Section 3.7 - The Serre Duality Theorem

Daniel Murfet

October 5, 2006

In this note we prove the Serre duality theorem for the cohomology of coherent sheaves on a projective scheme. First we do the case of projective space itself. Then on an arbitrary projective scheme X, we show that there is a coherent sheaf ω_X° , which plays the role in duality theory similar to the canonical sheaf of a nonsingular variety. In particular, if X is Cohen-Macaulay, it gives a duality theorem just like the one on projective space. Finally, if X is a nonsingular variety over an algebraically closed field we show that the dualising sheaf ω_X° agrees with the canonical sheaf ω_X .

Theorem 1. Suppose $X = \mathbb{P}_k^n$ for some field k and $n \ge 1$ and set $\omega = \omega_{X/k}$. Then for any coherent sheaf of modules \mathscr{F} on X we have

- (a) There is a canonical isomorphism of k-modules $H^n(X, \omega) \cong k$.
- (b) There is a canonical perfect pairing of finite dimensional vector spaces over k

$$\tau: Hom(\mathscr{F}, \omega) \times H^n(X, \mathscr{F}) \longrightarrow k$$

(c) For $i \geq 0$ there is a canonical isomorphism of k-modules natural in \mathscr{F}

$$\eta: Ext^{i}(\mathscr{F}, \omega) \longrightarrow H^{n-i}(X, \mathscr{F})^{\vee}$$

Proof. (a) By (DIFF,Corollary 22) there is a canonical isomorphism of sheaves of modules $\omega \cong \mathcal{O}(-n-1)$. Composing $H^n(X,\omega) \cong H^n(X,\mathcal{O}(-n-1))$ with the isomorphism $H^n(X,\mathcal{O}(-n-1)) \cong k$ of (COS,Theorem 40)(b) gives the required canonical isomorphism of k-modules.

(b) The k-modules $Hom(\mathscr{F}, \omega)$ and $H^n(X, \mathscr{F})$ are finitely generated by (COS,Corollary 44) and (COS,Theorem 43), therefore both are free of finite rank. Given a morphism of sheaves of modules $\phi : \mathscr{F} \longrightarrow \omega$ there is a morphism of k-modules $H^n(X, \phi) : H^n(X, \mathscr{F}) \longrightarrow H^n(X, \omega)$, and we define a k-bilinear pairing

$$\tau': Hom(\mathscr{F}, \omega) \times H^n(X, \mathscr{F}) \longrightarrow H^n(X, \omega)$$
$$\tau(\phi, a) = H^n(X, \phi)(a)$$

composing with the canonical isomorphism $H^n(X, \omega) \cong k$ of (a) we have another k-bilinear pairing $\tau : Hom(\mathscr{F}, \omega) \times H^n(X, \mathscr{F}) \longrightarrow k$. This corresponds under the bijection of (TES,Lemma 23) to a morphism of k-modules $\phi : Hom(\mathscr{F}, \omega) \longrightarrow H^n(X, \mathscr{F})^{\vee}$. To show that τ is perfect we have to show that ϕ is an isomorphism. We begin with the case $\mathscr{F} = \mathcal{O}(q)$ for some $q \in \mathbb{Z}$. Using (MPS,Corollary 17) we have a canonical isomorphism of k-modules

$$Hom(\mathscr{F},\omega) \cong Hom(\mathcal{O}(q), \mathcal{O}(-n-1)) \cong \Gamma(X, \mathcal{O}(-q-n-1)) \cong H^0(X, \mathcal{O}(-q-n-1))$$

The perfect pairing of (COS, Theorem 40)(d) induces an isomorphism of k-modules

$$\phi': H^0(X, \mathcal{O}(-q-n-1)) \longrightarrow H^n(X, \mathcal{O}(q))^{\vee}$$

which fits into the following commutative diagram

Therefore ϕ is an isomorphism for $\mathscr{F} = \mathcal{O}(q)$. Now assume that \mathscr{F} is a coproduct of a finite number of $\mathcal{O}(q_i)$. Using the fact that cohomology commutes with coproducts (COS, Theorem 26) we see that $\phi : Hom(\mathscr{F}, \omega) \longrightarrow H^n(X, \mathscr{F})^{\vee}$ is the product of the isomorphisms $Hom(\mathcal{O}(q_i), \omega) \longrightarrow$ $H^n(X, \mathcal{O}(q_i))^{\vee}$ and is therefore also an isomorphism.

