrnAlg(X)

−̃ : AGrAlg −→ GrAlg(X)

If F is a quasi-coherent sheaf of graded OX -algebras then it follows from Proposition 40 that
Γ(F ) is canonically a graded A-algebra with degree d subgroup Γ(Fd). This defines functors

Γ(−) : QcoGrnAlg(X) −→ AGrnAlg

Γ(−) : QcoGrAlg(X) −→ AGrAlg

Lemma 41. Let A be a commutative ring and B a graded A-algebra. Then there is a canonical
isomorphism of graded A-algebras Γ(B˜) ∼= B.

Proof. The isomorphism of Proposition 4(c) clearly preserves grade.

3.1 Direct and inverse image

Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces with the property that the functor
f∗ : Ab(X) −→ Ab(Y ) preserves coproducts. If F is a sheaf of graded OX -algebras then the OY -
algebra f∗F is a graded OY -algebra with degree d subsheaf f∗Fd. If φ : F −→ G is a morphism
of graded OX -algebras then f∗φ : f∗F −→ f∗G is a morphism of graded OX -algebras, and in this
way we define functors

f∗ : GrnAlg(X) −→ GrnAlg(Y )
f∗ : GrAlg(X) −→ GrAlg(Y )

15
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Now let f : (X,OX) −→ (Y,OY ) be any morphism of ringed spaces. If F is a sheaf of graded OY -
algebras then since the functor f∗ : Mod(Y ) −→ Mod(X) preserves all colimits, the OX -algebra
f∗F (see Section 2.1), together with the images of the monomorphisms f∗Fd −→ f∗F of OX -
modules, is a sheaf of graded OX -algebras. If φ : F −→ G is a morphism of graded OY -algebras
then f∗φ : f∗F −→ f∗G is a morphism of graded OX -algebras, and in this way we define functors

f∗ : GrnAlg(Y ) −→ GrnAlg(X)
f∗ : GrAlg(Y ) −→ GrAlg(X)

Proposition 42. Let f : (X,OX) −→ (Y,OY ) and g : (Y,OY ) −→ (Z,OZ) be morphisms of
ringed spaces with the property that f∗ : Ab(X) −→ Ab(Y ) and g∗ : Ab(Y ) −→ Ab(Z) preserve
coproducts. Then g∗f∗ = (gf)∗ for functors between the categories of sheaves of graded algebras,
and sheaves of commutative graded algebras.

Corollary 43. If f : (X,OX) −→ (Y,OY ) is an isomorphism of ringed spaces then we have
isomorphisms of categories f∗ : GrnAlg(X) −→ GrnAlg(Y ) and f∗ : GrAlg(X) −→ GrAlg(Y ).

Lemma 44. Let f : (X,OX) −→ (Y,OY ) be an isomorphism of ringed spaces. Then the following
diagram of functors commutes up to canonical natural equivalence

GrnAlg(X) a //

f∗

��

GrnAlg(X)

f∗

��
GrnAlg(Y )

a
// GrnAlg(Y )

Proof. The isomorphism given in Lemma 12 preserves grade, and therefore gives the desired
isomorphism of sheaves of graded algebras.

Lemma 45. Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces and F a sheaf of graded
OY -algebras. Then for x ∈ X there is a canonical isomorphism of graded OX,x-algebras

τ : (f∗F )x −→ Ff(x) ⊗OY,f(x) OX,x
germx([V, s] ⊗̇ b) 7→ germf(x)s⊗ germxb

Proof. It is easily checked that the isomorphism of Lemma 45 preserves grade.

3.2 Modules

Proposition 46. Let X be a scheme and S a quasi-coherent sheaf of commutative graded OX-
algebras. Let M ,N be quasi-coherent sheaves of graded S -modules. Then M ⊗S N is a quasi-
coherent sheaf of graded S -modules and for open affine U ⊆ X there is a canonical isomorphism
of graded S (U)-modules natural in M ,N

M (U)⊗S (U) N (U) −→ (M ⊗S N )(U) (4)
a⊗ b 7→ a ⊗̇ b (5)

Proof. We know from Corollary 22 that M ⊗S N is a quasi-coherent sheaf of graded S -modules,
where the grading is defined in (MRS,Section 2.3). If U ⊆ X is affine then S (U) is a graded
OX(U)-algebra and M (U),N (U), (M ⊗S N )(U) are graded S (U)-modules by Proposition 40,
so the claim at least makes sense. Evaluating the isomorphism (1) of Corollary 22 on global
sections gives an isomorphism of S (U)-modules of the form (4). Using our explicit description of
the grading on M⊗S N it is trivial to check that this is an isomorphism of graded S (U)-modules.
Naturality in both variables is easily checked.

