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In this section we gather together several topics concerned with morphisms of a given scheme to
projective space. We will show how a morphism of a scheme X to a projective space is determined
by giving an invertible sheaf L on X and a set of its global sections. We will give some criteria for
this morphism to be an immersion. Then we study the closely connected topic of ample invertible
sheaves.
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1 Morphisms to Pn

Let A be a fixed ring, and consider the projective space PnA = ProjA[x0, . . . , xn] over A. On PnA
we have the invertible sheaf O(1), and the homogenous coordinates x0, . . . , xn give rise to global
sections ẋ0, . . . , ẋn ∈ Γ(PnA,O(1)). Throughout this section we drop the dot in this notation and
just write xi for the global section of O(1). One sees easily that the sheaf O(1) is generated by
the global sections x0, . . . , xn, i.e., the images of these sections generate the stalk O(1)P of the
sheaf O(1) as a module over the local ring OX,P for each point P ∈ PnA.

Definition 1. Let f : X −→ Y be a morphism of schemes and F be a OY -module. Let η : F −→
f∗f

∗F be canonical. Given s ∈ F (V ) we denote by f∗(s) the section ηV (s) ∈ f∗F (f−1V ). So
f∗(s) = [V, s] ⊗̇ 1 and for x ∈ f−1V we have f∗(s)(x) = (f−1V, ˙(V, s) ⊗ 1). If φ : F −→ G is a
morphism of OY -modules then (f∗φ)f−1V (f∗(s)) = f∗(φV (s)).

Lemma 1. Let f : X −→ Y be a morphism of schemes and let F be a OY -module generated by
global sections x1, . . . , xn ∈ F (Y ). Then the global sections si = f∗(xi) generate f∗F .

Proof. Our notes on the isomorphism (f∗F )x ∼= Ff(x) ⊗OY,f(x) OX,x show that there is a com-
mutative diagram of abelian groups for x ∈ X:

Ff(x)

''PPPPPPPPPPPP
// (f∗F )x

��
Ff(x) ⊗OY,f(x) OX,x

where the top morphism is compatible with the ring morphism fx : OY,f(x) −→ OX,x and maps
germf(x)xi to germxsi, the right side is an isomorphism of OX,x-modules and the diagonal map is
m 7→ m⊗1. Since Ff(x)⊗OY,f(x)OX,x is clearly generated by the germf(x)xi⊗1 as a OX,x-module
it follows that f∗F is generated by the global sections si, as required.
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Now let X be any scheme over A, and let ϕ : X −→ PnA be an A-morphism. Then L =
ϕ∗(O(1)) is an invertible sheaf on X and the global sections s0, . . . , sn where si = ϕ∗(xi), si ∈
Γ(X,L ) generate the sheaf L . Conversely, we will see that L and the sections si determine ϕ.

Lemma 2. Let (X,OX) be a ringed space and U ⊆ X open. If s ∈ OX(U) is such that germxs ∈
OX,x is a unit for all x ∈ U , then s is a unit in OX(U).

Proof. For each x ∈ U we can find an open neighborhood x ∈ Vx ⊆ U and tx ∈ OX(Vx) with
s|Vxtx = 1. It is clear that the tx paste together to give an inverse for s.

Theorem 3. Let A be a ring and let X be a scheme over A.

(a) If ϕ : X −→ PnA is an A-morphism (n ≥ 1), then ϕ∗(O(1)) is an invertible sheaf on X,
which is generated by the global sections si = ϕ∗(xi), i = 0, 1, . . . , n.

(b) Conversely, if L is an invertible sheaf on X, and if s0, . . . , sn ∈ Γ(X,L ) are global sections
which generate L (n ≥ 1), then there exists a unique A-morphism ϕ : X −→ PnA such that
L ∼= ϕ∗(O(1)) and si = ϕ∗(xi) under this isomorphism.

Proof. Part (a) is clear from the discussion above. To prove (b), suppose we are given L and
the global sections s0, . . . , sn which generate it. The result is trivial if X = ∅, so assume X is
nonempty. For each i let Xi = {x ∈ X | germxsi /∈ mxLx}. This is an open subset of X (see our
Locally Free Sheaves notes) and since the si generate L and Lx

∼= OX,x 6= 0 for all x ∈ X the
open sets Xi must cover X.

For each i and x ∈ Xi we can choose a basis θ ∈ Lx and write germxsi = λxi θ. By definition
of Xi, λxi is a unit in the local ring OX,x. For j 6= i if we write germxsj = λxj θ then the quotient
λxj /λ

x
i ∈ OX,x is independent of the basis θ chosen. In this way we associate an element λxj /λ

x
i with

each point of Xi. We denote by sj/si the unique element of Γ(Xi,OX) with germxsj/si = λxj /λ
x
i

for all x ∈ Xi (equivalently germxsj/si · germxsi = germxsj for all x ∈ Xi).
We define a morphism from Xi to the standard open set Ui = D+(xi) of PnA as follows. Recall

that Ui ∼= SpecA[x0/xi, . . . , xn/xi] with xi/xi omitted. We define a morphism of A-algebras
A[x0/xi, . . . , xn/xi] −→ Γ(Xi,OX |Xi) by sending xj/xi 7→ sj/si. This induces morphisms of
schemes ϕi : Xi −→ SpecA[x0/xi, . . . , xn/xi] ∼= Ui −→ PnA over A. To show that we can glue the
ϕi, we need to show that for any j 6= i the following diagram commutes:

Xi ∩Xj //

��

Xi

ϕi

��
Xj ϕj

// PnA

(1)

The morphism A[x0/xi, . . . , xn/xi] −→ Γ(X,OX |Xi) defined above composes with restriction to
give A[x0/xi, . . . , xn/xi] −→ Γ(Xi ∩ Xj ,OX |Xi∩Xj ), which clearly sends xj/xi to a unit. So
we get a morphism of schemes Xj ∩ Xi −→ SpecA[x0/xi, . . . , xn/xi]xj/xi over A, and similarly
Xj∩Xi −→ SpecA[x0/xj , . . . , xn/xj ]xi/xj . Our Section 2.2 notes show that there are isomorphisms
of A-algebras

A[x0/xj , . . . , xn/xj ]xi/xj ∼= A[x0, . . . , xn](xixj) ∼= A[x0/xi, . . . , xn/xi]xj/xi

which make the bottom right square in the following diagram of schemes over A commute

Xi
// SpecA[x0/xi, . . . , xn/xi]

Xj

��

Xi ∩Xj

��

oo

OO

// SpecA[x0/xi, . . . , xn/xi]xj/xi

OO

��
SpecA[x0/xj , . . . , xn/xj ] SpecA[x0/xj , . . . , xn/xj ]xi/xjoo +3 SpecA[x0, . . . , xn](xixj)
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Commutativity of the other two squares follows easily from the definition of ϕi, ϕj . It also follows
from our Section 2.2 notes that the following diagram (and its partner with i, j interchanged)
commutes

SpecA[x0/xi, . . . , xn/xi] +3 D+(xi)

SpecA[x0/xi, . . . , xn/xi]xj/xi

OO

��
SpecA[x0, . . . , xn](xixj) +3 D+(xixj)

OO

Combining these three diagrams shows that (1) commutes, as required. So there exists a unique
morphism ϕ : X −→ PnA of schemes over A restricting to give ϕi on Xi.