Now let \mathscr{F} be an arbitrary coherent sheaf. By (H, II 5.18) we can write \mathscr{F} as the cokernel of a morphism of a morphism of coherent sheaves $\mathscr{E}_1 \longrightarrow \mathscr{E}_2$ with each \mathscr{E}_i being a finite direct sum of sheaves $\mathcal{O}(q_i)$. That is, we have an exact sequence

$$\mathscr{E}_1 \longrightarrow \mathscr{E}_2 \longrightarrow \mathscr{F} \longrightarrow 0$$

Using (COS, Corollary 41) we have a commutative diagram with exact rows

Therefore $\phi : Hom(\mathscr{F}, \omega) \longrightarrow H^n(X, \mathscr{F})^{\vee}$ is an isomorphism for any coherent \mathscr{F} , as required. (c) The abelian category $\mathfrak{Mod}(X)$ is k-linear, so for every $i \ge 0$ we have a contravariant additive functor $Ext^i(-, \omega) : \mathfrak{Mod}(X) \longrightarrow k\mathbf{Mod}$ (EXT,Section 4.1). The following sequences of contravariant additive functors form contravariant cohomological δ -functors between the abelian categories $\mathfrak{Coh}(X)$ and $k\mathbf{Mod}$ (using (COS,Corollary 41)(i))

$$S: Ext^{0}(-,\omega), Ext^{1}(-,\omega), \dots, Ext^{n}(-,\omega), Ext^{n+1}(-,\omega), \dots$$
$$T: H^{n}(X,-)^{\vee}, H^{n-1}(X,-)^{\vee}, \dots, H^{0}(X,-)^{\vee}, 0, 0, \dots$$

We claim that both δ -functors are universal. It suffices to show that S^i, T^i are effaceable for $i \ge 1$. Given a coherent sheaf of modules \mathscr{F} , it follows from (H, II 5.18) and its proof that we can write \mathscr{F} as a quotient of a sheaf $\mathscr{E} = \bigoplus_{j=1}^{N} \mathcal{O}(-q)$ with q > 0. Then for i > 0

$$Ext^{i}(\mathscr{E},\omega) \cong \bigoplus Ext^{i}(\mathcal{O}(-q),\omega) \cong \bigoplus H^{i}(X,\omega(q)) \cong \bigoplus H^{i}(X,\mathcal{O}(q-n-1)) = 0$$

using (COS,Proposition 59), (MPS,Lemma 14), (COS,Proposition 54) and the calculations of (COS,Theorem 40). Similarly for $0 < i \le n$ we have

$$H^{n-i}(X,\mathscr{E}) \cong \bigoplus H^{n-i}(X,\mathcal{O}(-q)) = 0$$

by (COS,Theorem 26) and (COS,Theorem 40). Therefore S^i, T^i are effaceable for $i \ge 1$, and therefore by (DF,Theorem 74) both S, T are universal.

The isomorphism $\phi : Hom(\mathscr{F}, \omega) \longrightarrow H^n(X, \mathscr{F})^{\vee}$ of k-modules defined in (b) is natural in the coherent sheaf \mathscr{F} , so there is a canonical natural equivalence of contravariant functors $\mathfrak{Coh}(X) \longrightarrow k\mathbf{Mod}$

$$\eta^0 : Ext^0(-,\omega) \longrightarrow Hom(-,\omega) \longrightarrow H^n(X,-)^{\vee}$$

This induces a canonical isomorphism of cohomological δ -functors $\eta : S \longrightarrow T$. That is, for each $i \geq 0$ and coherent sheaf \mathscr{F} we have a canonical isomorphism of k-modules $\eta^i : Ext^i(\mathscr{F}, \omega) \longrightarrow H^{n-i}(X, \mathscr{F})^{\vee}$ natural in \mathscr{F} , as required. \Box

Remark 1. Let X be a nonempty noetherian scheme of finite dimension n over a field k. Then for $0 \le i \le n$ let $T^i : \mathfrak{Mod}(X) \longrightarrow k \mathbf{Mod}$ be the contravariant additive functor $H^{n-i}(X, -)^{\vee}$. For i > n we set $T^i = 0$. Given a short exact sequence of sheaves of modules on X

$$0 \longrightarrow \mathscr{F}' \longrightarrow \mathscr{F} \longrightarrow \mathscr{F}'' \longrightarrow 0$$

we have the connecting morphisms of k-modules $\delta^j : H^j(X, \mathscr{F}') \longrightarrow H^{j+1}(X, \mathscr{F}')$ for $j \ge 0$. For $0 \le i < n$ we set $\omega^i = (\delta^{n-i-1})^{\vee}$ and for $i \ge n$ we set $\omega^i = 0$. Then using (COS, Theorem 30) we have an exact sequence of k-modules

$$0 \longrightarrow H^n(X, \mathscr{F}'')^{\vee} \longrightarrow H^n(X, \mathscr{F})^{\vee} \longrightarrow H^n(X, \mathscr{F}')^{\vee} \longrightarrow \cdots \longrightarrow H^0(X, \mathscr{F}')^{\vee} \longrightarrow 0$$

So the functors $\{T^i\}_{i\geq 0}$ form a contravariant cohomological δ -functor between $\mathfrak{Mod}(X)$ and $k\mathbf{Mod}$. We usually refer to this δ -functor by the sequence $H^n(X,-)^{\vee},\ldots,H^0(X,-)^{\vee},0,0,\ldots$ with the connecting morphisms implicit.

