Relative Affine Schemes

Daniel Murfet

October 5, 2006

The fundamental Spec(-) construction associates an affine scheme to any ring. In this note we study the relative version of this construction, which associates a scheme to any sheaf of algebras. The contents of this note are roughly EGA II §1.2, §1.3.

Contents

1	Affine Morphisms	1
2	The Spec Construction	4
3	The Sheaf Associated to a Module	8

1 Affine Morphisms

Definition 1. Let $f: X \longrightarrow Y$ be a morphism of schemes. Then we say f is an *affine morphism* or that X is affine over Y, if there is a nonempty open cover $\{V_{\alpha}\}_{\alpha \in \Lambda}$ of Y by open affine subsets V_{α} such that for every α , $f^{-1}V_{\alpha}$ is also affine. If X is empty (in particular if Y is empty) then f is affine. Any morphism of affine schemes is affine. Any isomorphism is affine, and the affine property is stable under composition with isomorphisms on either end.

Example 1. Any closed immersion $X \longrightarrow Y$ is an affine morphism by our solution to (Ex 4.3).

Remark 1. A scheme X affine over S is not necessarily affine (for example X = S) and if an affine scheme X is an S-scheme, it is not necessarily affine over S. However, if S is separated then an S-scheme X which is affine is affine over S.

Lemma 1. An affine morphism is quasi-compact and separated. Any finite morphism is affine.

Proof. Let $f: X \longrightarrow Y$ be affine. Then f is separated since any morphism of affine schemes is separated, and the separatedness condition is local. Since any affine scheme is quasi-compact it is clear that f is quasi-compact. It follows from (Ex. 3.4) that a finite morphism is an affine morphism of a very special type.

The next two result show that being affine is a property local on the base:

Lemma 2. If $f: X \longrightarrow Y$ is affine and $V \subseteq Y$ is open then $f^{-1}V \longrightarrow V$ is also affine.

Proof. Let $\{Y_{\alpha}\}_{\alpha \in \Lambda}$ be a nonempty affine open cover of Y such that $f^{-1}Y_{\alpha}$ is affine for every $\alpha \in \Lambda$. For every point $y \in V$ find α such that $y \in V \cap Y_{\alpha}$. If $Y_{\alpha} \cong SpecB_{\alpha}$ then there is $g \in B_{\alpha}$ with $y \in D(g) \subseteq V \cap Y_{\alpha}$. If $f^{-1}Y_{\alpha} \cong SpecA_{\alpha}$ and $\varphi : B_{\alpha} \longrightarrow A_{\alpha}$ corresponds to $f^{-1}Y_{\alpha} \longrightarrow Y_{\alpha}$ then $D(\varphi(g)) = f^{-1}D(g)$ is an affine open subset of $f^{-1}V$.

Lemma 3. If $f: X \longrightarrow Y$ is a morphism of schemes and $\{Y_{\alpha}\}_{\alpha \in \Lambda}$ is a nonempty open cover of Y such that $f^{-1}Y_{\alpha} \longrightarrow Y_{\alpha}$ is affine for every α , then f is affine.

Proof. We can take a cover of Y consisting of affine open sets contained in some Y_{α} whose inverse image is affine. This shows that f is affine.

Proposition 4. A morphism $f : X \longrightarrow Y$ is affine if and only if for every open affine subset $U \subseteq Y$ the open subset $f^{-1}U$ is also affine.

Proof. The condition is clearly sufficient, so suppose that f is affine. Using Lemma 2 we can reduce to the case where Y = SpecA is affine and we only have to show that X is affine. Cover Y with open affines $Y_{\alpha} \cong SpecB_{\alpha}$ with $f^{-1}Y_{\alpha}$ affine. If $x \in Y_{\alpha}$ then there is $g \in A$ with $x \in D(g) \subseteq Y_{\alpha}$, and since D(g) corresponds to D(h) for some $h \in B_{\alpha}$ the open set $f^{-1}D(g)$ is affine. Therefore we can assume $Y_{\alpha} = D(g_{\alpha})$ and further that there is only a finite number $D(g_1), \ldots, D(g_n)$ with the g_i generating the unit ideal of A. Let t_i be the image of g_i under the canonical ring morphism $A \longrightarrow \mathcal{O}_X(X)$. Then the t_i generate the unit ideal of $\mathcal{O}_X(X)$ and the open sets $X_{t_i} = f^{-1}D(g_i)$ cover X, so by Ex. 2.17 the scheme X is affine.

Proposition 5. Affine morphisms are stable under pullback. That is, suppose we have a pullback diagram

If f is an affine morphism then so is g.

Proof. By Lemma 3 it suffices to find an open neighborhood V of each point $y \in Y$ such that $g^{-1}V \longrightarrow V$ is affine. Given $y \in Y$ let S be an affine open neighborhood of q(y) and set $U = f^{-1}S, V = q^{-1}S$. By assumption U is affine and $g^{-1}V = p^{-1}U$ so we have a pullback diagram

If $W \subseteq V$ is affine then $g_V^{-1}W = U \times_S W$ is a pullback of affine schemes and therefore affine. Therefore g_V is an affine morphism, as required.

