The Segre Embedding

Daniel Murfet

May 16, 2006

Throughout this note all rings are commutative, and A is a fixed ring. If S, T are graded A-algebras then the tensor product $S \otimes_A T$ becomes a graded A-algebra in a canonical way with the grading given by (TES,Lemma 13). That is, $S \otimes_A T$ is the coproduct of the morphisms of A-modules $S_d \otimes_A T_e \longrightarrow S \otimes_A T$ for $d, e \geq 0$. The canonical morphisms $p_1 : S \longrightarrow S \otimes_A T, p_2 : T \longrightarrow S \otimes_A T$ are then morphisms of graded A-algebras.

Definition 1. Let S, T be graded A-algebras. We define their *cartesian product*, denoted $S \times_A T$, to be the following graded A-algebra: as an A-module it is the sum of the images of the A-module morphisms $S_d \otimes_A T_d \longrightarrow S \otimes_A T$ for all $d \ge 0$. This is an A-subalgebra of $S \otimes_A T$ which is a graded A-algebra with grading $(S \times_A T)_d \cong S_d \otimes_A T_d$ for $d \ge 0$.

The scheme $Proj(S \times_A T)$ is covered by open subsets $D_+(f \otimes g)$ for $f \in S, g \in T$ homogenous of the same degree d > 0. It is not hard to check that the following are well-defined morphisms of A-algebras

$$\begin{aligned} \varphi_{f,g} &: S_{(f)} \longrightarrow (S \times_A T)_{(f \otimes g)} \\ \psi_{f,g} &: T_{(g)} \longrightarrow (S \times_A T)_{(f \otimes g)} \end{aligned} \qquad s/f^n \mapsto (s \otimes g^n)/(f \otimes g)^n \\ t/g^n \mapsto (f^n \otimes t)/(f \otimes g)^n \end{aligned}$$

If $h \in S, k \in T$ are homogenous of the same degree e > 0 then it is readily checked that the following diagram commutes (the vertical morphisms are the canonical ring morphisms)

$$\begin{array}{c|c} S_{(f)} & \xrightarrow{\varphi_{f,g}} & (S \times_A T)_{(f \otimes g)} < \xrightarrow{\psi_{f,g}} & T_{(g)} \\ & \downarrow & \downarrow & \downarrow \\ S_{(fh)} & \xrightarrow{\varphi_{fh,gk}} & (S \times_A T)_{(fh \otimes gk)} < \xrightarrow{\psi_{fh,gk}} & T_{(gk)} \end{array}$$

Therefore the morphisms $Spec(\varphi_{f,g})$ and $Spec(\psi_{f,g})$ glue to give morphisms of schemes over A

$$\Phi: Proj(S \times_A T) \longrightarrow ProjS, \quad \Psi: Proj(S \times_A T) \longrightarrow ProjT$$

Here Φ is the unique morphism of schemes making the left square in the following diagram commute for every pair of homogenous elements of the same positive degree $f \in S, g \in T$, and similarly for Ψ and the right square

Lemma 1. Let S be a graded ring and $f \in S_d$ for some d > 0. If $h \in S_e$ for e > 0 then the isomorphism $D_+(f) \cong SpecS_{(f)}$ identifies the open subsets $D_+(fh)$ and $D(h^d/f^e)$.

Proof. If $\mathfrak{p} \in ProjS$ is a homogenous prime ideal with $f \notin \mathfrak{p}$ then the image of \mathfrak{p} in $SpecS_{(f)}$ is the prime ideal $\mathfrak{p}S_f \cap S_{(f)}$. It is clear that this prime belongs to $D(h^d/f^e)$ if and only if $h^d \notin \mathfrak{p}$, so if and only if $\mathfrak{p} \in D_+(fh) = D_+(f) \cap D_+(h)$.

Lemma 2. Let S, T be graded A-algebras and Φ, Ψ as above. If $f \in S, g \in T$ are homogenous of degree d > 0 then $\Phi^{-1}D_+(f) \cap \Psi^{-1}D_+(g) = D_+(f \otimes g)$.