Next we have to show that ϕ∗O(1) ∼= L . Set Y = PnA and suppose we are given x ∈ X. Set
p = ϕ(x) and identify O(1)ϕ(x) with S(1)(p) and OY,ϕ(x) with S(p). If x ∈ Xi then ϕ(x) ∈ Ui
so xi/1 is a OY,ϕ(x)-basis of O(1)ϕ(x), which gives an isomorphism αi : O(1)ϕ(x)

∼= OY,ϕ(x). By
definition of Xi, germxsi is a OX,x-basis of Lx, which gives an isomorphism βi : OX,x ∼= LX .
Together these give an isomorphism of OX,x-modules

κx : (ϕ∗O(1))x ∼= O(1)ϕ(x) ⊗OY,ϕ(x) OX,x
∼= OY,ϕ(x) ⊗OY,ϕ(x) OX,x
∼= OX,x ∼= Lx

If also x ∈ Xj then we get another isomorphism, and we claim it is the same as the one obtained
using i. We have to show that the following diagram commutes

O(1)ϕ(x) ⊗OY,ϕ(x) OX,x

αj⊗1

��

αi⊗1 +3 OY,ϕ(x) ⊗OY,ϕ(x) OX,x

��
OY,ϕ(x) ⊗OY,ϕ(x) OX,x

��

OX,x

βi

��
OX,x

βj

+3 Lx

We invert αj ⊗ 1 and track a ⊗ b ∈ OY,ϕ(x) ⊗ OX,x both ways around the diagram. We end up
having to check that ϕx(axj/xi)b · germxsi and ϕx(a)b · germxsj are the same element of Lx,
which follows immediately from the fact that ϕx(xj/xi) = germxsj/si.

Next we define

κ : ϕ∗O(1) −→ L

germxκU (s) = κx(germxs)

Given s ∈ Γ(U,ϕ∗O(1)) we have to check that the germs κx(germxs) ∈ Lx actually belong to
a section of L . We reduce easily to the case s = ˙(T, a) ⊗̇ b where U ⊆ Xi for some i and
(T, a) ∈ lim−→T⊇ϕ(U)

Γ(T,O(1)), b ∈ OX(U). We can assume that T ⊆ Ui, so that a = µ · xi/1 for

some µ ∈ OX(T ). Let Q = ϕ−1T ∩ U . Then for y ∈ Q we have germϕ(y)a = germϕ(y)µ · xi/1 in
O(1)ϕ(y) and therefore

κy(germys) = ϕy(germϕ(y)µ)germyb · germysi = germyt

where t = ϕ#
T (µ)|Qb|Q · si|Q. This shows that κ is well-defined, and it is not hard to check it is

an isomorphism of OX -modules. It is clear from the definition that the isomorphism κ maps the
global section ϕ∗(xi) to si for all 0 ≤ i ≤ n.
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To prove uniqueness, let ψ : X −→ PnA be another A-morphism for which there exists an
isomorphism κ′ : ψ∗O(1) −→ L with ψ∗(xi) = si. Notice that for x ∈ X the isomorphism

O(1)ψ(x) ⊗OY,ψ(x) OX,x ∼= (ψ∗O(1))x ∼= Lx (2)

sends the element xi/1⊗ 1 is mapped to germxsi. Write p = ψ(x) and suppose that p /∈ Ui. Let j
be such that p ∈ Uj , and note that in OY,p we have xi/1 = xi/xj ·xj/1 (identifying OY,p with S(p)

and O(1)p
∼= S(1)(p)). Since xi ∈ p it follows that germxsi ∈ mxLx. This shows that ψ(Xi) ⊆ Ui.

Similarly one shows that if x ∈ Xj and ψ(x) ∈ Ui then x ∈ Xi, so we conclude that Xi = ψ−1Ui.
Let ψi be the restriction of ψ to Xi, and let Xi −→ Ui be the unique morphism fitting into the
following pullback diagram

X
ψ // PnA

Xi

OO

// Ui

OO (3)

This induces a morphism of A-algebras A[x0/xi, . . . , xn/xi] −→ Γ(Xi,OX |Xi). To show that this
morphism maps xj/xi to sj/si it suffices to show that ψx(xj/xi) = λxj /λ

x
i for x ∈ Xi. Since

germxsi is a basis for Lx it would be enough to show that ψx(xj/xi) · germxsi = germxsj . But

ψx(xj/xi) · germxsi = ψx(xj/xi) · κ′x(germxψ
∗(xi))

= κ′x(ψx(xj/xi) · germxψ
∗(xi))

= κ′x(germxψ
∗(xj)) = germxsj

as required. It follows that ψi = ϕi for all i, and consequently ϕ = ψ, which completes the proof.
It is not difficult to see that not only do we have ϕ = ψ, but also κ′ = κ. So the isomorphism
L ∼= ϕ∗O(1) is uniquely determined by the data L , s0, . . . , sn.

Definition 2. Let X be a scheme and fix n ≥ 1. We say two tuples (L , s0, . . . , sn) and
(E , t0, . . . , tn) of invertible sheaves and generating global sections are equivalent if there is an
isomorphism of sheaves of modules L ∼= E under which si = ti for all i. The class of the equiva-
lence classes under this relation is denoted IGn(X). We will see in a moment that this is actually
small. If f : X −→ Y is a morphism of schemes then there is a well-defined map

IGn(f) : IGn(Y ) −→ IGn(X)
(L , s0, . . . , sn) −→ (f∗L , f∗(s0), . . . , f∗(sn))

With this definition IGn(−) : Sch −→ Sets is a contravariant functor by (MRS,Remark 8) and
(MRS,Proposition 110).