Proposition 47. Let X be a scheme and S a quasi-coherent sheaf of graded OX-algebras. Then
QcoGrMod(S ) is an abelian subcategory of GrMod(S ).
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Proof. The full replete subcategory QcoGrMod(S ) is defined in Definition 2. We have shown in
(LC,Corollary 10) that kernels, cokernels and coproducts are computed in GrMod(S ) as they are
in Mod(S ). Therefore the claim follows from Corollary 20.

Lemma 48. Let X be a scheme and S a quasi-coherent sheaf of graded OX-algebras. If M is a
quasi-coherent sheaf of graded S -modules then so is M {d} for any d ∈ Z. Therefore we have an
exact additive functor

−{d} : QcoGrMod(S ) −→ QcoGrMod(S )

Moreover for an affine open subset U ⊆ X we have an equality M {d}(U) = M (U){d} of graded
S (U)-modules natural in M .

Proof. It follows from Proposition 19, (MOS,Lemma 1) and (MOS,Proposition 25) that M {d} is
a quasi-coherent sheaf of graded S -modules (see (MRS,Definition 24) for the relevant definitions).
The functor −{d} is exact since −{d} : GrMod(S ) −→ GrMod(S ) is exact and QcoGrMod(S )
is an abelian subcategory of GrMod(S ).

If U ⊆ X is affine and M (U){d} the graded S (U)-module defined in (GRM,Definition 10)
then it is clear that M {d}(U) = M (U){d} as graded S -modules. Naturality means that if
φ : M −→ N is a morphism of quasi-coherent sheaves of graded S -modules then φ{d}U =
φU{d}.

Definition 14. Let X be a scheme and S a commutative quasi-coherent sheaf of graded OX -
algebras. If M is a quasi-coherent sheaf of graded S -modules then we say M is locally quasi-
finitely generated if for every affine open subset U ⊆ X the graded S (U)-module M (U) is
quasi-finitely generated.

Definition 15. Let X be a scheme and ϕ : S −→ T a morphism of sheaves of graded OX -
algebras. We say that ϕ is a quasi-monomorphism,quasi-epimorphism or quasi-isomorphism if it
has this property as a morphism of sheaves of graded S -modules (see (MRS,Definition 24)).

Proposition 49. Let X be a scheme and ϕ : S −→ T a morphism of quasi-coherent sheaves of
graded OX-algebras. Then

(i) ϕ is a quasi-monomorphism ⇒ ϕU is a quasi-monomorphism for every affine open U ⊆ X.

(ii) ϕ is a quasi-epimorphism ⇒ ϕU is a quasi-epimorphism for every affine open U ⊆ X.

(ii) ϕ is a quasi-isomorphism ⇒ ϕU is a quasi-isomorphism for every affine open U ⊆ X.

Proof. Suppose d ≥ 0 is such that ϕ{d} : S {d} −→ T {d} is a monomorphism (epimorphism)
of sheaves of graded S -modules. Equivalently, ϕ{d} is a monomorphism (epimorphism) of
sheaves of OX -modules. By (MOS,Lemma 2) the morphism ϕ{d}U : S {d}(U) −→ T {d}(U)
is injective (surjective) for every affine open subset U ⊆ X. Using Lemma 48 we see that
ϕU{d} : S (U){d} −→ T (U){d} is a monomorphism (epimorphism) from which it follows that
ϕU is a quasi-monomorphism (quasi-epimorphism) of graded S (U)-modules, as required.

3.3 Generating Graded Algebras

Proposition 50. Let X be a scheme and F a quasi-coherent sheaf of commutative graded OX-
algebras. Then F is locally generated by F1 as an OX-algebra if and only if the OX-subalgebra
of F generated by the submodule F1 is all of F .