Lemma 6. Let X be a scheme and \mathscr{L} an invertible sheaf with global section $f \in \Gamma(X, \mathscr{L})$. Then the inclusion $X_f \longrightarrow X$ is affine.

Proof. The open set X_f is defined in (MOS,Lemma 29), and it follows from Remark (MOS,Remark 2) that we can find an affine open cover of X whose intersections with X_f are all affine. This shows that the inclusion $X_f \longrightarrow X$ is an affine morphism of schemes.

If X is a scheme over S with structural morphism $f: X \longrightarrow S$ then we denote by $\mathscr{A}(X)$ the canonical \mathcal{O}_S -algebra $f_*\mathcal{O}_X$, when there is no chance of confusion. If X is an S-scheme affine over S then it follows from Lemma 1 and (5.18) that $\mathscr{A}(X)$ is a quasi-coherent sheaf of \mathcal{O}_S -algebras. If X, Y are two schemes over S with structural morphisms f, g then a morphism $h: X \longrightarrow Y$ of schemes over S consists of a continuous map $\psi: X \longrightarrow Y$ and a morphism of sheaves of rings $\theta: \mathcal{O}_Y \longrightarrow h_*\mathcal{O}_X$. The composite $g_*\mathcal{O}_Y \longrightarrow g_*h_*\mathcal{O}_X = f_*\mathcal{O}_X$ is a morphism of \mathcal{O}_S -algebras $\mathscr{A}(h): \mathscr{A}(Y) \longrightarrow \mathscr{A}(X)$. This defines a contravariant functor

$$\mathscr{A}(-): \mathbf{Sch}/S \longrightarrow \mathfrak{Alg}(S)$$

from the category of schemes over S to the category of sheaves of commutative \mathcal{O}_S -algebras.

We showed in (Ex 2.4) that for a ring B, a B-algebra A and B-scheme X there is a bijection $Hom_B(X, SpecA) \cong Hom_B(A, \mathcal{O}_X(X))$ between morphisms of schemes over SpecB and morphisms of B-algebras. We now present a relative version of this result:

Proposition 7. Let X, Y be S-schemes with Y affine over S. Then the map $h \mapsto \mathscr{A}(h)$ gives a bijection $Hom_S(X,Y) \cong Hom_{\mathfrak{Alg}}(\mathscr{A}(Y), \mathscr{A}(X)).$

Proof. We begin with the case where Y = SpecA and S = SpecB are affine for a *B*-algebra *A*. We know from (Ex 2.4) that there is a bijection $Hom_S(X,Y) \cong Hom_B(A, \mathcal{O}_X(X))$. Let $f: Y \longrightarrow S$ be the structural morphism, so that $\mathscr{A}(Y) = f_*\mathcal{O}_Y$. Then by (5.2) we have $\mathscr{A}(Y) \cong \widetilde{A}$ as sheaves of algebras (see our Modules over a Ringed Space notes for the properties of the functor $\widetilde{-}: BAlg \longrightarrow \mathfrak{Alg}(S)$). Therefore the adjunction $\widetilde{-} \longrightarrow \Gamma$ (these are functors between BAlg and $\mathfrak{Alg}(S)$) gives us a bijection

$$Hom_{\mathfrak{Alg}(S)}(\mathscr{A}(Y),\mathscr{A}(X)) \cong Hom_{\mathfrak{Alg}(S)}(A,\mathscr{A}(X)) \cong Hom_B(A,\mathcal{O}_X(X))$$

It is not difficult to check that this has the desired form, so we have the desired bijection in this special case. One extends easily to the case where $Y \cong SpecA$ and $S \cong SpecB$.

In the general case, cover S with open affines S_{α} with $g^{-1}S_{\alpha}$ an affine open subset of Y(by Proposition 4 we may as well assume $\{S_{\alpha}\}_{\alpha \in \Lambda}$ is the set of *all* affine subsets of S). Let $f_{\alpha}: f^{-1}S_{\alpha} \longrightarrow S_{\alpha}, g_{\alpha}: g^{-1}S_{\alpha} \longrightarrow S_{\alpha}$ be induced by f, g respectively. Then by the special case already treated, the following maps are bijections

$$Hom_{S_{\alpha}}(f^{-1}S_{\alpha}, g^{-1}S_{\alpha}) \longrightarrow Hom_{\mathfrak{Alg}(S_{\alpha})}(\mathscr{A}(Y)|_{S_{\alpha}}, \mathscr{A}(X)|_{S_{\alpha}})$$
(1)

Suppose that $h, h' : X \longrightarrow Y$ are morphisms of schemes over S with $\mathscr{A}(h) = \mathscr{A}(h')$. Then $\mathscr{A}(h)|_{S_{\alpha}} = \mathscr{A}(h')|_{S_{\alpha}}$ and therefore $h_{\alpha} = h'_{\alpha}$. Since the $g^{-1}S_{\alpha}$ cover Y it follows that h = h'. This shows that the map $Hom_S(X,Y) \longrightarrow Hom_{\mathfrak{Alg}(S)}(\mathscr{A}(Y),\mathscr{A}(X))$ is injective. To see that it is surjective, let $\phi : \mathscr{A}(Y) \longrightarrow \mathscr{A}(X)$ be given, and let $h_{\alpha} : f^{-1}S_{\alpha} \longrightarrow g^{-1}S_{\alpha}$ correspond to $\phi|_{S_{\alpha}}$ via (1). Since every affine open subset of S occurs among the S_{α} , we can use injectivity of (1) to see that the h_{α} can be glued to give $h : X \longrightarrow Y$ with $\mathscr{A}(h) = \phi$, which completes the proof. \Box