Corollary 4. For any scheme X over a ring A and n ≥ 1 there is a bijection

HomA(X,PnA) −→ IGn(X)
ϕ 7→ (ϕ∗O(1), ϕ∗(x0), . . . , ϕ∗(xn))

If f : X −→ Y a morphism of schemes over A then the following diagram commutes

HomA(Y,PnA) +3

��

IGn(Y )

IGn(f)

��
HomA(X,PnA) +3 IGn(X)

Finally if ϕ corresponds to (L , s0, . . . , sn) then ϕ−1Ui = Xi and (3) is a pullback where Ui =
D+(xi) and Xi = Xsi = {x ∈ X | germxsi /∈ mxLx}.
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Proof. Note that if (L , s0, . . . , sn) ∼ (E , t0, . . . , tn) the isomorphism L ∼= E with the desired
property is unique, since the si and ti generate the respective invertible sheaves. Theorem 3
shows that the map is well-defined and surjective. The uniqueness part of (b) shows that the map
is also injective, so we have the desired bijection. To prove naturality, let ϕ : Y −→ PnA be a
morphism of schemes over A. Then we need to show that the following tuples determine the same
equivalence class of IGn(X)

(f∗g∗O(1), f∗g∗(x0), . . . , f∗g∗(xn)), ((gf)∗O(1), (gf)∗(x0), . . . , (gf)∗(xn))

But this follows immediately from the fact that the canonical isomorphism of sheaves of modules
(gf)∗O(1) ∼= f∗g∗O(1) (MRS,Remark 8) identifies f∗g∗(xi) with (gf)∗(xi).

Corollary 5. For any scheme X and n ≥ 1 the conglomerate IGn(X) is small.

Proof. Any scheme is a scheme over Z, so in particular IGn(X) ∼= Hom(X,PnZ) is small.

Definition 3. Fix n ≥ 1 and let A = (aij) be an invertible (n+1)× (n+1) matrix over a field k.
For convenience we use the indices 0 ≤ i, j ≤ n. Let X be a scheme over k and L an invertible
sheaf on X together with generating global sections s0, . . . , sn. It is not hard to see that the global
sections s′i =

∑n
j=0 aijsj also generate L and that this gives a well-defined function

IGAn : IGn(X) −→ IGn(X) (4)

(L , s0, . . . , sn) 7→ (L ,
∑
j

a0jsj , . . . ,
∑
j

anjsj) (5)

If B ∈ GLn+1(k) is another invertible matrix then IGBn ◦ IGAn = IGBAn and IG
In+1
n = 1. This

shows that (4) is a bijection of sets. The matrix A also determines an isomorphism of k-algebras

ϕA : k[x0, . . . , xn] −→ k[x0, . . . , xn]

xi 7→
n∑
j=0

aijxj

which gives rise to an isomorphism of k-schemes ΦA = ProjϕA : Pnk −→ Pnk . If A,B ∈ GLn+1(k)
then ϕBϕA = ϕAB so it is clear that ΦAΦB = ΦAB . Moreover If A = λIn+1 for some nonzero
λ ∈ k then ΦA = 1. In particular ΦλA = ΦA for any A ∈ GLn+1(k).

Proposition 6. Let X be a scheme over a field k and A ∈ GLn+1(k) for some n ≥ 1. Then the
following diagram commutes

Homk(X,Pnk ) +3

ΦA◦−
��

IGn(X)

IGAn
��

Homk(X,Pnk ) +3 IGn(X)

Proof. Given a morphism of k-schemes ϕ : X −→ Pnk it suffices to observe that the canonical
isomorphism (ΦAϕ)∗O(1) ∼= ϕ∗Φ∗AO(1) ∼= ϕ∗O(1) maps (ΦAϕ)∗xi to

∑n
j=0 aijϕ

∗xi. This follows
from (MRS,Remark 8) and (MPS,Proposition 13).

Proposition 7. Let ϕ : X −→ PnA be a morphism of schemes over A, corresponding to an
invertible sheaf L on X and sections s0, . . . , sn ∈ Γ(X,L ) as above. Then ϕ is a closed immersion
if and only if

(1) Each open set Xi = Xsi is affine;

(2) For each i, the A-algebra morphism A[y0, . . . , yn] −→ Γ(Xi,OX) defined by yj 7→ sj/si is
surjective.
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Proof. First we note that if (L , s0, . . . , sn), (E , t0, . . . , tn) are equivalent (in the sense of Corollary
4) then (1), (2) are satisfied for one iff. they are satisfied for the other. This is clear in the case
of (1) since Xi = Xsi = Xti , and it is not hard to see that sj/si determines the same section of
Γ(Xi,OX) as tj/ti, so it is clear in the case of (2) as well.

Now suppose that ϕ is a closed immersion. For each 0 ≤ i ≤ n we have a pullback diagram

X
ϕ // PnA

Xi

OO

// Ui

OO

Since Xi = ϕ−1Ui it follows from our proof of Ex 4.3 that Xi is an affine open subset. Moreover by
Ex 3.11(a) the morphism Xi −→ Ui is a closed immersion, and therefore the induced morphism
A[y0, . . . , yn] −→ Γ(Xi,OX) is surjective by (5.10). Conversely, suppose that (1) and (2) are
satisfied. Then for each i the morphism Xi −→ Ui is a closed immersion, and since the property
of being a closed immersion is local on the base (see p.14 of our Section 2.3 notes) it follows that
ϕ is a closed immersion.

Remark 1. Let k be an algebraically closed field, set S = k[x0, . . . , xn] for n ≥ 1 and let
Y = Pnk = ProjS. Then there is a canonical isomorphism of schemes Y ∼= t(Pn) (VS,Corollary 8).
Under this isomorphism a point P ∈ Pn (which corresponds to a closed point of t(Pn)) corresponds
to the homogenous prime ideal I(P ) of S. If f ∈ S is homogenous of degree d > 0 then f ∈ I(P )
if and only if f(P ) = 0. Consider the corresponding global section ḟ ∈ Γ(Y,OY (d)) and the
associated open subset of Y

Xḟ = {x ∈ Y | germxf /∈ mxOY (d)x} = {p ∈ ProjS | f /∈ p} = D+(f)

Therefore the closed points of the closed set Y \Xḟ correspond under the isomorphism Y ∼= t(Pn)
to the points of the linear variety Z(f) of Pn. In other words, the closed points of V (f) are
homeomorphic to the variety Z(f). By (AAMPS,Proposition 15) the map f 7→ ḟ defines a bijection
between Sd and Γ(Y,OY (d)). In particular we can identify nonzero elements of Γ(Y,OY (1)) with
hyperplanes in Pn (LV,Definition 2).