Proof. The inclusion \supseteq is obvious, since by construction we have $\Phi(D_+(f \otimes g)) \subseteq D_+(f)$ and $\Psi(D_+(f \otimes g)) \subseteq D_+(g)$. For the reverse inclusion let \mathfrak{p} be a homogenous prime of $S \times_A T$ with $\Phi(\mathfrak{p}) \in D_+(f)$ and $\Psi(\mathfrak{p}) \in D_+(g)$. There exists homogenous $h \in S, k \in T$ of the same degree e > 0 such that $\mathfrak{p} \in D_+(h \otimes k)$. Using Lemma 1 and the definition of the morphisms $\varphi_{h,k}, \psi_{h,k}$ we see that $h^d \otimes g^e \notin \mathfrak{p}$ and $f^e \otimes k^d \notin \mathfrak{p}$. Therefore $(f^e \otimes g^e)(h^d \otimes k^d) = f^e h^d \otimes g^e k^d \notin \mathfrak{p}$ and hence $f \otimes g \notin \mathfrak{p}$, as required.

Proposition 3. Let S, T be graded A-algebras, and suppose that S is generated by S_1 as an S_0 -algebra and that T is generated by T_1 as a T_0 -algebra. Then $Proj(S \times_A T) = ProjS \times_A ProjT$, so we have a pullback diagram

Proof. By the hypotheses on S, T the open sets of the form $D_+(f), D_+(g)$ for $f \in S_1, g \in T_1$ give open covers of *ProjS* and *ProjT* respectively. By the local nature of products and Lemma 2 it is enough to show that $D_+(f \otimes g) = D_+(f) \times_A D_+(g)$ or equivalently $Spec((S \times_A T)_{(f \otimes g)}) =$ $Spec(T_{(g)}) \times_A Spec(S_{(f)})$, for every pair of homogenous elements $f \in S_1, g \in T_1$. This amounts to showing that the following diagram is a pushout of rings

$$A \xrightarrow{} S_{(f)} \tag{1}$$

$$\downarrow \qquad \qquad \downarrow^{\varphi_{f,g}}$$

$$T_{(g)} \xrightarrow{}_{\psi_{f,g}} (S \times_A T)_{(f \otimes g)}$$

We show (1) is a pushout by showing that the ring morphism $S_{(f)} \otimes_A T_{(g)} \longrightarrow (S \times_A T)_{(f \otimes g)}$ defined by $s/f^n \otimes t/g^m \mapsto (sf^m \otimes g^n t)/(f \otimes g)^{n+m}$ is an isomorphism of rings. The proof is motivated by the technique used in (TPC, Proposition 15).

Consider the following well-defined A-bilinear map

$$S_f \times T_g \longrightarrow (S \otimes_A T)_{f \otimes g}$$
$$(s/f^n, t/g^m) \mapsto (sf^m \otimes tg^n)/(f \otimes g)^{n+m}$$

This induces a morphism of A-algebras $S_f \otimes_A T_g \longrightarrow (S \otimes_A T)_{f \otimes g}$. The canonical maps $S \longrightarrow S_f, T \longrightarrow T_g$ are morphisms of A-algebras, so we have a morphism of A-algebras $S \otimes_A T \longrightarrow S_f \otimes_A T_g$ defined by $s \otimes t \mapsto s/1 \otimes t/1$. This sends $f \otimes g$ to a unit, so there is an induced morphism of A-algebras $(S \otimes_A T)_{f \otimes g} \longrightarrow S_f \otimes_A T_g$ given by $(s \otimes t)/(f \otimes g)^n \mapsto s/f^n \otimes t/g^n$. Since we have already constructed the inverse, this is an isomorphism of A-algebras.

The rings S_f, T_g are \mathbb{Z} -graded, and are therefore graded A-modules. Hence $S_f \otimes_A T_g$ is a graded A-module and therefore also a \mathbb{Z} -graded ring. It is not hard to check that $(S \otimes_A T)_{f \otimes g} \cong S_f \otimes_A T_g$ is an isomorphism of \mathbb{Z} -graded rings, so it induces an isomorphism of degree zero subrings $(S \otimes_A T)_{(f \otimes g)} \cong (S_f \otimes_A T_g)_0$. The injective morphism of A-algebras $S \times_A T \longrightarrow S \otimes_A T$, which certainly does not preserve grade, nonetheless localises and restricts to give an injective ring morphism $(S \times_A T)_{(f \otimes g)} \longrightarrow (S \otimes_A T)_{(f \otimes g)} \cong (S_f \otimes_A T_g)_0$ defined by $(s \otimes t)/(f \otimes g)^n \mapsto s/f^n \otimes t/g^n$ for $s \in S_n, t \in T_n$.