Let $\mathbf{Sch}_A S$ denote the full subcategory of \mathbf{Sch}_S consisting of all schemes affine over S. Then there is an induced functor $\mathscr{A}(-): \mathbf{Sch}_A S \longrightarrow \mathfrak{QcoAlg}(S)$ into the full subcategory of all *quasi-coherent* sheaves of commutative \mathcal{O}_S -algebras. **Corollary 8.** The functor $\mathscr{A}(-)$: $\operatorname{Sch}_A S \longrightarrow \mathfrak{QcoAlg}(S)$ is fully faithful. In particular, if X, Y are S-schemes affine over S then an S-morphism $h : X \longrightarrow Y$ is an isomorphism if and only if $\mathscr{A}(h) : \mathscr{A}(Y) \longrightarrow \mathscr{A}(X)$ is an isomorphism.

2 The Spec Construction

In this section X is a scheme and \mathscr{B} is a quasi-coherent sheaf of commutative \mathcal{O}_X -algebras. Then for an affine open subset $U \subseteq X$ the scheme $Spec\mathscr{B}(U)$ is canonically a scheme over U, via the morphism $\pi_U : Spec\mathscr{B}(U) \longrightarrow Spec\mathcal{O}_X(U) \cong U$. It is clear that π_U is affine, and given another affine open set V we denote $\pi_U^{-1}(U \cap V)$ by $X_{U,V}$. If $U \subseteq V$ are affine open subsets, then let $\rho_{U,V} : Spec\mathscr{B}(U) \longrightarrow Spec\mathscr{B}(V)$ be induced by the restriction $\mathscr{B}(V) \longrightarrow \mathscr{B}(U)$. Our aim in this section is to glue the schemes $Spec\mathscr{B}(U)$ to define a "canonical" scheme affine over X associated to \mathscr{B} . We begin with an important technical Lemma (which will also be used in our construction of **Proj**).

Lemma 9. Let X be a scheme and $U \subseteq V$ affine open subsets. If \mathscr{F} is a quasi-coherent sheaf of modules on X then the following morphism of $\mathcal{O}_X(U)$ -modules is an isomorphism

$$\mathscr{F}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \longrightarrow \mathscr{F}(U)$$
$$a \otimes b \mapsto b \cdot a|_U$$

Proof. We reduce immediately to the case where X = V, and then to the case where X = SpecAis actually an affine scheme. So there is a ring B and an open immersion $i: Y = SpecB \longrightarrow X$ whose open image in X is U. Factor $U \longrightarrow X$ as an isomorphism $j: U \cong Y$ followed by i. Let \mathscr{F} be a quasi-coherent sheaf of modules on X and induce a morphism of $\mathcal{O}_X(U)$ -modules $\mathscr{F}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_X(U) \longrightarrow \mathscr{F}(U)$ with $a \otimes b \mapsto b \cdot a|_U$. We have to show this is an isomorphism. Using various isomorphisms defined in our Section 2.5 notes we have an isomorphism of abelian groups

$$\mathscr{F}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_X(U) \cong \mathscr{F}(X) \otimes_A B \cong (\mathscr{F}(X) \otimes_A B)^{\sim}(Y)$$
$$\cong i^* \mathscr{F}(X)(Y) \cong i^* \mathscr{F}(Y)$$
$$\cong (j_* \mathscr{F}|_U)(Y) \cong \mathscr{F}(U)$$

Using the explicit calculations of these isomorphisms, one can check that it sends $a \otimes b$ to $b \cdot a|_U$, which proves our claim.

Proposition 10. Let X be a scheme and $U \subseteq V$ affine open subsets. If \mathscr{B} is a quasi-coherent sheaf of commutative \mathcal{O}_X -algebras then the following diagram is a pullback

In particular $\rho_{U,V}$ is an open immersion inducing an isomorphism of $Spec\mathscr{B}(U)$ with $\pi_V^{-1}U$.

Proof. It follows from Lemma 9 that the following diagram is a pushout of rings

That is, the morphism $\mathscr{B}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \longrightarrow \mathscr{B}(U)$ given by $a \otimes b \mapsto b \cdot a|_U$ is an isomorphism of $\mathcal{O}_X(V)$ -algebras (and $\mathcal{O}_X(U)$ -algebras). Applying Spec gives the desired pullback. Since open

immersions are stable under pullback, we see that $\rho_{U,V}$ is an open immersion. Since $\pi_V^{-1}U$ is another candidate for the pullback $U \times_V Spec\mathscr{B}(V)$ it follows that the open image of $\rho_{U,V}$ is $\pi_V^{-1}U$.