With more hypotheses we can give a more local criterion.

Lemma 8. Let f : X −→ Y be a closed morphism of schemes of finite type over a field k. Then
f is injective if and only if it is injective on closed points.

Proof. We know from (VS,Proposition 19) that f is a morphism of finite type which maps closed
points to closed points. One implication is clear, so suppose that f is injective on closed points
and that f(x) = f(y) for some x, y ∈ X. To show that x = y it suffices by symmetry and
(VS,Proposition 14) to show that every closed point z of {x} belongs to {y}. Since f is a closed
mapping

f({y}) = {f(y)} = {f(x)} = f({x})

This shows that f(z) ∈ f({y}). Therefore f−1f(z)∩{y} is a nonempty closed set, which must by
(VS,Proposition 14) contain a closed point q. Since f is injective on closed points, it follows that
z = q and so z ∈ {y} as required.

Proposition 9. Let k be an algebraically closed field, let X be a projective scheme over k, and
let ϕ : X −→ Pnk be a k-morphism corresponding to L and s0, . . . , sn ∈ Γ(X,L ) as above. Let
V ⊆ Γ(X,L ) be the k-subspace generated by the si. Then ϕ is a closed immersion if and only if

(1) Elements of V separate points. That is, for any two distinct closed points P,Q ∈ X there
is s ∈ V such that germP s ∈ mPLP but germP s /∈ mQLQ or vice versa, and

(2) Elements of V separate tangent vectors. That is, for each closed point P ∈ X, the set
{germP s+ m2

PLP | s ∈ V and germP s ∈ mPLP } spans the k-vector space mPLP /m
2
PLP .
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Proof. For the moment just let X be a scheme over a field k. Conditions (1), (2) are properties of a
tuple (L , s0, . . . , sn) consisting of an invertible sheaf L and global sections si which generate L .
This property is invariant under the equivalence relation on tuples defined in Definition 2. It is
also invariant under isomorphisms of schemes, in the sense that if f : X ′ −→ X is an isomorphism
of schemes over k then (L , s0, . . . , sn) satisfies (1), (2) if and only if (f∗L , f∗(s0), . . . , f∗(sn))
does.

Suppose that ϕ is a closed immersion. Then using (H,5.16) we can reduce to the case where
X = Proj(S/I) for a homogenous ideal I of S = k[x0, . . . , xn], ϕ : X −→ Pnk is the canonical
morphism of k-schemes induced by the surjection S −→ S/I, and L = OX(1) with si equal to
the global section corresponding to xi + I ∈ (S/I)1 (MPS,Proposition 13). The closed points of
X are then homeomorphic to the closed set Z(I) of the variety Pn, and we freely identify the two.
(1) Let two distinct closed points P,Q ∈ X be given and let f ∈ S1 be a nonzero polynomial with
P ∈ Z(f) and Q /∈ Z(f) (LV,Lemma 13) (we need the hypothesis k algebraically closed for this
step). If we take s ∈ V to be the global section of OX(1) corresponding to f + I then it is clear
s has the right property. (2) Let P = (a0, . . . , an) be a closed point of X, with say ai 6= 0 and
therefore I(P ) + I ∈ D+(xi + I). Using (TPC,Lemma 21) we have an isomorphism of schemes

g : D+(xi + I) ∼= Spec(S/I)(xi+I) ∼= Spec(S(xi)/(ISxi ∩ S(xi))) ∼= Spec(T/I ′)

where T = k[x0/xi, . . . , xn/xi] and I ′ is an ideal. There is an isomorphism g∗OX(1)|D+(xi+I)
∼=

OSpec(T/I′) of sheaves of modules which identifies the global section corresponding to xj + I with
the global section corresponding to xj/xi+I ′. The homogenous prime I(P ) corresponds to m+I ′

where m is the maximal ideal (x0/xi− a0/ai, . . . , xn/xi− an/ai) of T , so there is an isomorphism
of k-vector spaces

mPLP /m
2
PLP

∼= (m + I ′)/(m + I ′)2 ∼= m/(m2 + I ′) (6)

Where we use the fact that for a ring A with maximal ideal n there is a canonical isomorphism
n/n2 ∼= nAn/n

2An (see our Hartshorne Ch. 1 Section 5 notes). For j 6= i the global section
aixj − ajxi + I of OX(1) is identified with the global section aixj/xi − aj + I ′ of Spec(T/I ′),
so using (6) to see that mPLP /m

2
PLP is generated as a k-module by the images of elements of

V , it suffices to show that the images of xj/xi − aj/ai generate m/(m2 + I ′) as a k-vector space.
After applying an automorphism of k[x0/xi, . . . , xn/xi] we are essentially trying to show that in a
polynomial ring k[y1, . . . , yn] the k-vector space (y1, . . . , yn)/(y1, . . . , yn)2 is generated by the yi,
which is trivial.

For the converse, let ϕ : X −→ Pnk be a k-morphism such that (L , ϕ∗x0, . . . , ϕ
∗xn) satisfies

(1), (2) where L = ϕ∗O(1). Observe that the subspace V is precisely the image of Γ(Pnk ,O(1))
under the map ϕ∗(−) : Γ(Pnk ,O(1)) −→ Γ(X,ϕ∗O(1)) (AAMPS,Proposition 15). Since X is
projective over k, it is proper over k (H,4.9). It follows from (SPM,Proposition 13) that ϕ is
proper and therefore a closed morphism. By (VS,Proposition 20) if P ∈ X is a closed point we
have an isomorphism of k-vector spaces

O(1)ϕ(P )/mϕ(P )O(1)ϕ(P ) −→ LP /mPLP (7)
germϕ(P )xi + mϕ(P )O(1)ϕ(P ) 7→ germPϕ

∗xi + mPLP (8)

Therefore if f ∈ S1 we have germPϕ
∗(f) ∈ mPLP if and only if f(ϕ(P )) = 0. Using (1) it is now

immediate that ϕ is injective on closed points, and therefore injective by Lemma 8. This shows
that ϕ gives a homeomorphism with the closed subset ϕ(X) of Pnk . To show that ϕ is a closed
immersion, it suffices by (VS,Proposition 17) to show that for each closed point P ∈ X the ring
morphism OY,ϕ(P ) −→ OX,P is surjective (we write Y = Pnk ). Both local rings have the same
residue field (VS,Corollary 11) and the isomorphism (7) together with condition (2) implies that
the image of the maximal ideal mY,ϕ(P ) generates mX,P /m

2
X,P as a k-vector space, so the canonical

morphism mY,ϕ(P ) −→ mX,P /m
2
X,P is surjective. It follows from (SEM,Corollary 12) that ϕ is

projective, and then from (H,5.20) that ϕ∗OX is a coherent sheaf of modules. Therefore OX,P is
a finitely generated OY,ϕ(P )-module, so our result is a consequence of the following Lemma.
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Lemma 10. Let f : A −→ B be a local morphism of local noetherian rings, such that

(1) A/mA −→ B/mB is an isomorphism of rings,

(2) mA −→ mB/m
2
B is surjective, and

(3) B is a finitely generated A-module.