To generalise Theorem 1 to other schemes, we take properties (a) and (b) as our guide, and make the following definitions.

Definition 1. Let X be a proper scheme of finite dimension n over a field k. A dualising sheaf for X over k is a coherent sheaf ω_X° on X, together with a trace morphism of k-modules $t: H^n(X, \omega_X^{\circ}) \longrightarrow k$, such that for all coherent sheaves \mathscr{F} on X, the natural k-bilinear pairing

$$\begin{split} \tau : Hom(\mathscr{F}, \omega_X^\circ) \times H^n(X, \mathscr{F}) &\longrightarrow H^n(X, \omega_X^\circ) \\ \tau(\psi, a) &= H^n(X, \psi)(a) \end{split}$$

followed by t corresponds under the bijection of (TES, Lemma 23) to an isomorphism of k-modules

$$Hom(\mathscr{F},\omega_X^\circ) \longrightarrow H^n(X,\mathscr{F})^\vee$$

which is certainly natural in \mathscr{F} .

Proposition 2. With the notation of Definition 1, if a dualising sheaf exists it is unique. That is, if $(\omega, t), (\omega', t')$ are dualising sheaves then there is a unique isomorphism of sheaves of modules $\varphi : \omega \longrightarrow \omega'$ such that $t = t' \circ H^n(X, \varphi)$.

Proof. Since ω' is dualising, we get an isomorphism $Hom(\omega, \omega') \cong H^n(X, \omega)^{\vee}$. Let $\varphi : \omega \longrightarrow \omega'$ correspond to $t \in H^n(X, \omega)^{\vee}$. That is, $t = t' \circ H^n(X, \varphi)$. Similarly, let $\psi : \omega' \longrightarrow \omega$ correspond to $t' \in H^n(X, \omega')^{\vee}$. Then $t \circ H^n(X, \psi \varphi) = t$ and therefore $\psi \varphi = 1$. Similarly we see that $\varphi \psi = 1$ so that φ is an isomorphism of sheaves of modules, which is clearly unique with the stated property.

The question of existence of dualising sheaves is more difficult. In fact they exist for any X proper over k, but we will prove the existence here only for projective schemes. First we need some preliminary results.

Lemma 3. Set $P = \mathbb{P}_k^n$ for some field k and let $i : X \longrightarrow P$ be a nonempty closed subscheme of codimension r. Then $\mathscr{E}xt_P^i(i_*\mathcal{O}_X,\omega_P) = 0$ for all $0 \le i < r$.

Proof. A closed immersion is finite, so X is noetherian and $i_*\mathcal{O}_X$ coherent. Therefore the sheaf $\mathscr{F}^i = \mathscr{E}xt_P^i(i_*\mathcal{O}_X,\omega_P)$ is coherent for $i \geq 0$ (COS,Proposition 64). If r = 0 then the statement is vacuous, so assume $r \geq 1$ and $0 \leq i < r$. After twisting by a suitably large integer q, the sheaf \mathscr{F}^i will be generated by global sections (H, II 5.17). Thus to show \mathscr{F}^i is zero, it will be sufficient to show that $\Gamma(P, \mathscr{F}^i(q)) = 0$ for all sufficiently large q. But by (COS,Proposition 59) and (COS,Proposition 66) we have for all sufficiently large q

$$\Gamma(P,\mathscr{F}^{i}(q)) \cong Ext_{P}^{i}(i_{*}\mathcal{O}_{X},\omega_{P}(q)) \cong Ext_{P}^{i}((i_{*}\mathcal{O}_{X})(-q),\omega_{P})$$

By the projection formula (MRS,Lemma 80) there is a canonical isomorphism of sheaves of modules $(i_*\mathcal{O}_X)(-q) \cong i_*i^*\mathcal{O}(-q)$ and so finally an isomorphism for all sufficiently large q

$$\Gamma(P, \mathscr{F}^{i}(q)) \cong Ext_{P}^{i}(i_{*}i^{*}\mathcal{O}(-q), \omega_{P})$$

On the other hand, by Theorem 1 this last Ext group is dual to $H^{n-i}(P, i_*i^*\mathcal{O}(-q))$, which is isomorphic as an abelian group to $H^{n-i}(X, i^*\mathcal{O}(-q))$ (COS,Lemma 27). Since dimX = n - r < n - i we have $H^{n-i}(X, i^*\mathcal{O}(-q)) = 0$ by (COS,Theorem 30). Therefore $\Gamma(P, \mathscr{F}^i(q)) = 0$ for sufficiently large q, as required.