For open affine $U \subseteq X$ we denote by $\mathscr{B}(U)$ the sheaf of algebras on U obtained by taking the direct image along $Spec\mathcal{O}_X(U) \cong U$ of the sheaf of algebras on $Spec\mathcal{O}_X(U)$ corresponding to the $\mathcal{O}_X(U)$ -algebra $\mathscr{B}(U)$. There is an isomorphism of sheaves of algebras on U

$$\delta_U: \mathscr{A}(Spec\mathscr{B}(U)) \cong \widetilde{\mathscr{B}(U)}$$

defined as the direct image of the isomorphism of sheaves on $Spec\mathcal{O}_X(U)$ obtained from the algebra analogue of (5.2d) (see our Modules over a Ringed Space notes). The sheaves of algebras are compatible with restriction in the following sense

Lemma 11. Let X be a scheme, $W \subseteq U$ affine open subsets and \mathscr{B} a quasi-coherent sheaf of commutative \mathcal{O}_X -algebras. There is a canonical isomorphism of sheaves of algebras on W

$$\varepsilon_{W,U}: \widetilde{\mathscr{B}(U)}|_W \longrightarrow \widetilde{\mathscr{B}(W)}$$
$$\dot{a/s} \mapsto a|_W/s|_W$$

Proof. We have the following commutative diagram

Since j is an open immersion it induces an isomorphism $Spec\mathcal{O}_X(W) \cong Imj$. Let $g: Imj \longrightarrow Spec\mathcal{O}_X(W)$ be the inverse of this isomorphism, and let $s: Imj \longrightarrow W$ be the morphism induced by l. Let $\varepsilon_{W,U}$ be the following isomorphism of sheaves of algebras (using some results from our Modules over Ringed space notes)

$$\varepsilon_{W,U}: \widetilde{\mathscr{B}(U)}|_{W} = s_{*}(\widetilde{\mathscr{B}(U)}|_{Imj}) = k_{*}g_{*}(\widetilde{\mathscr{B}(U)}|_{Imj})$$
$$\cong k_{*}j^{*}(\widetilde{\mathscr{B}(U)}) \cong k_{*}(\mathscr{B}(U) \otimes_{\mathcal{O}_{X}(U)} \mathcal{O}_{X}(W))^{\sim}$$
$$\cong k_{*}\widetilde{\mathscr{B}(W)} = \widetilde{\mathscr{B}(W)}$$

Suppose we are given an open set $T \subseteq W$, $a \in \mathscr{B}(U)$ and $s \in \mathcal{O}_X(U)$ with $l^{-1}T \subseteq D(s)$. Then using the explicit forms of the above isomorphisms, one checks that the section $a/s \in \mathscr{B}(U)(T)$ maps to the section $a|_W/s|_W$ of $\mathscr{B}(W)(T)$.

Since \mathscr{B} is quasi-coherent, there is an isomorphism $\mu_U : \mathscr{B}(U) \cong \mathscr{B}|_U$ of sheaves of algebras on U. Together with δ_U this gives an isomorphism of sheaves of algebras on U

$$\beta_U = \mu_U \delta_U : \mathscr{A}(Spec\mathscr{B}(U)) \cong \widetilde{\mathscr{B}(U)} \cong \mathscr{B}|_U$$

In particular for affine $W \subseteq U$ and $b \in \mathscr{B}(U)$ we have the following action of β_U :

$$(\beta_U)_W : \mathcal{O}_{Spec\mathscr{B}(U)}(X_{U,W}) \longrightarrow \mathscr{B}(W) \dot{b/1} \mapsto b|_W$$

$$(2)$$

The schemes $X_{U,V}$ and $X_{V,U}$ are both affine over $U \cap V$ by Lemma 2. And on $U \cap V$ we have an isomorphism of sheaves of algebras

$$\mathscr{A}(X_{U,V}) = \mathscr{A}(Spec\mathscr{B}(U))|_{U \cap V} \cong \mathscr{B}|_{U \cap V} \cong \mathscr{A}(Spec\mathscr{B}(V))|_{U \cap V} = \mathscr{A}(X_{V,U})$$

Therefore by Corollary 8 there is an isomorphism $\theta_{U,V} : X_{U,V} \longrightarrow X_{V,U}$ of schemes over $U \cap V$ with $\mathscr{A}(\theta_{U,V}) = (\beta_U)|_{U \cap V}^{-1}(\beta_V)|_{U \cap V}$. If $U \subseteq V$ then $X_{U,V} = Spec\mathscr{B}(U)$ and we claim that the following diagram commutes

The two legs agree on global sections of $Spec\mathscr{B}(V)$ by (2), and they are therefore equal. It is clear that $\theta_{U,V} = \theta_{V,U}^{-1}$ and for affine opens $U, V, W \subseteq X$ we have $\theta_{U,V}(X_{U,V} \cap X_{U,W}) = X_{V,U} \cap X_{V,W}$ since $\theta_{U,V}$ is a morphism of schemes over $U \cap V$. So to glue the $Spec\mathscr{B}(U)$ it only remains to check that $\theta_{U,W} = \theta_{V,W} \circ \theta_{U,V}$ on $X_{U,V} \cap X_{U,W}$. But these are all morphisms of schemes affine over $U \cap V \cap W$, so by using the injectivity of $\mathscr{A}(-)$ the verification is straightforward.