Let $\alpha: S_f \otimes_{\mathbb{Z}} T_g \longrightarrow S_f \otimes_A T_g$ be the canonical morphism of groups (GRM,Section 6). The kernel of α is the abelian group P' generated by elements $(a \cdot x) \otimes y - x \otimes (a \cdot y)$ where x, yare homogenous. The morphism $S_{(f)} \otimes_{\mathbb{Z}} T_{(g)} \longrightarrow S_f \otimes_{\mathbb{Z}} T_g$ is injective since $S_{(f)}, T_{(g)}$ are direct summands of S_f, T_g respectively, and tensor products preserve colimits. Therefore the group $S_{(f)} \otimes_{\mathbb{Z}} T_{(g)}$ is isomorphic to its image in $S_f \otimes_{\mathbb{Z}} T_g$, which is mapped by α onto the image of $(S \times_A T)_{(f \otimes g)}$ in $(S_f \otimes_A T_g)_0$. So there is an isomorphism of abelian groups $(S_{(f)} \otimes_{\mathbb{Z}} T_{(g)})/P'' \cong$ $(S \times_A T)_{(f \otimes g)}$ where $P'' = P' \cap (S_{(f)} \otimes_{\mathbb{Z}} T_{(g)})$. We can write $S_f \otimes_{\mathbb{Z}} T_g$ as the following direct sum

$$S_f \otimes_{\mathbb{Z}} T_g = \bigoplus_{p,q \in \mathbb{Z}} (S_f)_p \otimes_{\mathbb{Z}} (T_g)_q$$

Therefore it is not hard to see that P'' is generated as an abelian group by elements $(a \cdot x) \otimes y - x \otimes (a \cdot y)$ where x, y are homogenous of degree zero, that is, $x \in S_{(f)}, y \in T_{(g)}$. Hence there is an isomorphism of abelian groups

$$S_{(f)} \otimes_A T_{(g)} \cong (S_{(f)} \otimes_{\mathbb{Z}} T_{(g)}) / P'' \cong (S \times_A T)_{(f \otimes g)}$$
$$s / f^n \otimes t / g^m \mapsto (s f^m \otimes g^n t) / (f \otimes g)^{n+m}$$

This shows that (1) is a pushout, and completes the proof.

Lemma 4. Let S, T be graded A-algebras. If S is generated by elements $\{s_i\}_{i \in I} \subseteq S_1$ as an S_0 -algebra and T is generated by $\{t_j\}_{j \in J} \subseteq T_1$ as a T_0 -algebra, then $S \times_A T$ is generated by $\{s_i \otimes t_j\} \subseteq (S \times_A T)_1$ as an $(S \times_A T)_0$ -algebra.

Corollary 5. Let A be a ring and fix integers $m, n \ge 1$. There is a canonical closed immersion $\mathbb{P}^m_A \times_A \mathbb{P}^n_A \longrightarrow \mathbb{P}^{mn+m+n}_A$ of schemes over A, called the Segre embedding.

Proof. The pullback we have in mind is $Proj(A[x_0, \ldots, x_m] \times_A A[y_0, \ldots, y_n]) = \mathbb{P}^m_A \times_A \mathbb{P}^n_A$. Consider the following morphism of graded A-algebras

$$\gamma: A[\{z_{ij}\}_{0 \le i \le m, 0 \le j \le n}] \longrightarrow A[x_0, \dots, x_m] \times_A A[y_0, \dots, y_n]$$
$$z_{ij} \mapsto x_i \otimes y_j$$

which is surjective since the latter ring is generated as an A-algebra by the elements $x_i \otimes y_j$. Therefore the morphism of A-schemes induced by γ is the desired closed immersion.

Proposition 6. Let X be a scheme and fix integers $m, n \ge 1$. There is a canonical closed immersion $\mathbb{P}_X^m \times_X \mathbb{P}_X^n \longrightarrow \mathbb{P}_X^{mn+m+n}$ of schemes over X, called the Segre embedding.

Proof. When we say "canonical" we mean that once you select specific pullbacks \mathbb{P}_X^m , \mathbb{P}_X^n , $\mathbb{P}_X^m \times_X \mathbb{P}_X^n$ and \mathbb{P}_X^{mn+m+n} the definition of the closed immersion involves no arbitrary choices. Consider

the following commutative diagram

where α is induced into the bottom pullback to make the diagram commute. Using standard properties of pullbacks, we see that every face of this cube is a pullback. That is,

$$\mathbb{P}^n_X \times_X \mathbb{P}^m_X = \mathbb{P}^m_X \times_{\mathbb{P}^m_Z} (\mathbb{P}^n_Z \times \mathbb{P}^m_Z)$$
$$\mathbb{P}^n_X \times_X \mathbb{P}^m_X = \mathbb{P}^n_X \times_{\mathbb{P}^n_Z} (\mathbb{P}^n_Z \times \mathbb{P}^m_Z)$$

Therefore there is a unique morphism of schemes over X, $\mathbb{P}^n_X \times_X \mathbb{P}^m_X \longrightarrow \mathbb{P}^{mn+m+n}_X$ making the following diagram commute

where the bottom morphism is the closed immersion of Corollary 5. Once again using standard properties of pullbacks we see that (2) is a pullback, and therefore the top morphism is a closed immersion, which completes the proof.