Then we claim f is surjective.

Proof. Consider the ideal a = mAB of B. We have a ⊆ mB and by (2), mB = a + m2
B . It follows

from Nakayama’s Lemma that a = mB . Now apply Nakayama’s Lemma to the A-module B. By
(3), B is a finitely generated A-module. The element 1 ∈ B gives a generator for B/mAB =
B/mB

∼= A/mA by (1), so we conclude that 1 also generates B as an A-module. That is, f is
surjective.

2 The Duple Embedding

Let A be a ring and S a graded A-algebra. Then for n ≥ 1 morphisms of graded A-algebras
A[x0, . . . , xn] −→ S are in bijection with elements of Sn+1

1 . Let ϕ : A[x0, . . . , xn] −→ S be the
morphism determined by elements s0, . . . , sn ∈ S1 and let Φ : U −→ PnA be the corresponding
morphism of schemes over A, where U is a certain open subset of X = ProjS. Then it follows from
(5.12c) that this is the morphism corresponding to the invertible sheafOX(1)|U with global sections
s̃0, . . . , s̃n ∈ Γ(U,OX(1)|U ). This raises the question of what morphisms into PnA correspond to
the invertible sheaves OX(d) and their global sections? We will answer this question, but first we
need various results to prepare the way.

Lemma 11. Let S be a graded ring generated by elements s0, . . . , sn ∈ S1 as an S0-algebra and
set X = ProjS. For d ≥ 1 let M0, . . . ,MN be the elements of S given by all monomials of degree
d in the si. Then the sheaf of modules OX(d) is generated by the sections M̃i ∈ Γ(X,OX(d)).

Proof. By the same argument as Example 5.16.3.

Proposition 12. Let S be a graded ring and let e > 0. The morphism of graded rings ϕ : S[e] −→
S induces an isomorphism of schemes Φ : ProjS −→ ProjS[e] natural in S. If S is generated
by S1 as an S0-algebra then for n ≥ 1 there is a canonical isomorphism of sheaves of modules on
ProjS

ζ : Φ∗O(ne) −→ O(ne)

ζQ([W, ˙a/s] ⊗̇ ˙b/t) = ab/̇st

Where Q ⊆ ProjS,W ⊇ Φ(Q) are open, a ∈ S(n+m)e, s ∈ Sme for some m ≥ 0 and b, t ∈ Sr for
some r ≥ 0 such that Q ⊆ D+(t) and W ⊆ D+(s).

Proof. We have already shown in (TPC,Proposition 9) that Φ is an isomorphism of schemes. To
prove the second statement, suppose that S is generated by S1 as an S0-algebra and for n ≥ 1 and a
homogenous prime p ∈ ProjS define a ring morphism S[e](ne)(p∩S[e]) −→ S(ne)(p) by a/s 7→ a/s.
If a/s = 0 in S(ne)(p) then qa = 0 for some homogenous q /∈ p, so qea = 0 which shows that
a/s = 0 in S[e](ne)(p∩S[e]). To see this map is surjective, find f ∈ S1 with f /∈ p (which is possible
since S is generated by S1) and given a/s ∈ S(ne)(p) we can pad the numerator and denominator
until both are homogenous of a degree divisible by e. Therefore this is an isomorphism of rings.
Set X = ProjS, Y = ProjS[e], q = p ∩ S[e] and let ζp be the following isomorphism of abelian
groups, which is compatible with the ring isomorphism OX,p ∼= S(p)

ζp : Φ∗O(ne)p
∼= O(ne)q ⊗OY,q OX,p
∼= O(ne)q

∼= S[e](ne)(q)

∼= S(ne)(p)
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It is not difficult to check ζ : Φ∗O(ne) −→ O(ne) defined by ζU (s)(p) = ζp(germps) is an
isomorphism of sheaves of modules with the required property.

Definition 4. Let S be a graded ring and e > 0. Let S|e denote the graded ring with the same
ring structure as S, but with the inflated grading of (TPC,Definition 2). We have an equality of
schemes ProjS = Proj(S|e) and it is not hard to see that S(n)˜ and (S|e)(ne)˜ are the same
sheaf of modules on this scheme for n ≥ 1. In particular we have ProjS(e) = ProjS[e] and under
this equality the sheaf of modules (S(e)(n))˜ is equal to (S[e](ne))˜.

Corollary 13. Let S be a graded ring generated by S1 as an S0-algebra, and let e > 0. There
is a canonical isomorphism of schemes Ψ : ProjS −→ ProjS(e) natural in S and a canonical
isomorphism of sheaves of modules on ProjS for n ≥ 1

ζ : Ψ∗O(n) −→ O(ne)

ζQ([W, ˙a/s] ⊗̇ ˙b/t) = ˙ab/st

Where Q ⊆ ProjS,W ⊇ Φ(Q) are open, a ∈ Sme+ne, s ∈ Sme for some m ≥ 0 and b, t ∈ Sr for
some r ≥ 0 such that Q ⊆ D+(t) and W ⊆ D+(s).

Proof. The isomorphism is the isomorphism Φ : ProjS −→ ProjS[e] of Proposition 12 followed
by the equality ProjS(e) = ProjS[e]. The sheaf of modules (S(e)(1))˜ on ProjS(e) is equal to the
the sheaf of modules (S[e](e))˜ on ProjS[e], so the claim follows directly from Proposition 12.