Thus our family of schemes and patches satisfies the conditions of the Glueing Lemma (Ex. 2.12), and we have a scheme $Spec(\mathscr{B})$ together with open immersions $\psi_U : Spec\mathscr{B}(U) \longrightarrow Spec(\mathscr{B})$ for each affine open subset $U \subseteq X$. These morphisms have the following properties:

- (a) The open sets $Im\psi_U$ cover $Spec(\mathscr{B})$.
- (b) For affine open subsets $U, V \subseteq X$ we have $\psi_U(X_{U,V}) = Im\psi_U \cap Im\psi_V$ and $\psi_V|_{X_{V,U}}\theta_{U,V} = \psi_U|_{X_{U,V}}$.

In particular for affine open subsets $U \subseteq V$ we have a commutative diagram

The open sets $Im\psi_U$ are a nonempty open cover of $Spec(\mathscr{B})$, and it is a consequence of (b)above and the fact that $\theta_{U,V}$ is a morphism of schemes over $U \cap V$ that the morphisms $Im\psi_U \cong$ $Spec\mathscr{B}(U) \longrightarrow U \longrightarrow X$ can be glued (that is, for open affines U, V the corresponding morphisms agree on $Im\psi_U \cap Im\psi_V$). Therefore there is a unique morphism of schemes $\pi : Spec(\mathscr{B}) \longrightarrow X$ with the property that for every affine open subset $U \subseteq X$ the following diagram commutes

In fact it is easy to see that $\pi^{-1}U = Im\psi_U$, the above diagram is also a pullback. Moreover π is affine by Lemma 3 since all the morphisms π_U are affine.

Our next task is to show that $\mathscr{A}(Spec(\mathscr{B})) \cong \mathscr{B}$. For open affine $U \subseteq X$, let $j_U : Im\psi_U \longrightarrow U$ be the morphism induced by π and $\psi'_U : Spec\mathscr{B}(U) \cong Im\psi_U$ the isomorphism induced by ψ_U , so that $j_U\psi'_U = \pi_U$. Then there is an isomorphism of sheaves of algebras on U

$$\begin{split} \omega_U &: \mathscr{A}(Spec(\mathscr{B}))|_U = (j_U)_*(\mathcal{O}_{Spec(\mathscr{B})}|_{Im\psi_U}) \\ &\cong (j_U)_*((\psi'_U)_*\mathcal{O}_{Spec\mathscr{B}(U)}) \\ &= (\pi_U)_*\mathcal{O}_{Spec\mathscr{B}(U)} \\ &= \mathscr{A}(Spec\mathscr{B}(U)) \end{split}$$

For open affines $W \subseteq U$ let $\pi_U|_{X_{U,W}} : X_{U,W} \longrightarrow W$ be induced from π_U . Then there is an isomorphism of sheaves of algebras on W

$$\begin{aligned} \zeta_{W,U} : \mathscr{A}(Spec\mathscr{B}(U))|_{W} &= (\pi_{U}|_{X_{U,W}})_{*}(\mathcal{O}_{Spec\mathscr{B}(U)}|_{X_{U,W}}) \\ &\cong (\pi_{U}|_{X_{U,W}})_{*}((\theta_{W,U})_{*}\mathcal{O}_{Spec\mathscr{B}(W)}) \\ &= \mathscr{A}(Spec\mathscr{B}(W)) \end{aligned}$$

Despite the complicated notation, if one draws a picture it is straightforward to check that the following diagram commutes

$$\mathscr{A}(Spec(\mathscr{B}))|_{W} \xrightarrow{\omega_{U}|_{W}} \mathscr{A}(Spec\mathscr{B}(U))|_{W}$$
(5)
$$\mathscr{A}(Spec\mathscr{B}(W))$$

We claim that the isomorphism $\zeta_{W,U}$ is compatible with the isomorphism $\varepsilon_{W,U}$ defined earlier.

Lemma 12. Let X be a scheme, $W \subseteq U$ affine open subsets and \mathscr{B} a quasi-coherent sheaf of commutative \mathcal{O}_X -algebras. Then the following diagram of sheaves of algebras on W commutes

Proof. First we check that the square on the left commutes by beginning at $\mathscr{B}(U)|_W$ and showing at the two morphisms to $\mathscr{A}(Spec\mathscr{B}(W))$ agree. For this, we need only check they agree on sections of the form a/s, and this is straightforward. We can use the same trick to check commutativity of the triangle on the right.

For an affine open subset $U \subseteq X$ let $\phi_U : \mathscr{A}(Spec(\mathscr{B}))|_U \longrightarrow \mathscr{B}|_U$ be the isomorphism of sheaves of algebras on U given by the composite $\phi_U = \beta_U \omega_U$. Lemma 12 and (5) show that $\phi_U|_W = \phi_W$ for open affines $W \subseteq U$, so together the ϕ_U give an isomorphism of sheaves of algebras $\phi : \mathscr{A}(Spec(\mathscr{B})) \longrightarrow \mathscr{B}$ with $\phi|_U = \phi_U$.

