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Throughout this note all rings are commutative, and A is a fixed ring. If S, T are graded
A-algebras then the tensor product S ⊗A T becomes a graded A-algebra in a canonical way with
the grading given by (TES,Lemma 13). That is, S ⊗A T is the coproduct of the morphisms of
A-modules Sd ⊗A Te −→ S ⊗A T for d, e ≥ 0. The canonical morphisms p1 : S −→ S ⊗A T, p2 :
T −→ S ⊗A T are then morphisms of graded A-algebras.

Definition 1. Let S, T be graded A-algebras. We define their cartesian product, denoted S×A T ,
to be the following graded A-algebra: as an A-module it is the sum of the images of the A-module
morphisms Sd ⊗A Td −→ S ⊗A T for all d ≥ 0. This is an A-subalgebra of S ⊗A T which is a
graded A-algebra with grading (S ×A T )d ∼= Sd ⊗A Td for d ≥ 0.

The scheme Proj(S×A T ) is covered by open subsets D+(f ⊗ g) for f ∈ S, g ∈ T homogenous
of the same degree d > 0. It is not hard to check that the following are well-defined morphisms of
A-algebras

ϕf,g : S(f) −→ (S ×A T )(f⊗g) s/fn 7→ (s⊗ gn)/(f ⊗ g)n

ψf,g : T(g) −→ (S ×A T )(f⊗g) t/gn 7→ (fn ⊗ t)/(f ⊗ g)n

If h ∈ S, k ∈ T are homogenous of the same degree e > 0 then it is readily checked that the
following diagram commutes (the vertical morphisms are the canonical ring morphisms)

S(f)
ϕf,g //

��

(S ×A T )(f⊗g)

��

T(g)
ψf,goo

��
S(fh) ϕfh,gk

// (S ×A T )(fh⊗gk) T(gk)
ψfh,gk

oo

Therefore the morphisms Spec(ϕf,g) and Spec(ψf,g) glue to give morphisms of schemes over A

Φ : Proj(S ×A T ) −→ ProjS, Ψ : Proj(S ×A T ) −→ ProjT

Here Φ is the unique morphism of schemes making the left square in the following diagram commute
for every pair of homogenous elements of the same positive degree f ∈ S, g ∈ T , and similarly for
Ψ and the right square

ProjS Proj(S ×A T )Φoo Ψ // ProjT

SpecS(f)

OO

Spec((S ×A T )(f⊗g))

OO

Spec(ϕf,g)
oo

Spec(ψf,g)
// SpecT(g)

OO
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Lemma 1. Let S be a graded ring and f ∈ Sd for some d > 0. If h ∈ Se for e > 0 then the
isomorphism D+(f) ∼= SpecS(f) identifies the open subsets D+(fh) and D(hd/fe).

!!

ProjS

SpecS(f)
D+(f)

D+(fh) D

(
hd

fe

)

Proof. If p ∈ ProjS is a homogenous prime ideal with f /∈ p then the image of p in SpecS(f) is
the prime ideal pSf ∩ S(f). It is clear that this prime belongs to D(hd/fe) if and only if hd /∈ p,
so if and only if p ∈ D+(fh) = D+(f) ∩D+(h).

Lemma 2. Let S, T be graded A-algebras and Φ,Ψ as above. If f ∈ S, g ∈ T are homogenous of
degree d > 0 then Φ−1D+(f) ∩Ψ−1D+(g) = D+(f ⊗ g).

Proof. The inclusion ⊇ is obvious, since by construction we have Φ(D+(f ⊗ g)) ⊆ D+(f) and
Ψ(D+(f ⊗ g)) ⊆ D+(g). For the reverse inclusion let p be a homogenous prime of S ×A T with
Φ(p) ∈ D+(f) and Ψ(p) ∈ D+(g). There exists homogenous h ∈ S, k ∈ T of the same degree e > 0
such that p ∈ D+(h ⊗ k). Using Lemma 1 and the definition of the morphisms ϕh,k, ψh,k we see
that hd ⊗ ge /∈ p and fe ⊗ kd /∈ p. Therefore (fe ⊗ ge)(hd ⊗ kd) = fehd ⊗ gekd /∈ p and hence
f ⊗ g /∈ p, as required.

Proposition 3. Let S, T be graded A-algebras, and suppose that S is generated by S1 as an S0-
algebra and that T is generated by T1 as a T0-algebra. Then Proj(S ×A T ) = ProjS ×A ProjT ,
so we have a pullback diagram

Proj(S ×A T ) Ψ //

Φ

��

ProjT

��
ProjS // SpecA

Proof. By the hypotheses on S, T the open sets of the form D+(f), D+(g) for f ∈ S1, g ∈ T1 give
open covers of ProjS and ProjT respectively. By the local nature of products and Lemma 2 it
is enough to show that D+(f ⊗ g) = D+(f) ×A D+(g) or equivalently Spec((S ×A T )(f⊗g)) =
Spec(T(g))×A Spec(S(f)), for every pair of homogenous elements f ∈ S1, g ∈ T1. This amounts to
showing that the following diagram is a pushout of rings

A

��

// S(f)

ϕf,g

��
T(g)

ψf,g

// (S ×A T )(f⊗g)

(1)

We show (1) is a pushout by showing that the ring morphism S(f) ⊗A T(g) −→ (S ×A T )(f⊗g)
defined by s/fn ⊗ t/gm 7→ (sfm ⊗ gnt)/(f ⊗ g)n+m is an isomorphism of rings. The proof is
motivated by the technique used in (TPC,Proposition 15).