Remark 2. Let \mathcal{A} be an abelian category, and suppose we have a positive cochain complex of injective objects

 $I: 0 \longrightarrow I^0 \longrightarrow I^1 \longrightarrow I^2 \longrightarrow I^3 \longrightarrow \cdots$

with differentials $d^i : I^i \longrightarrow I^{i+1}$. We say I is exact up to the rth place for $r \ge 0$ if the complex is exact at I^i for every $0 \le i < r$. Suppose that this is the case (if r = 0 the condition says nothing, so assume $r \ge 1$ henceforth). Set $K^0 = I^0$ and for $i \ge 1$ set $K^i = Im(d^i)$ so that we have short exact sequences

$$\begin{array}{cccc} 0 \longrightarrow K^0 \longrightarrow I^1 \longrightarrow K^1 \longrightarrow 0 \\ 0 \longrightarrow K^1 \longrightarrow I^2 \longrightarrow K^2 \longrightarrow 0 \\ & \vdots \\ 0 \longrightarrow K^{r-1} \longrightarrow I^r \longrightarrow C \longrightarrow 0 \end{array}$$

where $I^r \longrightarrow C$ is the canonical cokernel of d^{r-1} . Since I^0 is injective the first sequence splits, which implies that K^1 is injective. In this way we show that K^1, \ldots, K^{r-1} are all injective. Choose a splitting $\gamma: I^r \longrightarrow K^{r-1}$ of the last sequence, which makes I^r into a biproduct $K^{r-1} \oplus C$. Let $\mu: C \longrightarrow I^{r+1}$ and $j: I^{r-1} \longrightarrow K^{r-1}$ be the canonical morphisms. Then $d^{r-1} = j \oplus 0, d^r = 0 \oplus \mu$ where we consider I^{r-1} as the biproduct $I^{r-1} \oplus 0$ and I^{r+1} as $0 \oplus I^{r+1}$. We therefore have

$$Ker(d^r) = K^{r-1} \oplus Ker(\mu)$$

By definition $Im(d^{r-1}) = K^{r-1}$ so there is a canonical isomorphism $\tau : H^r(I) \longrightarrow Ker(\mu)$. One can check this is the unique morphism making the following diagram commute

$$\begin{array}{c} Ker(d^{r}) \longrightarrow I^{r} \\ \downarrow \\ H^{r}(I) \xrightarrow[]{\tau}]{} Ker(\mu) \longrightarrow C \end{array}$$

In particular τ is independent of the choice of splitting γ , so it is a canonical isomorphism. In the same way, one shows that for any object *B* there is a unique isomorphism of abelian groups $\tau': H^r(Hom(B, I)) \cong Hom(B, Ker\mu)$ making the following diagram commute

$$KerHom(B,d^{r}) \longrightarrow Hom(B,I^{r})$$

$$\downarrow$$

$$H^{r}(Hom(B,I)) \xrightarrow[\tau']{} Hom(B,Ker\mu) \longrightarrow Hom(B,C)$$

If \mathcal{A} is *R*-linear for some ring *R*, then τ' will be an isomorphism of *R*-modules. It is clear that τ' is natural in *B*.

Remark 3. With the notation of Lemma 3 it follows from (HDIS,Proposition 15) that $R^p i^!(\omega_P) = 0$ for $0 \le p < r$ (in particular, $i^!(\omega_P) = 0$ provided r > 0). It turns out that the first nonzero sheaf $R^r i^!(\omega_P)$ is the dualising sheaf we are looking for.

Lemma 4. With the notation of Lemma 3, let $\omega_X^\circ = R^r i^!(\omega_P)$. Then for any sheaf of modules \mathscr{F} on X there is a canonical isomorphism of k-modules natural in \mathscr{F}

$$\chi: Hom_X(\mathscr{F}, \omega_X^\circ) \longrightarrow Ext_P^r(i_*\mathscr{F}, \omega_P)$$

Proof. By (HDIS,Corollary 19) the sheaf of modules ω_X° is coherent. Suppose we have an injective resolution of ω_P in $\mathfrak{Mod}(P)$

$$\mathscr{I}: 0 \longrightarrow \omega_P \longrightarrow \mathscr{I}^0 \longrightarrow \mathscr{I}^1 \longrightarrow \cdots$$

Then by definition $Ext_P^i(i_*\mathscr{F}, \omega_P)$ is the *i*th cohomology group of the cochain complex of *k*-modules $Hom_P(i_*\mathscr{F}, \mathscr{I})$. But by adjointness the cochain complex $Hom_P(i_*\mathscr{F}, \mathscr{I})$ is canonically isomorphic to $Hom_X(\mathscr{F}, i^!\mathscr{I})$ (as a cochain complex of *k*-modules), so we have a canonical isomorphism of *k*-modules natural in \mathscr{F} for $i \geq 0$

$$Ext_P^i(i_*\mathscr{F},\omega_P)\cong H^i(Hom_X(\mathscr{F},i^!\mathscr{I}))$$

Since $i^!$ has an exact left adjoint it preserves injectives, so $\mathscr{J}^i = i^! \mathscr{I}^i$ is an injective object of $\mathfrak{Mod}(X)$ for $i \ge 0$. It follows from Lemma 3 that the following sequence is exact up to the *r*th place

$$0 \longrightarrow \mathscr{H}om_P(i_*\mathcal{O}_X, \mathscr{I}^0) \longrightarrow \mathscr{H}om_P(i_*\mathcal{O}_X, \mathscr{I}^1) \longrightarrow \cdots$$