In summary:

Definition 2. Let X be a scheme and \mathscr{B} a commutative quasi-coherent sheaf of \mathcal{O}_X -algebras. Then we can canonically associate to \mathscr{B} a scheme $\pi : Spec(\mathscr{B}) \longrightarrow X$ affine over X. For every open affine subset $U \subseteq X$ there is an open immersion $\psi_U : Spec\mathscr{B}(U) \longrightarrow Spec(\mathscr{B})$ with the property that the diagram (4) is a pullback and the diagram (3) commutes for any open affines $U \subseteq V$. There is also a canonical isomorphism of sheaves of algebras $\mathscr{A}(Spec(\mathscr{B})) \cong \mathscr{B}$.

Corollary 13. Let S be a scheme. The functor $\mathscr{A}(-)$: $\mathbf{Sch}_A S \longrightarrow \mathfrak{QcoAlg}(S)$ is an equivalence. In particular schemes X, Y affine over S are S-isomorphic if and only if $\mathscr{A}(X) \cong \mathscr{A}(Y)$.

Proof. We know from Corollary 8 that the functor is fully faithful, and the above construction together with the fact that $\mathscr{A}(Spec(\mathscr{B})) \cong \mathscr{B}$ shows that it is representative. Therefore it is an equivalence.

If A is a commutative ring, then the composite $\Gamma(-)\mathscr{A}(-)$ gives an equivalence $\operatorname{Sch}_ASpecA \longrightarrow AAlg$. Any quasi-coherent sheaf of commutative algebras on SpecA is isomorphic to \widetilde{B} for some commutative A-algebra B. The morphism $SpecB \longrightarrow SpecA$ is affine and $\mathscr{A}(SpecB) \cong \widetilde{B}$, so it follows that $Spec(\widetilde{B}) \cong SpecB$ as schemes over A. In particular any scheme X affine over SpecA is A-isomorphic to SpecB for some commutative A-algebra B. Therefore

Lemma 14. Let S be an affine scheme. Then an S-scheme X is affine over S if and only if X is an affine scheme.

3 The Sheaf Associated to a Module

Let X be a scheme and \mathscr{B} a commutative quasi-coherent sheaf of \mathcal{O}_X -algebras. Let $\mathfrak{Mod}(\mathscr{B})$ denote the category of all sheaves of \mathscr{B} -modules and $\mathfrak{Qco}(\mathscr{B})$ the full subcategory of quasi-coherent sheaves of \mathscr{B} -modules (SOA,Definition 1). Note that these are precisely the sheaves of \mathscr{B} -modules that are quasi-coherent as sheaves of \mathcal{O}_X -modules, so in this section there is no harm in simply calling these sheaves "quasi-coherent" (SOA,Proposition 19). In this section we define for every finite morphism $f: X \longrightarrow Y$ a functor

$$\widetilde{-}: \mathfrak{Qco}(\mathscr{A}(X)) \longrightarrow \mathfrak{Mod}(X)$$

which is the relative version of the functor $A\mathbf{Mod} \longrightarrow \mathfrak{Mod}(SpecA)$ for a ring A. Note that $\mathfrak{Qco}(\mathscr{A}(X))$ is an abelian category (SOA,Corollary 20).

Lemma 15. Let X be a scheme and $U \subseteq V$ affine open subsets. If \mathscr{B} is a commutative quasicoherent sheaf of \mathcal{O}_X -algebras, and \mathscr{M} a quasi-coherent sheaf of \mathscr{B} -modules, then the following morphism of $\mathscr{B}(U)$ -modules is an isomorphism

$$\mathscr{M}(V) \otimes_{\mathscr{B}(V)} \mathscr{B}(U) \longrightarrow \mathscr{M}(U)$$
 (6)

$$a \otimes b \mapsto b \cdot a|_U \tag{7}$$

Proof. Such a morphism of $\mathscr{B}(U)$ -modules certainly exists. We know from Lemma 9 that there are isomorphisms of $\mathcal{O}_X(U)$ -modules

$$\mathscr{B}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \cong \mathscr{B}(U)$$
$$\mathscr{M}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \cong \mathscr{M}(U)$$

So at least we have an isomorphism of abelian groups

$$\mathcal{M}(V) \otimes_{\mathcal{B}(V)} \mathcal{B}(U) \cong \mathcal{M}(V) \otimes_{\mathcal{B}(V)} (\mathcal{B}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U))$$
$$\cong (\mathcal{M}(V) \otimes_{\mathcal{B}(V)} \mathcal{B}(V)) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U)$$
$$\cong \mathcal{M}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U)$$
$$\cong \mathcal{M}(U)$$

It is easily checked that this map agrees with (6), which is therefore an isomorphism.

Throughout the remainder of this section, $f: X \longrightarrow Y$ is a finite morphism and $\mathscr{A}(X) = f_*\mathcal{O}_X$ the corresponding commutative quasi-coherent sheaf of \mathcal{O}_Y -algebras.

Proposition 16. Let \mathscr{M} a quasi-coherent sheaf of $\mathscr{A}(X)$ -modules. There is a canonical quasicoherent sheaf of modules $\widetilde{\mathscr{M}}$ on X with the property that for every affine open subset $V \subseteq Y$ there is an isomorphism

$$\mu_V: \widetilde{\mathscr{M}}|_{f^{-1}V} \longrightarrow (\psi_V)_* \mathscr{M}(V)^{\sim}$$

where $\psi_V : Spec\mathcal{O}_X(f^{-1}V) \longrightarrow f^{-1}V$ is the canonical isomorphism.