Proposition 14. Let S be a graded A-algebra generated by elements s0, . . . , sn ∈ S1 as an A-
algebra and set X = ProjS. Let M0, . . . ,MN be the monomials of degree d in the si for some
d ≥ 1. Then the invertible sheaf OX(d) with generating global sections M̃0, . . . , M̃N corresponds
to a closed immersion of A-schemes ν : X −→ PNA called the d-uple embedding, which is given by
the following composite

X
Ψ +3 ProjS(e) Λ // PNA

where Ψ is the isomorphism defined in Corollary 13 and Λ corresponds to the following morphism
of graded A-algebras

λ : A[y0, . . . , yN ] −→ S(e)

yi 7→Mi

Proof. It is easy to check that λ is a surjective morphism of graded A-algebras, so Λ is a closed
immersion of A-schemes by (Ex.3.12), and therefore so is ν. We have to show there is an isomor-
phism ν∗O(1) ∼= OX(d) which identifies v∗(yi) with M̃i. But using (5.12c), Corollary 13 and our
notes on composing inverse image functors, we have

ν∗O(1) ∼= Ψ∗Λ∗O(1)
∼= Ψ∗O(1)
∼= O(d)

So it is a matter of checking that this isomorphism has the right properties. Using the explicit
maps given in our notes this is tedious but straightforward (see Section 3 of our notes on Modules
over Projective Space and our note on Inverse and Direct Images).

3 Ample Invertible Sheaves

Now that we have seen that a morphism of a scheme X to a projective space can be characterised
by giving an invertible sheaf on X and a suitable set of its global sections, we can reduce the study
of varieties in projective space to the study of schemes with certain invertible sheaves and given
global sections. Recall that in Section 5 we made the following definition:

9
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Definition 5. IfX is a scheme over Y then an invertible sheaf L onX is very ample relative to Y if
there is an immersion i : X −→ PnY of schemes over Y for some n ≥ 1 such that L ∼= i∗O(1). This
property is stable under isomorphism of OX -modules and also under isomorphisms of schemes,
in the sense that if f : X −→ X ′ is an isomorphism of schemes over Y then f∗L is very ample
relative to Y . If Y −→ Y ′ is an isomorphism of schemes then L is very ample relative Y ′.

The most obvious example of very ample sheaves are the usual twisting sheaves.

Lemma 15. Let A be a ring and S a graded A-algebra finitely generated as an A-algebra by S1,
and set X = ProjS. Then the invertible sheaf OX(1) is very ample relative to SpecA.

Proof. We know from (TPC,Lemma 19) that the structural morphism X −→ SpecA is projective,
and it follows from (MPS,Proposition 13) that OX(1) is very ample relative to SpecA.

Lemma 16. If X is a scheme over A then an invertible sheaf L is very ample relative to A if
and only if there exists n ≥ 1 and a set of global sections s0, . . . , sn which generate L such that
the corresponding morphism X −→ PnA is an immersion.

We have also seen (5.17) that if L is a very ample invertible sheaf on a projective scheme X
over a noetherian ring A, then for any coherent sheaf F on X, there is an integer n0 > 0 such
that for all n ≥ n0, F ⊗L ⊗n is generated by global sections. We will use this last property of
being generated by global sections to define the notion of an ample invertible sheaf, which is more
general, and in many ways is more convenient to work with than the notion of very ample sheaf.

Definition 6. An invertible sheaf L on a noetherian scheme X is said to be ample if for every
coherent sheaf F on X, there is an integer n0 > 0 (depending on F ) such that for every n ≥ n0,
the sheaf F ⊗L ⊗n is generated by global sections. This property is stable under isomorphism
of OX -modules and also under isomorphisms of schemes, in the sense that if f : X −→ X ′ is an
isomorphism of schemes then f∗L is ample.

Remark 2. Note that “ample” is an absolute notion, i.e., it depends only on the scheme X,
whereas “very ample” is a relative notion, depending on a morphism X −→ Y . Notice that since
OX is coherent, if L is ample then there is an integer n0 > 0 such that for all n ≥ n0, L ⊗n

is generated by global sections. The sheaf OX is ample iff. every coherent sheaf is generated by
global sections.

Example 1. If X = SpecA for a noetherian ring A then any invertible sheaf is ample. This
follows from the fact that any invertible sheaf is coherent (see our Locally Free Sheaves notes),
and by (5.16.2) any coherent sheaf on X is generated by global sections. Since X is noetherian
the tensor product of coherent sheaves is coherent (p.47 of our Section 2.5 notes), so if F is a
coherent sheaf then F ⊗L ⊗n is coherent and therefore generated by global sections for all n ≥ 1.

Remark 3. Serre’s theorem (5.17) asserts that a very ample sheaf L on a projective scheme X
over a noetherian ring A is ample. The converse is false, but we will see below (7.6) that if L
is ample, then some tensor power L ⊗m of L is very ample. Thus “ample” can be viewed as a
stable version of “very ample”.

Proposition 17. Let L be an invertible sheaf on a noetherian scheme X. Then the following
conditions are equivalent:

(i) L is ample;

(ii) L ⊗m is ample for all m > 0;

(iii) L ⊗m is ample for some m > 0.

Proof. (i) ⇒ (ii) is immediate from the definition of ample. (ii) ⇒ (iii) is trivial. To prove
(iii) ⇒ (i) we note that if L ⊗m is ample and F coherent, there is n0 such that for all n ≥ n0 the
module F ⊗ (L ⊗m)⊗n ∼= F ⊗L ⊗(mn) is generated by global sections. So F ⊗L ⊗n is generated
by global sections for n = mn0,mn0 +m,mn0 +2m, . . . and so on. We simply need to fill in these
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gaps. Consider the coherent sheaves F ⊗L ⊗k for k = 1, 2, . . . ,m− 1. There must exist integers
nk > 0 such that the following module is generated by global sections for n ≥ nk

(F ⊗L ⊗k)⊗ (L ⊗m)⊗n ∼= F ⊗L ⊗(k+mn)

If we take N = m ·max{n0, n1, . . . , nm−1} then it is clear that F ⊗L ⊗n is generated by global
sections for n ≥ N , as required.

Lemma 18. Let X −→ Y be an immersion with X noetherian. Then there is a closed subscheme
structure on the closure X such that X −→ Y factors uniquely through X −→ Y via an open
immersion X −→ X.

Proof. In the case where X −→ Y is an open immersion we have already shown this in our Open
Subscheme notes. For a general immersion, write X −→ Y as an open immersion X −→ Z
followed by a closed immersion Z −→ Y and use the fact that taking the closure of X in Z is the
same as taking the closure in Y .