From (MRS, Proposition 96) and exactness of i^{-1} we infer that $H^i(\mathscr{J}) = 0$ for $0 \le i < r$. That is, the complex \mathscr{J} is exact up to the *r*th place. Using the notation of Remark 2 we have a canonical isomorphism of *k*-modules natural in \mathscr{F}

$$Ext_P^r(i_*\mathscr{F},\omega_P) \cong H^r(Hom_X(\mathscr{F},\mathscr{J}))$$
$$\cong Hom_X(\mathscr{F},Ker\mu)$$
$$\cong Hom_X(\mathscr{F},H^r(\mathscr{J}))$$
$$= Hom_X(\mathscr{F},\omega_X^\circ)$$

as required.

Proposition 5. Let X be a nonempty projective scheme over a field k. Then X has a dualising sheaf.

Proof. A projective scheme over a field is proper and has finite dimension (since it embeds in \mathbb{P}_k^n for some finite n) so it makes sense to talk about dualising sheaves on X. Let $i: X \longrightarrow \mathbb{P}_k^n$ be a closed immersion of k-schemes for some $n \ge 1$ and let $0 \le r \le n$ be the codimension of X in $P = \mathbb{P}_k^n$. We claim that the coherent sheaf ω_X° of Lemma 4 is a dualising sheaf for X. For any coherent sheaf of modules \mathscr{F} on X we have by Lemma 4, Theorem 1 and (COS,Corollary 28) an isomorphism of k-modules natural in \mathscr{F}

$$Hom_X(\mathscr{F}, \omega_X^{\circ}) \cong Ext_P^r(i_*\mathscr{F}, \omega_P)$$
$$\cong H^{n-r}(P, i_*\mathscr{F})^{\vee}$$
$$\cong H^m(X, \mathscr{F})^{\vee}$$

where m = n - r is the dimension of X. In particular, taking $\mathscr{F} = \omega_X^{\circ}$ the element $1 \in Hom_X(\omega_X^{\circ}, \omega_X^{\circ})$ corresponds to a morphism of k-modules $t: H^m(X, \omega_X^{\circ}) \longrightarrow k$, which we take as our trace map. It is now clear that the pair (ω_X°, t) is a dualising sheaf for X. \Box

I

Definition 2. We say a nonempty noetherian topological space X is *equidimensional* if all the irreducible components of X have the same dimension, which must be equal to the dimension of X.

If X is an integral noetherian scheme of finite type over a field, then for every closed point $P \in X$ we have $\dim \mathcal{O}_{X,P} = \dim X$. If we do not require X to be integral, this condition characterises the equidimensional schemes (of which X is the simplest type, with only one irreducible component).

Lemma 6. Let X be a noetherian scheme of finite dimension n which is of finite type over a field k. Then X is equidimensional if and only if for any closed point $P \in X$ we have $\dim \mathcal{O}_{X,P} = n$.

Proof. Suppose that X is equidimensional and let $P \in X$ be a closed point. Let Z be the irreducible closed set $\{P\}$. Since the codimension of Z in X is finite, we can find some irreducible component Y of X with $P \in Y$ and codim(Z,Y) = codim(Z,X). Putting the reduced scheme structure on Y (which is therefore an integral scheme of finite type over k) we have $dim\mathcal{O}_{X,P} = dim\mathcal{O}_{Y,P} = n$, where the first equality follows from (FPOS,Lemma 1) and the second from (H, Ex.3.20) and the equidimension assumption.

For the converse, let $X = Y_1 \cup \cdots \cup Y_n$ be the irreducible components of X. It suffices to show that $\dim Y_1 = n$. We claim that there exists a closed point $P \in Y_1$ with $codim(\{P\}, Y_1) = codim(\{P\}, X)$. Suppose otherwise, and let $\{P\} = Z_0 \subset \cdots \subset Z_m$ be a chain of closed irreducible subsets of X of length $m = codim(\{P\}, X)$. The set Z_m must be contained in some Y_j , j > 1, and therefore $P \in Y_j$. It follows that every closed point of Y belongs to the union $Y_2 \cup \cdots \cup Y_n$ and therefore $Y_1 \subseteq Y_j$ for some j > 1 (VS,Proposition 14), which is a contradiction. This shows that we can find a closed point $P \in Y_1$ with the required property, in which case

$$n = \dim \mathcal{O}_{X,P} = codim(\{P\}, X) = codim(\{P\}, Y_1) = dim\mathcal{O}_{Y_1,P} = dimY_1$$

since Y is an integral scheme of finite type over a field. This shows that X is equidimensional and completes the proof. \Box