Proof. Let \mathfrak{U} be the set of all open affine subsets of Y, so that $\mathfrak{U}' = \{f^{-1}V\}_{V \in \mathfrak{U}}$ is an indexed affine open cover of X. For each $V \in \mathfrak{U}$ we have the $\Gamma(V, \mathscr{A}(X)) = \mathcal{O}_X(f^{-1}V)$ -module $\mathscr{M}(V)$ and therefore a sheaf of modules $\mathscr{M}(V)^{\sim}$ on $X_V = Spec\mathcal{O}_X(f^{-1}V)$. Taking the direct image along ψ_V we have a sheaf of modules $\mathscr{M}_V = (\psi_V)_* \mathscr{M}(V)^{\sim}$ on $f^{-1}V$. We want to glue the sheaves \mathscr{M}_V .

Let $W \subseteq V$ be affine open subsets of Y and $\rho_{W,V} : X_W \longrightarrow X_V$ the canonical open immersion. Using Lemma 15 we have an isomorphism of sheaves of modules on X_W

$$\alpha_{W,V} : \rho_{W,V}^*(\mathscr{M}(V)^{\sim}) \cong (\mathscr{M}(V) \otimes_{\mathcal{O}_X(f^{-1}V)} \mathcal{O}_X(f^{-1}W))^{\sim} \cong \mathscr{M}(W)^{\sim}$$
$$[V, \dot{m/s}] \stackrel{.}{\otimes} \dot{b/t} \mapsto (b \cdot m|_W)/ts|_W$$

Let $X_{V,W}$ be the affine open subset $(\psi_V)^{-1}(f^{-1}W)$ of X_V , denote by $\rho'_{W,V}: X_W \longrightarrow X_{V,W}$ the isomorphism induced by $\rho_{W,V}$, and let $\psi'_{V,W}: X_{V,W} \longrightarrow f^{-1}W$ be the isomorphism induced by ψ_V . Notice that $\psi'_{V,W} = \psi_W \circ (\rho'_{W,V})^{-1}$. We have an isomorphism of sheaves of modules on $f^{-1}W$

$$\mathcal{M}_{W} = (\psi_{W})_{*}(\mathcal{M}(W)^{\sim}) \cong (\psi_{W})_{*}\rho_{W,V}^{*}(\mathcal{M}(V)^{\sim})$$
$$\cong (\psi_{W})_{*}(\rho_{W,V}')_{*}^{-1}(\mathcal{M}(V)^{\sim}|_{X_{V,W}})$$
$$= (\psi_{W}(\rho_{W,V}')^{-1})_{*}(\mathcal{M}(V)^{\sim}|_{X_{V,W}})$$
$$= (\psi_{V,W}')_{*}(\mathcal{M}(V)^{\sim}|_{X_{V,W}}) = (\psi_{V})_{*}(\mathcal{M}(V)^{\sim})|_{f^{-1}W}$$
$$= \mathcal{M}_{V}|_{f^{-1}W}$$

using (MRS,Proposition 107) and (MRS,Proposition 111). So for every affine open inclusion $W \subseteq V$ we have an isomorphism

$$\varphi_{V,W}: \mathscr{M}_V|_{f^{-1}W} \longrightarrow \mathscr{M}_W$$
$$\dot{m/s} \mapsto m|_W/s|_W$$

Clearly $\varphi_{U,U} = 1$ and if $Q \subseteq W \subseteq V$ are open affine subsets then $\varphi_{V,Q} = \varphi_{W,Q} \circ \varphi_{V,W}|_{f^{-1}Q}$. This means that for open affine $U, V \subseteq Y$ the isomorphisms $\varphi_{U,W}^{-1}\varphi_{V,W}$ for open affine $W \subseteq U \cap V$ glue together to give an isomorphism of sheaves of modules

$$\begin{split} \varphi_{V,U} : \mathscr{M}_V|_{f^{-1}U \cap f^{-1}V} &\longrightarrow \mathscr{M}_U|_{f^{-1}U \cap f^{-1}V} \\ \varphi_{U,W} \circ \varphi_{V,U}|_{f^{-1}W} = \varphi_{V,W} \text{ for affine open } W \subseteq U \cap V \end{split}$$

The notation is unambiguous, since this definition agrees with the earlier one if $U \subseteq V$. By construction these isomorphisms can be glued (GS,Proposition 1) to give a canonical sheaf of modules $\widetilde{\mathscr{M}}$ on X and a canonical isomorphism of sheaves of modules $\mu_V : \widetilde{\mathscr{M}}|_{f^{-1}V} \longrightarrow \mathscr{M}_V$ for every open affine $V \subseteq Y$. These isomorphisms are compatible in the following sense: we have $\mu_V = \varphi_{U,V} \circ \mu_U$ on $f^{-1}U \cap f^{-1}V$ for any open affine $U, V \subseteq Y$. It is clear that $\widetilde{\mathscr{M}}$ is quasi-coherent since the modules $\mathscr{M}(U)^{\sim}$ are.