Consider the following well-defined A-bilinear map

Sf × Tg −→ (S ⊗A T )f⊗g
(s/fn, t/gm) 7→ (sfm ⊗ tgn)/(f ⊗ g)n+m
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This induces a morphism of A-algebras Sf ⊗A Tg −→ (S ⊗A T )f⊗g. The canonical maps S −→
Sf , T −→ Tg are morphisms of A-algebras, so we have a morphism of A-algebras S ⊗A T −→
Sf ⊗ATg defined by s⊗ t 7→ s/1⊗ t/1. This sends f⊗g to a unit, so there is an induced morphism
of A-algebras (S ⊗A T )f⊗g −→ Sf ⊗A Tg given by (s⊗ t)/(f ⊗ g)n 7→ s/fn ⊗ t/gn. Since we have
already constructed the inverse, this is an isomorphism of A-algebras.

The rings Sf , Tg are Z-graded, and are therefore graded A-modules. Hence Sf ⊗A Tg is a
graded A-module and therefore also a Z-graded ring. It is not hard to check that (S ⊗A T )f⊗g ∼=
Sf ⊗A Tg is an isomorphism of Z-graded rings, so it induces an isomorphism of degree zero
subrings (S⊗A T )(f⊗g) ∼= (Sf ⊗A Tg)0. The injective morphism of A-algebras S×A T −→ S⊗A T ,
which certainly does not preserve grade, nonetheless localises and restricts to give an injective ring
morphism (S×AT )(f⊗g) −→ (S⊗AT )(f⊗g) ∼= (Sf⊗ATg)0 defined by (s⊗t)/(f⊗g)n 7→ s/fn⊗t/gn
for s ∈ Sn, t ∈ Tn.

Let α : Sf ⊗Z Tg −→ Sf ⊗A Tg be the canonical morphism of groups (GRM,Section 6). The
kernel of α is the abelian group P ′ generated by elements (a · x) ⊗ y − x ⊗ (a · y) where x, y
are homogenous. The morphism S(f) ⊗Z T(g) −→ Sf ⊗Z Tg is injective since S(f), T(g) are direct
summands of Sf , Tg respectively, and tensor products preserve colimits. Therefore the group
S(f) ⊗Z T(g) is isomorphic to its image in Sf ⊗Z Tg, which is mapped by α onto the image of
(S ×A T )(f⊗g) in (Sf ⊗A Tg)0. So there is an isomorphism of abelian groups (S(f) ⊗Z T(g))/P ′′ ∼=
(S×A T )(f⊗g) where P ′′ = P ′ ∩ (S(f)⊗Z T(g)). We can write Sf ⊗Z Tg as the following direct sum

Sf ⊗Z Tg =
⊕
p,q∈Z

(Sf )p ⊗Z (Tg)q

Therefore it is not hard to see that P ′′ is generated as an abelian group by elements (a · x)⊗ y −
x⊗ (a · y) where x, y are homogenous of degree zero, that is, x ∈ S(f), y ∈ T(g). Hence there is an
isomorphism of abelian groups

S(f) ⊗A T(g)
∼= (S(f) ⊗Z T(g))/P ′′ ∼= (S ×A T )(f⊗g)

s/fn ⊗ t/gm 7→ (sfm ⊗ gnt)/(f ⊗ g)n+m

This shows that (1) is a pushout, and completes the proof.

Lemma 4. Let S, T be graded A-algebras. If S is generated by elements {si}i∈I ⊆ S1 as an
S0-algebra and T is generated by {tj}j∈J ⊆ T1 as a T0-algebra, then S ×A T is generated by
{si ⊗ tj} ⊆ (S ×A T )1 as an (S ×A T )0-algebra.

Corollary 5. Let A be a ring and fix integers m,n ≥ 1. There is a canonical closed immersion
PmA ×A PnA −→ Pmn+m+n

A of schemes over A, called the Segre embedding.

Proof. The pullback we have in mind is Proj(A[x0, . . . , xm]×A A[y0, . . . , yn]) = PmA ×A PnA. Con-
sider the following morphism of graded A-algebras

γ : A[{zij}0≤i≤m,0≤j≤n] −→ A[x0, . . . , xm]×A A[y0, . . . , yn]
zij 7→ xi ⊗ yj

which is surjective since the latter ring is generated as an A-algebra by the elements xi ⊗ yj .
Therefore the morphism of A-schemes induced by γ is the desired closed immersion.

Proposition 6. Let X be a scheme and fix integers m,n ≥ 1. There is a canonical closed
immersion PmX ×X PnX −→ Pmn+m+n

X of schemes over X, called the Segre embedding.