Theorem 7. Let X be a projective scheme of finite dimension n over a field k. Let ω_X° be a dualising sheaf on X, and let $\mathcal{O}(1)$ be a very ample invertible sheaf on X. Then

(a) For any coherent sheaf of modules \mathscr{F} on X and $i \geq 0$ there is a canonical morphism of k-modules natural in \mathscr{F}

$$\theta^i: Ext^i(\mathscr{F}, \omega_X^\circ) \longrightarrow H^{n-i}(X, \mathscr{F})^{\vee}$$

- (b) The following conditions are equivalent
 - (i) X is Cohen-Macaulay and equidimensional.
 - (ii) For any locally finitely free sheaf of modules \mathscr{F} on X, we have $H^i(X, \mathscr{F}(-q)) = 0$ for $0 \leq i < n$ and all sufficiently large q.
 - (iii) The morphisms θ^i of (a) are isomorphisms for all $i \ge 0$ and \mathscr{F} coherent on X.

Proof. (a) Since k is a field the functor $(-)^{\vee}$ is exact (MRS,Lemma 73), and we have two contravariant cohomological δ -functors $\{Ext^i(-,\omega_X^{\circ})\}_{i\geq 0}, \{H^{n-i}(X,-)^{\vee}\}_{i\geq 0}$ between $\mathfrak{Coh}(X)$ and $k\mathbf{Mod}$ (the latter δ -functor was defined in Remark 1). To show that the first δ -functor is universal, it suffices to show that $Ext^i(-,\omega_X^{\circ})$ is effaceable for i > 0. But if \mathscr{F} is coherent, we can write \mathscr{F} as a quotient of a direct sum $\mathscr{E} = \bigoplus_{i=1}^N \mathcal{O}(-q)$ for all sufficiently large q > 0. Then using (COS,Proposition 59) and (COS,Proposition 54) we have an isomorphism

$$Ext^{i}(\mathscr{E},\omega_{X}^{\circ})\cong \bigoplus_{j=1}^{N} Ext^{i}(\mathcal{O}(-q),\omega_{X}^{\circ})\cong \bigoplus_{j=1}^{N} H^{i}(X,\omega_{X}^{\circ}(q))$$

By (COS, Theorem 43) if we take q large enough, we have $H^i(X, \omega_X^{\circ}(q)) = 0$ for all i > 0 and therefore $Ext^i(\mathscr{E}, \omega_X^{\circ}) = 0$, as required. Therefore $\{Ext^i(-, \omega_X^{\circ})\}_{i\geq 0}$ is universal, and the natural equivalence

$$\theta^0 : Ext^0(-,\omega_X^\circ) \cong Hom(-,\omega_X^\circ) \cong H^n(X,-)^{\vee}$$

defined by the dualising sheaf induces a canonical morphism of cohomological δ -functors θ . In particular for every $i \geq 0$ we have a canonical natural transformation $\theta^i : Ext^i(-, \omega_X^\circ) \longrightarrow H^{n-i}(X, -)^{\vee}$, as required.

(b) Let $j: X \longrightarrow P$ be a closed immersion of k-schemes with $P = \mathbb{P}_k^N$ for some $N \ge 1$. We may also assume that $j^*\mathcal{O}(1) \cong \mathcal{O}(1)$. $(i) \Rightarrow (ii)$ For any locally finitely free sheaf of modules \mathscr{F} on X, and any closed point $x \in X$ in the support of \mathscr{F} , we have using (MAT,Lemma 70), Lemma 6 and the hypothesis (i)

$$depth_{\mathcal{O}_{X,x}}\mathscr{F}_x = depth_{\mathcal{O}_{X,x}}\mathcal{O}_{X,x} = dim\mathcal{O}_{X,x} = n$$

Set $A = \mathcal{O}_{P,j(x)}$, which is a regular local ring of dimension N since \mathbb{P}_k^N is nonsingular. Since we have a surjective local morphism of local rings $A \longrightarrow \mathcal{O}_{X,x}$ it is clear that $depth_A(j_*\mathscr{F})_{j(x)} = depth_{\mathcal{O}_{X,x}}\mathscr{F}_x = n$ (MAT,Lemma 69) and therefore $proj.dim_A((j_*\mathscr{F})_{j(x)}) = N-n$ (MAT,Corollary 132). Using the definition of projective dimension, (COS,Proposition 63) and (VS,Corollary 18) we see that for l > N - n the functor $\mathscr{Ext}_P^l(j_*\mathscr{F}, -)$ is zero on quasi-coherent sheaves.