Proof. In Definition 9 we stated what we mean by the “OX -subalgebra generated by F1”, and we
denote this OX -subalgebra of F by B. We know from Lemma 36 that

B =
∑
n≥0

Im(F⊗n
1 −→ F )

(⇒) Suppose that F is locally generated by F1 as an OX -algebra. We show that B = F by
showing that Bx = Fx for all x ∈ X. By construction Bx is the OX,x-subalgebra of Fx generated
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by the submodule F1,x. Any element of Fx can be written as germxs for some open affine U ⊆ X
and s ∈ F (U). By assumption s can be written as a polynomial in the elements of F1(U) with
coefficients from OX(U), and it follows immediately that germxs ∈ Bx, as required.

(⇐) Assume B = F and let U ⊆ X be affine. The functor −|U is exact and preserves all
colimits, so we have

F |U =
∑
n≥0

Im((F1|U )⊗n −→ F |U )

If f : U −→ SpecOX(U) is the canonical isomorphism, then applying f∗ we have

f∗F |U =
∑
n≥0

Im((f∗F1|U )⊗n −→ f∗F |U ) (6)

By assumption F is quasi-coherent, and therefore so is F1. Since the subcategory of quasi-
coherent modules is closed under all colimits, the sums and images in (6) are the categorical
structures in Qco(SpecOX(U)). Applying the equivalence Γ : Qco(SpecOX(U)) −→ OX(U)Mod
we obtain

F (U) =
∑
n≥0

Im(F1(U)⊗n −→ F (U))

which says precisely that F (U) is generated by F1(U) as an OX(U)-algebra, as required.

Corollary 51. Let X be a scheme and F a quasi-coherent sheaf of commutative graded OX-
algebras. Then the following conditions are equivalent

(i) F is locally generated by F1 as an OX-algebra;

(ii) The OX-subalgebra of F generated by F1 is all of F ;

(iii) There is a nonempty affine open cover {Ui}i∈I of X with the property that F (Ui) is generated
by F1(Ui) as a OX(Ui)-algebra for each i ∈ I.

Proof. We have already shown (i) ⇔ (ii) in Proposition 50 and (i) ⇒ (iii) is trivial, so it remains
to show (iii) ⇒ (ii). Suppose we are given such an open cover, and let B the OX -subalgebra of F
generated by F1. It suffices to show that B|Ui

= F |Ui
for each i ∈ I. If f : Ui −→ SpecOX(Ui)

is the canonical isomorphism, then it would suffice to show that f∗B|Ui = f∗F |Ui . But from
Lemma 37 we know that the subalgebra of F (Ui)˜ generated by F1(Ui)˜ is all of F (Ui)˜, so
using the isomorphism f∗F (Ui) ∼= F (Ui)˜ we get the desired result.

Note that we only define sheaves of algebras and sheaves of graded algebras over ringed spaces,
although it is clear how to define a sheaf of graded algebras over a graded ringed space.

4 Sheaves of Super Algebras

Definition 16. Let (X,OX) be a ringed space. A sheaf of super OX-algebras is a sheaf of graded
OX -algebras B satisfying the following properties for every open subset U ⊆ X

(i) If a ∈ Bm(U), b ∈ Bn(U) then ab = (−1)mnba.

(ii) If m is odd and a ∈ Bm(U) then a2 = 0.

A morphism of super OX -algebras is a morphism of graded OX -algebras. This defines the category
sAlg(X) of sheaves of super OX -algebras.

Definition 17. Let (X,OX) be a ringed space. A presheaf of super OX-algebras is a presheaf of
graded OX -algebras F satisfying the following properties for every open subset U ⊆ X

(i) If a ∈ Fm(U), b ∈ Fn(U) then ab = (−1)mnba.

(ii) If m is odd and a ∈ Fm(U) then a2 = 0.
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A morphism of presheaves of super OX -algebras is a morphism of presheaves of graded OX -
algebras. This defines the category sAlg(X) of presheaves of super OX -algebras. Given a presheaf
of super OX -algebras F , the sheafification F is a sheaf of graded OX -algebras in a canonical way
(see Definition 11) and it is easy to check that F is a sheaf of super OX -algebras. This defines a
functor a : sAlg(X) −→ sAlg(X).

Let (X,OX) be a ringed space and U ⊆ X an open subset. If B is a sheaf of super OX -algebras
then the sheaf of graded OX -algebras B|U is also a super OX -algebra. Therefore the canonical
functor GrnAlg(X) −→ GrnAlg(U) restricts to give a functor sAlg(X) −→ sAlg(U).