Proposition 17. If $\beta : \mathscr{M} \longrightarrow \mathscr{N}$ is a morphism of quasi-coherent sheaves of $\mathscr{A}(X)$ -modules then there is a canonical morphism $\widetilde{\beta} : \widetilde{\mathscr{M}} \longrightarrow \widetilde{\mathscr{N}}$ of sheaves of modules on X and this defines an additive functor $\widetilde{-} : \mathfrak{Qco}(\mathscr{A}(X)) \longrightarrow \mathfrak{Mod}(X)$.

Proof. For every affine open $V \subseteq Y$, $\beta_V : \mathscr{M}(V) \longrightarrow \mathscr{N}(V)$ is a morphism of $\Gamma(V, \mathscr{A}(X)) = \mathcal{O}_X(f^{-1}V)$ -modules, and therefore gives a morphism $(\beta_V)^{\sim} : \mathscr{M}(V)^{\sim} \longrightarrow \mathscr{N}(V)^{\sim}$ of sheaves of

modules on X_V . Let $b_V : \mathscr{M}_V \longrightarrow \mathscr{N}_V$ be the morphism $(\psi_V)_*(\beta_V)^{\sim}$. One checks easily that for open affine $U, V \subseteq Y$ and $T = f^{-1}(U \cap V)$ the following diagram commutes

Therefore there is a unique morphism of sheaves of modules β^{\sim} with the property that for every affine open $V \subseteq X$ the following diagram commutes (GS,Proposition 6)

Using this unique property it is easy to check that $\tilde{-}$ defines an additive functor.

Proposition 18. The additive functor $\sim : \mathfrak{Qco}(\mathscr{A}(X)) \longrightarrow \mathfrak{Mod}(X)$ is exact.

Proof. Since $\mathfrak{Qco}(\mathscr{A}(X))$ is an abelian subcategory of $\mathfrak{Mod}(\mathscr{A}(X))$ (SOA, Corollary 20), a sequence is exact in the former category if and only if it is exact in the latter, which is if and only if it is exact as a sequence of sheaves of abelian groups. So suppose we have an exact sequence of quasi-coherent $\mathscr{A}(X)$ -modules

$$\mathscr{M}' \xrightarrow{\varphi} \mathscr{M} \xrightarrow{\psi} \mathscr{M}''$$

This is exact in $\mathfrak{Mod}(X)$, so using (MOS,Lemma 5) we have for every open affine $V \subseteq Y$ an exact sequence of $\mathcal{O}_X(f^{-1}V)$ -modules

$$\mathscr{M}'(V) \xrightarrow{\varphi_V} \mathscr{M}(V) \xrightarrow{\psi_V} \mathscr{M}''(V)$$

Since the functor $\tilde{-}: \mathcal{O}_X(f^{-1}V)\mathbf{Mod} \longrightarrow \mathfrak{Mod}(X_V)$ is exact, we have an exact sequence of sheaves of modules on X_V

$$\mathscr{M}'(V)^{\sim} \xrightarrow{\widetilde{\varphi_V}} \mathscr{M}(V)^{\sim} \xrightarrow{\widetilde{\psi_V}} \mathscr{M}''(V)^{\sim}$$

Applying $(\psi_V)_*$ and using the natural isomorphism $(\psi_V)_* \mathscr{M}(V)^{\sim} \cong \mathscr{M}^{\sim}|_{f^{-1}V}$ we see that the following sequence of sheaves of modules on $f^{-1}V$ is exact

$$\mathscr{M}^{\prime}{}^{\sim}|_{f^{-1}V} \xrightarrow{\widetilde{\varphi}|_{f^{-1}U}} \mathscr{M}^{\sim}|_{f^{-1}V} \xrightarrow{\widetilde{\psi}|_{f^{-1}V}} \mathscr{M}^{\prime\prime}{}^{\sim}|_{f^{-1}V}$$

It now follows from (MRS,Lemma 38) that the functor \sim is exact.

Definition 3. Let $f: X \longrightarrow Y$ be a finite morphism of noetherian schemes and \mathscr{F} a quasicoherent sheaf of modules on Y. Then $\mathscr{A}(X)$ coherent (H, II Ex.5.5) and therefore the sheaf of \mathcal{O}_Y -modules $\mathscr{H}om_{\mathcal{O}_Y}(\mathscr{A}(X), \mathscr{F})$ is quasi-coherent (MOS,Corollary 44). This sheaf becomes a quasi-coherent sheaf of $\mathscr{A}(X)$ -modules with the action $(a \cdot \phi)_W(t) = \phi_W(a|_{f^{-1}W}t)$. Therefore we have a quasi-coherent sheaf of modules on X

$$f!(\mathscr{F}) = \mathscr{H}om_{\mathcal{O}_Y}(\mathscr{A}(X), \mathscr{F})^{\sim}$$

This defines an additive functor $f!(-): \mathfrak{Qco}(Y) \longrightarrow \mathfrak{Qco}(X)$.

Remark 2. For any closed immersion $f : X \longrightarrow Y$ of schemes there is a right adjoint $f^! : \mathfrak{Mod}(Y) \longrightarrow \mathfrak{Mod}(X)$ to the direct image functor f_* (MRS, Proposition 97). In the special case where X, Y are noetherian we have just defined another functor $f! : \mathfrak{Qco}(Y) \longrightarrow \mathfrak{Qco}(X)$ and as the notation suggests, these two functors are naturally equivalent.