Now assume that $0 \leq i < n$. Using Theorem 1 we find that $H^i(P, (j_*\mathscr{F})(-q))$ is dual to $Ext_P^{N-i}(j_*\mathscr{F}, \omega_P(q))$. For sufficiently large q, this Ext is isomorphic to $\Gamma(P, \mathscr{E}xt_P^{N-i}(j_*\mathscr{F}, \omega_P(q)))$ by (COS,Proposition 66). But this is zero for N-i > N-n, as we've just seen. In other words, $H^i(P, (j_*\mathscr{F})(-q)) = 0$ for i < n and all sufficiently large q.

By the projection formula (MRS,Lemma 80) and (MRS,Proposition 95) we have an isomorphism $(j_*\mathscr{F})(-q) \cong j_*(\mathscr{F}(-q))$ and therefore $H^i(X,\mathscr{F}(-q)) \cong H^i(P,(j_*\mathscr{F})(-q)) = 0$ for i < n and all sufficiently large q (COS,Corollary 28), which is what we wanted to show.

 $(ii) \Rightarrow (i)$ Fix some i > N - n. We claim that $\mathscr{E}xt_P^i(j_*\mathcal{O}_X,\omega_P) = 0$. To show this, it suffices by (H, II 5.17) and (COS,Lemma 65) to show that $\Gamma(P,\mathscr{E}xt_P^i(j_*\mathcal{O}_X,\omega_P(q))) = 0$ for some q > 0. But for all sufficiently large q we have an isomorphism of abelian groups (COS,Proposition 66)

$$\Gamma(P, \mathscr{E}xt_P^i(j_*\mathcal{O}_X, \omega_P(q))) \cong Ext_P^i(j_*\mathcal{O}_X, \omega_P(q))$$
$$\cong H^{N-i}(P, j_*\mathcal{O}(-q))^{\vee}$$
$$\cong H^{N-i}(X, \mathcal{O}(-q))^{\vee} = 0$$

using (*ii*) with $\mathscr{F} = \mathcal{O}_X$ and duality for *P*. Given $x \in X$ we set $A = \mathcal{O}_{P,j(x)}$. Applying (COS,Proposition 63) to the equation $\mathscr{E}xt_P^i(j_*\mathcal{O}_X,\omega_P) = 0$ we deduce that $Ext_A^i(\mathcal{O}_{X,x},A) = 0$ for i > N - n and also $proj.dim_A\mathcal{O}_{X,x} \le N - n$ (MAT,Corollary 129). If x is a closed point then A is a regular local ring of dimension N, so using (MAT,Corollary 132), (MAT,Lemma 69) we deduce

$$depth_{\mathcal{O}_{X,x}}\mathcal{O}_{X,x} = depth_A\mathcal{O}_{X,x} \ge n \tag{1}$$

But always $depth_{\mathcal{O}_{X,x}}\mathcal{O}_{X,x} \leq dim\mathcal{O}_{X,x} \leq n$, so we must have equality. This shows that for every closed point $x \in X$ the noetherian local ring $\mathcal{O}_{X,x}$ is Cohen-Macaulay of dimension n. In particular X is Cohen-Macaulay (DIFF,Lemma 43) and also equidimensional by Lemma 6.

 $(i) \Rightarrow (iii)$ To show that the θ^i are isomorphisms, it will be enough to show that the δ -functor $\{H^{n-i}(X,-)^{\vee}\}_{i\geq 0}$ is also universal, for which it suffices to show that $H^{n-i}(X,-)^{\vee}$ is effaceable for i > 0. So given a coherent sheaf \mathscr{F} , write it as a quotient of $\mathscr{E} = \bigoplus_{i=1}^N \mathcal{O}(-q)$, with q so large that $H^{n-i}(X, \mathcal{O}(-q)) = 0$ for i > 0 by (ii). Then $H^{n-i}(X, \mathscr{E})^{\vee} = 0$, as required.

 $(iii) \Rightarrow (i)$ If θ^i is an isomorphism, then for any \mathscr{F} locally finitely free on X and $0 \le i < n$ we have $H^i(X, \mathscr{F}(-q)) \cong Ext^{n-i}(\mathscr{F}(-q), \omega_X^\circ)^{\vee}$. But this Ext is isomorphic to $H^{n-i}(X, \mathscr{F}^{\vee} \otimes \omega_X^\circ(q))$ by (COS,Proposition 54) and (COS,Proposition 59), so it is zero for all sufficiently large q by (COS,Theorem 43).

Remark 4. In particular if X is nonsingular projective variety over a field k, or more generally a projective local complete intersection, then X is Cohen-Macaulay (DIFF, Proposition 44), so the θ^i are isomorphisms.