Let f : (X,OX) −→ (Y,OY ) be a morphism of ringed spaces with the property that the
functor f∗ : Ab(X) −→ Ab(Y ) preserves coproducts. If F is a sheaf of super OX -algebras then
the sheaf of graded OX -algebras f∗F is also a super OX -algebra. Therefore the canonical functor
f∗ : GrnAlg(X) −→ GrnAlg(Y ) restricts to give a functor f∗ : sAlg(X) −→ sAlg(Y ). If f is an
isomorphism of ringed spaces then this is an isomorphism of categories.

4.1 Tensor Products

Let (X,OX) be a ringed space and G ,H sheaves of super OX -algebras. We know from Section
2.5 that the usual tensor product G ⊗OX

H becomes a sheaf of OX -algebras in a canonical way.
We also know that this tensor product becomes a sheaf of graded OX -modules in a canonical
way. In fact the canonical grading (MRS,Lemma 101) makes G ⊗OX

H into a sheaf of graded
OX -algebras and the canonical morphisms

u : G −→ G ⊗OX
H

v : H −→ G ⊗OX
H

(7)

are morphisms of sheaves of graded OX -algebras. If we modify the product slightly, then we can
make the tensor product of super OX -algebras into a super OX -algebra.

Proposition 52. Let (X,OX) be a ringed space and G ,H sheaves of super OX-algebras. Then
the tensor product G ⊗OX

H is a super OX-algebra with multiplication defined for homogenous
elements by

(a ⊗̇ b)(a′ ⊗̇ b′) = (−1)deg(b)deg(a
′)aa′ ⊗̇ bb′

Moreover the canonical morphisms G −→ G ⊗OX
H and H −→ G ⊗OX

H are a coproduct in
the category sAlg(X).

Proof. For each m,n ≥ 0 we have the canonical monomorphism of sheaves of modules um,n :
Gm ⊗OX

Hn −→ G ⊗OX
H , which taken together are a coproduct (MRS,Lemma 101). Fix

m,n ≥ 0, an open set U ⊆ X, a ∈ Gm(U), b ∈ Hn(U) and i, j ≥ 0 and define a bilinear
form(MRS,Definition 9)

ti,ja,b : Gi|U ×Hj |U −→ (G ⊗OX
H )|U

((ti,j)a,b)V (a′, b′) = (−1)nia|V a′ ⊗̇ b|V b′

By (MRS,Proposition 41) this induces a morphism of sheaves of modules θi,ja,b : (Gi⊗OX
Hj)|U −→

(G ⊗OX
H )|U . There is an induced morphism of sheaves of modules θa,b : (G ⊗OX

H )|U −→
(G ⊗OX

H )|U with θa,b ◦ (ui,j)|U = θi,ja,b. This defines a bilinear form

Gm ×Hn −→ End(G ⊗OX
H )

(a, b) 7→ θa,b

which induces a morphism of sheaves of modules Θm,n : Gm ⊗OX
Hn −→ End(G ⊗OX

H ).
Together these induce a morphism out of the coproduct, which is defined for m,n, i, j ≥ 0, U ⊆ V
and a ∈ Gm(U), b ∈ Hn(U), a′ ∈ Gi(V ), b′ ∈ Hj(V ) by

Θ : G ⊗OX
H −→ End(G ⊗OX

H )

ΘU (a ⊗̇ b)V (a′ ⊗̇ b′) = (−1)nia|V a′ ⊗̇ b|V b′
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For every open set U ⊆ X we make the OX(U)-module (G ⊗OX
H )(U) into a OX(U)-algebra

with the product ab = ΘU (a)U (b) and identity 1 ⊗̇ 1. This makes G ⊗OX
H into a sheaf of

OX -algebras. With the canonical grading this is a sheaf of super OX -algebras. The morphisms
of graded OX -modules u : G −→ G ⊗OX

H and v : H −→ G ⊗OX
H of (7) are morphisms of

super OX -algebras.
Given morphisms of super OX -algebras ϕ : G −→ T and ψ : H −→ T define a bilinear form

κ : G ×H −→ T

κU (a, b) = ϕU (a)ψU (b)

which induces a morphism of sheaves of modules θ : G⊗OX
H −→ T with θU (a⊗̇b) = ϕU (a)ψU (b).

It is not difficult to check that θ is the unique morphism of super OX -algebras with θu = ϕ and
θv = ψ, which proves that G ⊗OX

H is a coproduct in sAlg(X).
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