Theorem 19. Let X be a scheme of finite type over a noetherian ring A, and let L be an
invertible sheaf on X. Then L is ample if and only if L ⊗m is very ample over SpecA for some
m > 0.

Proof. First suppose that L ⊗m is very ample for some m > 0. Then there is an immersion
i : X −→ PnA for some n ≥ 1 such that L ⊗m ∼= i∗O(1). Let X be the closure of i(X) in PnA and
let j : X −→ PnA be a closed immersion with the property that i factors through j via an open
immersion k : X −→ X. Let U be the image of this open immersion, and let n : X −→ U be the
isomorphism in the following commutative diagram

U
t // X

j

��
X

k

>>~~~~~~~~

i
//

n

KS

PnA

Then X is a projective scheme over A, so X is noetherian and by (5.17) the invertible sheaf
OX(1) = j∗O(1) is ample on X. For any integer ` ∈ Z we write OX(`) for OX(1)⊗`. Now given
any coherent sheaf F the sheaf n∗F extends by (Ex 5.15) to a coherent sheaf F on X. If for some
integer ` > 0 the sheaf F ⊗OX(`) is generated by global sections, then so is the sheaf (writing m
for n−1)

m∗(F ⊗OX(`))|U ∼= m∗(n∗F ⊗ (OX(1)|U )⊗`)
∼= F ⊗m∗(OX(1)|U )⊗`

∼= F ⊗ (m∗j
∗O(1)|U )⊗`

But m∗ ∼= n∗ and |U ∼= t∗, so m∗j
∗O(1)|U ∼= n∗j∗t∗O(1) ∼= i∗O(1). Therefore F ⊗ (L ⊗m)⊗`

is generated by global sections. Since OX(1) is ample it follows that L ⊗m is ample on X, and
therefore by (7.5) so is L .

For the converse, suppose that L is ample on X. Given any P ∈ X, let U be an affine open
neighborhood of P such that L |U is free on U . Let Y be the closed set X \ U and let JY the
corresponding sheaf of ideals (i.e. the sheaf of ideals of the reduced induced scheme structure).
Then JY is a coherent sheaf on X, so for some n > 0 the module JY ⊗L ⊗n is generated by
global sections. Since

Y = Supp(OX/JY ) = {x ∈ X |JY,x 6= OX,x}

and (JY ⊗L ⊗n)P ∼= JY,P
∼= OX,P it follows from Nakayama’s Lemma that there is a section

s ∈ Γ(X,JY ⊗L ⊗n) such that germP s /∈ mP (JY ⊗L ⊗n)P . In particular germP s is a basis for
(JY ⊗L ⊗n)P . Since L ⊗n is invertible it is flat, so there is a monomorphism φ : JY ⊗L ⊗n −→
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OX ⊗ L ⊗n ∼= L ⊗n and we consider s as a global section of L ⊗n. The following commutative
diagram shows that φP is an isomorphism

(JY ⊗L ⊗n)P

��

// (OX ⊗L ⊗n)P

��

+3 L ⊗n
P

JY,P
+3 OX,P ⊗L ⊗n

P

4<qqqqqqqqqq

qqqqqqqqqq

Therefore germP s is a basis for L ⊗n
P and so if Xs denotes the open set {Q ∈ X | germQs /∈

mQL ⊗n
Q } it is clear that P ∈ Xs. If Q /∈ U then since JY,Q is a proper ideal it must be contained

in mQ, and therefore germQs ∈ mQL ⊗n
Q . Hence P ∈ Xs ⊆ U . Now U is affine, and L |U is trivial,

so s induces an element f ∈ Γ(U,OU ) and then Xs = Uf is also affine.
Thus we have shown that for any point P ∈ X, there is an n > 0 and a section s ∈ Γ(X,L ⊗n)

such that P ∈ Xs and Xs is affine. Since X is quasi-compact, we can cover X by a finite number
of such open affines, corresponding to sections si ∈ Γ(X,L ⊗ni). Replacing each si by a suitable
power ski ∈ Γ(X,L ⊗kni), which doesn’t change Xsi , we may assume that all ni are equal to one
n. Finally, since L ⊗n is also ample, and since we are only trying to show that some power of L
is very ample, we may replace L by L ⊗n. Thus we may assume now that we have global sections
s1, . . . , sk ∈ Γ(X,L ) such that each Xi = Xsi is affine, and the Xi cover X.

Now for each i, let Bi = Γ(Xi,OXi). Since X is a scheme of finite type over A, each Bi is
a finitely generated A-algebra (Ex 3.3). So let {bij | j = 1, . . . , k} be a set of generators for Bi
as an A-algebra. By (5.14) for each i, j there is an integer n such that bijsni extends to a global
section cij ∈ Γ(X,L ⊗n). We can take one n large enough to work for all i, j. Now we take the
invertible sheaf L ⊗n on X, and the sections {sni | 1 ≤ i ≤ k} and {cij , | 1 ≤ i, j ≤ k} and use all
these sections to define a morphism (over A) ϕ : X −→ PNA as in (7.1) above. This makes sense
since X is covered by the Xi, so the sections sni already generate L ⊗n.

Let {xi | 1 ≤ i ≤ k} and {xij | 1 ≤ i, j ≤ k} be the homogenous coordinates of PNA corresponding
to the above sections of L ⊗n. For each i = 1, . . . , k let Ui ⊆ PnA be the open subset D+(xi). Then
ϕ−1Ui = Xi and the corresponding morphism of A-algebras

A[{yi}; {yij}] −→ Bi

is surjective, because yij 7→ cij/s
n
i = bij , and we chose the bij so as to generate Bi as an A-algebra.

Thus Xi −→ Ui is a closed immersion, and so the factorisation of ϕ through
⋃
i Ui ⊆ PnA is a closed

immersion. It follows from our Subschemes and Immersions notes that X −→ PnA is an immersion,
as required.

Example 2. Let X = Pnk where k is a field. Then O(1) is very ample over k by definition. For
any d > 0, O(d) corresponds to the d-uple embedding of Proposition 14, so O(d) is very ample
over k. Hence O(d) is ample for all d > 0. If ` < 0 then the module O(`) has no global sections
(see our Γ∗OX notes) and therefore can not be generated by global sections. But then O(`) can
not be ample, since if it were there would be some n0 > 0 with O(`)⊗n ∼= O(n`) generated by
global sections for all n ≥ n0. Since there exist coherent modules which are not ample, OX can
not be ample. So on Pnk , we have O(`) is ample ⇔ very ample ⇔ ` > 0.