Corollary 8. Let X be a projective Cohen-Macaulay scheme of equidimension n over a field k, and ω_X° a dualising sheaf on X. Then for any locally finitely free sheaf \mathscr{F} on X and $0 \leq i \leq n$ there is a canonical isomorphism of k-modules natural in \mathscr{F}

$$H^{i}(X,\mathscr{F}) \longrightarrow H^{n-i}(X,\mathscr{F}^{\vee} \otimes \omega_{X}^{\circ})^{\vee}$$

Proof. We have the following isomorphism of k-modules, natural in \mathscr{F} , for any $0 \leq i \leq n$

$$H^{i}(X,\mathscr{F})^{\vee} \cong Ext^{n-i}(\mathscr{F}, \omega_{X}^{\circ})$$
$$\cong Ext^{n-i}(\mathcal{O}_{X}, \mathscr{F}^{\vee} \otimes \omega_{X}^{\circ})$$
$$\cong H^{n-i}(X, \mathscr{F}^{\vee} \otimes \omega_{Y}^{\circ})$$

where we have used Theorem 7, (COS,Proposition 59) and (COS,Proposition 54). Taking duals, we have the required isomorphism (by (COS,Theorem 43) the k-module $H^i(X, \mathscr{F})$ is finitely generated, so we can apply (TES,Example 2)).

Corollary 9. Let X be a projective Cohen-Macaulay scheme of equidimension n over a field k, and ω_X° a dualising sheaf on X. Then for any locally finitely free sheaves \mathscr{F}, \mathscr{E} on X and $0 \leq i \leq n$ there is a canonical isomorphism of k-modules natural in both variables

$$Ext^{i}(\mathscr{E},\mathscr{F}) \longrightarrow Ext^{n-i}(\mathscr{F},\mathscr{E} \otimes \omega_{X}^{\circ})^{\vee}$$

Proof. We have the following isomorphism of k-modules, natural in both variables

$$Ext^{i}(\mathscr{E},\mathscr{F}) \cong Ext^{i}(\mathcal{O}_{X},\mathscr{E}^{\vee}\otimes\mathscr{F})$$

$$\cong H^{i}(X,\mathscr{E}^{\vee}\otimes\mathscr{F})$$

$$\cong H^{n-i}(X,(\mathscr{E}^{\vee}\otimes\mathscr{F})^{\vee}\otimes\omega_{X}^{\circ})^{\vee}$$

$$\cong H^{n-i}(X,\mathscr{E}\otimes\mathscr{F}^{\vee}\otimes\omega_{X}^{\circ})^{\vee}$$

$$\cong Ext^{n-i}(\mathcal{O}_{X},\mathscr{F}^{\vee}\otimes\mathscr{E}\otimes\omega_{X}^{\circ})^{\vee}$$

$$\cong Ext^{n-i}(\mathscr{F},\mathscr{E}\otimes\omega_{X}^{\circ})^{\vee}$$

as required.

Corollary 10. Let X be an integral normal projective scheme of dimension ≥ 2 over a field k. Then for any locally finitely free sheaf \mathscr{F} on X we have $H^1(X, \mathscr{F}(-q)) = 0$ for all sufficiently large q.

Proof. If $x \in X$ is a closed point then $\dim \mathcal{O}_{X,x} = \dim X \geq 2$. If $U \cong SpecA$ is an affine open neighborhood of x, then x corresponds to a maximal ideal of height ≥ 2 in A. It follows that $depth_{\mathcal{O}_{X,x}}\mathscr{F}_x \geq 2$ for every closed point x in the support of \mathscr{F} (DIFF, Theorem 42). So the result follows by the same method as in the proof of $(i) \Rightarrow (ii)$ in Theorem 7(b).

Corollary 11. If X is a nonsingular projective variety over an algebraically closed field k, then any dualising sheaf ω_X° is isomorphic as a sheaf of modules to the canonical sheaf ω_X .

Corollary 12. Let X be a nonsingular projective curve over an algebraically closed field k. Then $p_g(X) = rank_k H^1(X, \mathcal{O}_X)$.

Proof. Let ω_X° be a dualising sheaf on X. Then by Theorem 7 and Corollary 11 we have an isomorphism of k-modules

$$\Gamma(X,\omega_X) \cong \Gamma(X,\omega_X^\circ) \cong Ext^0(\mathcal{O}_X,\omega_X^\circ) \cong H^1(X,\mathcal{O}_X)^{\vee}$$

from which it follows that $p_q(X) = rank_k H^1(X, \mathcal{O}_X)$, as required.

Remark 5. Let X be as in Corollary 12. We now completely understand the cohomology groups $H^i(X, \mathcal{O}_X)$ for $i \ge 0$. These groups are zero for i > 1 and using (VS,Corollary 28) we have

$$rank_k H^0(X, \mathcal{O}_X) = 1$$
$$rank_k H^1(X, \mathcal{O}_X) = p_q(X)$$