Proof. When we say “canonical” we mean that once you select specific pullbacks PmX , PnX , PmX ×X
PnX and Pmn+m+n

X the definition of the closed immersion involves no arbitrary choices. Consider
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the following commutative diagram

PnX

��

// X

��
PnZ // SpecZ

PnX ×X PmX //

CC����������������

α

��

PmX

EE����������������

��
PnZ × PmZ

CC����������������
// PmZ

EE����������������

where α is induced into the bottom pullback to make the diagram commute. Using standard
properties of pullbacks, we see that every face of this cube is a pullback. That is,

PnX ×X PmX = PmX ×Pm
Z

(PnZ × PmZ )

PnX ×X PmX = PnX ×Pn
Z

(PnZ × PmZ )

Therefore there is a unique morphism of schemes over X, PnX ×X PmX −→ Pmn+m+n
X making the

following diagram commute
PnX ×X PmX //

α

��

Pmn+m+n
X

��
PnZ × PmZ // Pmn+m+n

Z

(2)

where the bottom morphism is the closed immersion of Corollary 5. Once again using standard
properties of pullbacks we see that (2) is a pullback, and therefore the top morphism is a closed
immersion, which completes the proof.

Corollary 7. Let Z be a scheme and fix integers m,n ≥ 1. There is a canonical closed immersion
PnPm

Z
−→ Pmn+m+n

Z of schemes over Z.

Proof. By definition we have

PnPm
Z

= PmZ × PnZ = Z × PmZ × PnZ

Let α : PmZ × PnZ −→ Pmn+m+n
Z be the Segre embedding. Then the morphism

1Z × α : PnPm
Z

= Z × (PmZ × PnZ) −→ Z × Pmn+m+n
Z = Pmn+m+n

Z

is the desired closed immersion (LocP,Proposition 1).
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Proposition 8. The composition of projective morphisms is projective.

Proof. Let f : X −→ Y and g : Y −→ Z be projective morphisms, so that we have integers
m,n ≥ 1 and a commutative diagram

PmY

  A
AA

AA
AA

A
PnZ

  @
@@

@@
@@

@

X
f

//

f ′
>>}}}}}}}}

Y

g′
>>}}}}}}}
g

// Z

where f ′, g′ are closed immersions. The morphism Pmg′ : PmY −→ PmPn
Z

of (TPC,Section 5) is a closed
immersion, and using Corollary 7 we have a commutative diagram with the top morphism also a
closed immersion

PmPn
Z

  B
BB

BB
BB

B
// Pmn+m+n
Z

��

PmY

!!D
DD

DD
DD

D

Pm
g′

>>||||||||
PnZ

$$J
JJJJJJJJJ

X
f

//

f ′
>>}}}}}}}}

Y

g′
=={{{{{{{{

g
// Z

This shows that gf is projective and completes the proof.

Lemma 9. Projective morphisms are stable under pullback. That is, if f : X −→ Y is projective
and there is a pullback diagram

X ′

��

f ′
// Y ′

��
X

f
// Y

then f ′ is projective.

Proof. This follows immediately from the construction of the morphisms Pnf in (TPC,Section 5)
and the fact that closed immersions are stable under pullback.

Proposition 10. If f : X −→ Y and g : Y −→ Z are quasi-projective with Y noetherian, then
g ◦ f is quasi-projective.

Proof. Use the proof of Proposition 8, except now f ′, g′ are immersions and we use the stability of
immersions under pullback (SI,Lemma 15) and composition (SI,Lemma 16). We need Y noetherian
so that PmY is noetherian, which is the technical condition of (SI,Lemma 16).

Proposition 11. Let P be a property of morphisms of schemes such that

(a) a closed immersion has P.

(b) the composition of two morphisms having P has P.

(c) P is stable under base extension.

Then the following holds

(d) the product of two morphisms having P has P.

(e) if f : X −→ Y and g : Y −→ Z are two morphisms, and if g ◦ f has P and g is separated,
then f has P.
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Proof. (d) Let f : X −→ Y and f ′ : X ′ −→ Y ′ be morphisms of schemes over a scheme S and
form the following diagram

X ×S X ′

f×Sf
′

))SSSSSSSSSSSSSSS
//

��

X ×Y (Y ×S Y ′) //

��

X

f

��
X ′ ×Y ′ (Y ×S Y ′) //

��

Y ×S Y ′

��

// Y

��
X ′

f ′
// Y ′ // S

Using (b) and (c) it is easy to check that f ×S f ′ has P. For (e) we consider X,Y as schemes
over Z and f as a morphism of Z-schemes. Since g is separated over Z the graph morphism
Γf : X −→ X ×Z Y is a closed immersion. Therefore Γf has P and using the definition of the
graph morphism and (b), (c) we see that f also has P.

Corollary 12. We have the following properties of projective morphisms

(a) a closed immersion is projective.

(b) the composition of two projective morphisms is projective.

(c) projective morphisms are stable under base extension.

(d) the product of projective morphisms is projective.

(e) if f : X −→ Y and g : Y −→ Z are two morphisms, and if g ◦ f is projective and g is
separated, then f is projective.
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