4 Linear Systems

We will see in a minute how global sections of an invertible sheaf correspond to effective divisors
on a variety. Thus giving an invertible sheaf and a set of its global sections is the same as giving
a certain set of effective divisors, all linearly equivalent to each other. This leads to the notion of
linear system, which is the historically older notion. For simplicity, we will employ this terminology
only when dealing with nonsingular projective varieties over an algebraically closed field. Over
more general schemes the geometric intuition associated with the concept of linear system may
lead one astray, so it is safer to deal with invertible sheaves and their global sections in that case.
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So let X be a nonsingular projective variety over an algebraically closed field k. In this case
the notions of Weil divisor and Cartier divisor are equivalent (DIV,Proposition 33) in such a
way that the effective divisors also agree (DIV,Proposition 51). Furthermore, we have a bijec-
tion between linear equivalence classes of divisors and isomorphism classes of invertible sheaves
(DIV,Proposition 44). Another useful fact in this situation is that for any invertible sheaf L on
X, the global sections Γ(X,L ) form a finite-dimensional k-vector space (H,5.19).

Lemma 20. Let X be an integral scheme with generic point ξ and L an invertible sheaf on X.
Then

(i) For x ∈ X the canonical morphism of abelian groups Lx −→ Lξ is injective.

(ii) If U, V are nonempty open subsets of X and s ∈ L (U), t ∈ L (V ) then s|U∩V = t|U∩V if
and only if germξs = germξt.

(iii) If V ⊆ X is a nonempty open subset then L (V ) −→ Lξ is injective.

(iv) For nonempty open sets W ⊆ V the restriction map L (V ) −→ L (W ) is injective.

Proof. We use invertibility of L and (POIS,Lemma 1) to prove (i), from which all the other claims
follow.

Let L be an invertible sheaf on X and let s ∈ Γ(X,L ) be a nonzero global section of L . We
define an effective divisor D = (s)0, the divisor of zeros of s, as follows. Choose an open cover
{Ui}i∈I of X by nonempty affine open subsets Ui on which L is trivial. That is, for each i ∈ I
there is an isomorphism of sheaves of modules ϕi : L |Ui −→ OX |Ui . Then ϕi(s) is a nonzero
element of Γ(Ui,OX) by Lemma 20(iv), which is therefore invertible as an element of K (Ui) by
(POIS,Lemma 1)(iv) and (DIV,Lemma 30). It is straightforward to check that {(Ui, ϕi(s))}i∈I
determines an effective Cartier divisor D on X, which depends only on L and s (not on the choice
of cover or local isomorphisms).

Proposition 21. Let X be a nonsingular projective variety over an algebraically closed field k.
Let D0 be a divisor on X and let L = L (D0) be the corresponding invertible sheaf. Then

(a) For each nonzero s ∈ Γ(X,L ) the divisor of zeros (s)0 is an effective divisor linearly equiv-
alent to D0.

(b) Every effective divisor linearly equivalent to D0 is (s)0 for some nonzero s ∈ Γ(X,L ).

(c) Two nonzero sections s, s′ ∈ Γ(X,L ) have the same divisor of zeros if and only if there is
λ ∈ k∗ such that s′ = λ · s.

Proof. (a) Since L is a submodule of K , s is a nonzero global section of K . Suppose that D0 is
defined as a Cartier divisor by the family {(Ui, fi)}i∈I . We can assume that each Ui is a nonempty
affine open set. Then for each i ∈ I there is an isomorphism L |Ui ∼= OX |Ui corresponding to the
basis f−1

i of L (Ui). The element s|Ui of L (Ui) is mapped to the product fis|Ui in K (Ui), which
belongs to OX(Ui). Therefore (s)0 is the Cartier divisor determined by the family {(Ui, fis|Ui)}i∈I
which is the sum D0 + (s). Therefore (s)0 −D0 = (s) and (s)0 is linearly equivalent to D0.

(b) Let D be an effective divisor and s ∈ K ∗(X) such that D −D0 = (s). Then (s) +D0 ≥ 0
and therefore (s) ≥ −D0. Therefore (s−1) = L ((s)) ⊇ L (−D0) or equivalently (s) ⊆ L (D0)
(DIV,Proposition 50). Therefore s is a nonzero element of Γ(X,L (D0)) and we showed in (a)
that (s)0 = D0 + (s). It follows that D = D0 + (s) = (s)0 − (s) + (s) = (s)0, as required.

(c) Given nonzero sections s, s′ ∈ Γ(X,L ) we have (s)0 = (s′)0 if and only if (s) = (s′), which
by (DIV,Proposition 41)(e) is if and only if s/s′ ∈ O∗(X). But since X is a projective variety
over an algebraically closed field k, we have Γ(X,OX) = k (H,I.3.4),(VS,Theorem 27) and so
s/s′ ∈ k∗.
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Definition 7. Let D0 be a divisor on X and let |D0| denote the set of all effective divisors
linearly equivalent to D0 (this may be empty). We call any set of divisors of X arising in this
way a complete linear system on X. We see from Proposition 21 that there is a bijection of |D0|
with the set (Γ(X,L (D0))−{0})/k∗. Provided |D0| is nonempty it acquires a canonical topology
making it homeomorphic to Pn−1 where n ≥ 1 is the dimension of Γ(X,L (D0)) as a k-vector
space (TVS,Lemma 1) (by convention P0 is just a point).

Example 3. Set X = Pnk for an algebraically closed field k, and fix an integer d > 0. Let H be
the hyperplane x` = 0 for some 0 ≤ ` ≤ n. Then a divisor D of X is linearly equivalent to dH
if and only if deg(D) = d (DIV,Proposition 12). In this case L (H) is canonically isomorphic to
O(1) (DIV,Lemma 34) (DIV,Lemma 46), so the complete linear system |H|, which is the set of
all prime divisors of degree 1, is in bijection with

(Γ(X,L (H))− {0}) /k∗ ∼= (Γ(X,O(1))− {0}) /k∗

which is in bijection with the set of all associate classes of nonzero homogenous polynomials of
degree 1 in k[x0, . . . , xn].

With the notation of the example

Lemma 22. The bijection (S1−{0})/k∗ −→ |H| sends a polynomial f to the prime divisor V (f).

Proof. From the proof of Proposition 21(b) we know that V (f) ∈ |H| corresponds to the global
section f/x` of Γ(X,L (H)). Going in the other direction, it is easy to check that f ∈ S1 goes to
f/x` ∈ Γ(X,L (H)), so the proof is complete.
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