Corollary 7. Let Z be a scheme and fix integers $m, n \ge 1$. There is a canonical closed immersion $\mathbb{P}_{\mathbb{P}_Z^m}^n \longrightarrow \mathbb{P}_Z^{mn+m+n}$ of schemes over Z.

Proof. By definition we have

$$\mathbb{P}^n_{\mathbb{P}^m_{\mathcal{T}}} = \mathbb{P}^m_Z \times \mathbb{P}^n_{\mathbb{Z}} = Z \times \mathbb{P}^m_{\mathbb{Z}} \times \mathbb{P}^n_{\mathbb{Z}}$$

Let $\alpha: \mathbb{P}^m_{\mathbb{Z}} \times \mathbb{P}^n_{\mathbb{Z}} \longrightarrow \mathbb{P}^{mn+m+n}_{\mathbb{Z}}$ be the Segre embedding. Then the morphism

$$1_Z \times \alpha : \mathbb{P}^n_{\mathbb{P}^m_Z} = Z \times (\mathbb{P}^m_{\mathbb{Z}} \times \mathbb{P}^n_{\mathbb{Z}}) \longrightarrow Z \times \mathbb{P}^{mn+m+n}_{\mathbb{Z}} = \mathbb{P}^{mn+m+n}_Z$$

is the desired closed immersion (LocP, Proposition 1).

Proposition 8. The composition of projective morphisms is projective.

Proof. Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be projective morphisms, so that we have integers $m, n \ge 1$ and a commutative diagram

where f', g' are closed immersions. The morphism $\mathbb{P}_{g'}^m : \mathbb{P}_Y^m \longrightarrow \mathbb{P}_Z^m$ of (TPC, Section 5) is a closed immersion, and using Corollary 7 we have a commutative diagram with the top morphism also a closed immersion

This shows that gf is projective and completes the proof.

Lemma 9. Projective morphisms are stable under pullback. That is, if $f : X \longrightarrow Y$ is projective and there is a pullback diagram

then f' is projective.

Proof. This follows immediately from the construction of the morphisms \mathbb{P}_f^n in (TPC,Section 5) and the fact that closed immersions are stable under pullback.

Proposition 10. If $f : X \longrightarrow Y$ and $g : Y \longrightarrow Z$ are quasi-projective with Y noetherian, then $g \circ f$ is quasi-projective.

Proof. Use the proof of Proposition 8, except now f', g' are immersions and we use the stability of immersions under pullback (SI,Lemma 15) and composition (SI,Lemma 16). We need Y noetherian so that \mathbb{P}_Y^m is noetherian, which is the technical condition of (SI,Lemma 16).

Proposition 11. Let \mathscr{P} be a property of morphisms of schemes such that

- (a) a closed immersion has \mathcal{P} .
- (b) the composition of two morphisms having \mathscr{P} has \mathscr{P} .
- (c) \mathscr{P} is stable under base extension.

Then the following holds

- (d) the product of two morphisms having \mathscr{P} has \mathscr{P} .
- (e) if $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ are two morphisms, and if $g \circ f$ has \mathscr{P} and g is separated, then f has \mathscr{P} .

Proof. (d) Let $f: X \longrightarrow Y$ and $f': X' \longrightarrow Y'$ be morphisms of schemes over a scheme S and form the following diagram

Using (b) and (c) it is easy to check that $f \times_S f'$ has \mathscr{P} . For (e) we consider X, Y as schemes over Z and f as a morphism of Z-schemes. Since g is separated over Z the graph morphism $\Gamma_f : X \longrightarrow X \times_Z Y$ is a closed immersion. Therefore Γ_f has \mathscr{P} and using the definition of the graph morphism and (b), (c) we see that f also has \mathscr{P} .

Corollary 12. We have the following properties of projective morphisms

- (a) a closed immersion is projective.
- (b) the composition of two projective morphisms is projective.
- (c) projective morphisms are stable under base extension.
- (d) the product of projective morphisms is projective.
- (e) if $f : X \longrightarrow Y$ and $g : Y \longrightarrow Z$ are two morphisms, and if $g \circ f$ is projective and g is separated, then f is projective.