Relative Affine Schemes

Daniel Murfet

October 5, 2006

The fundamental $\text{Spec}(-)$ construction associates an affine scheme to any ring. In this note we study the relative version of this construction, which associates a scheme to any sheaf of algebras. The contents of this note are roughly EGA II §1.2, §1.3.

Contents

1 Affine Morphisms

2 The Spec Construction

3 The Sheaf Associated to a Module

1 Affine Morphisms

Definition 1. Let $f : X \rightarrow Y$ be a morphism of schemes. Then we say f is an affine morphism or that X is affine over Y, if there is a nonempty open cover $\{V_\alpha\}_{\alpha \in \Lambda}$ of Y by open affine subsets V_α such that for every α, $f^{-1}V_\alpha$ is also affine. If X is empty (in particular if Y is empty) then f is affine. Any morphism of affine schemes is affine. Any isomorphism is affine, and the affine property is stable under composition with isomorphisms on either end.

Example 1. Any closed immersion $X \rightarrow Y$ is an affine morphism by our solution to (Ex 4.3).

Remark 1. A scheme X affine over S is not necessarily affine (for example $X = S$) and if an affine scheme X is an S-scheme, it is not necessarily affine over S. However, if S is separated then an S-scheme X which is affine is affine over S.

Lemma 1. An affine morphism is quasi-compact and separated. Any finite morphism is affine.

Proof. Let $f : X \rightarrow Y$ be affine. Then f is separated since any morphism of affine schemes is separated, and the separatedness condition is local. Since any affine scheme is quasi-compact it is clear that f is quasi-compact. It follows from (Ex. 3.4) that a finite morphism is an affine morphism of a very special type.

The next two result show that being affine is a property local on the base:

Lemma 2. If $f : X \rightarrow Y$ is affine and $V \subseteq Y$ is open then $f^{-1}V \rightarrow V$ is also affine.

Proof. Let $\{Y_\alpha\}_{\alpha \in \Lambda}$ be a nonempty affine open cover of Y such that $f^{-1}Y_\alpha$ is affine for every $\alpha \in \Lambda$. For every point $y \in V$ find α such that $y \in V \cap Y_\alpha$. If $Y_\alpha \cong \text{Spec}B_\alpha$ then there is $g \in B_\alpha$ with $y \in D(g) \subseteq V \cap Y_\alpha$. If $f^{-1}Y_\alpha \cong \text{Spec}A_\alpha$ and $\varphi : B_\alpha \rightarrow A_\alpha$ corresponds to $f^{-1}Y_\alpha \rightarrow Y_\alpha$ then $D(\varphi(g)) = f^{-1}D(g)$ is an affine open subset of $f^{-1}V$.

Lemma 3. If $f : X \rightarrow Y$ is a morphism of schemes and $\{Y_\alpha\}_{\alpha \in \Lambda}$ is a nonempty open cover of Y such that $f^{-1}Y_\alpha \rightarrow Y_\alpha$ is affine for every α, then f is affine.

Proof. We can take a cover of Y consisting of affine open sets contained in some Y_α whose inverse image is affine. This shows that f is affine.
Proposition 4. A morphism \(f : X \to Y \) is affine if and only if for every open affine subset \(U \subseteq Y \) the open subset \(f^{-1}U \) is also affine.

Proof. The condition is clearly sufficient, so suppose that \(f \) is affine. Using Lemma 2 we can reduce to the case where \(Y = \text{Spec} A \) is affine and we only have to show that \(X \) is affine. Cover \(Y \) with open affines \(Y_\alpha = \text{Spec} B_\alpha \) with \(f^{-1}Y_\alpha \) affine. If \(x \in Y_\alpha \) then there is \(g \in A \) with \(x \in D(g) \subseteq Y_\alpha \), and since \(D(g) \) corresponds to \(D(h) \) for some \(h \in B_\alpha \) the open set \(f^{-1}D(g) \) is affine. Therefore we can assume \(Y_\alpha = D(g_\alpha) \) and further that there is only a finite number \(D(g_1), \ldots, D(g_n) \) with the \(g_i \) generating the unit ideal of \(A \). Let \(t_i \) be the image of \(g_i \) under the canonical ring morphism \(A \to \mathcal{O}_X(X) \). Then the \(t_i \) generate the unit ideal of \(\mathcal{O}_X(X) \) and the open sets \(X_{t_i} = f^{-1}D(g_i) \) cover \(X \), so by Ex. 2.17 the scheme \(X \) is affine.

Proposition 5. Affine morphisms are stable under pullback. That is, suppose we have a pullback diagram

\[
\begin{array}{ccc}
X & \xrightarrow{g} & Y \\
\downarrow{p} & & \downarrow{q} \\
G & \xrightarrow{f} & H
\end{array}
\]

If \(f \) is an affine morphism then so is \(g \).

Proof. By Lemma 3 it suffices to find an open neighborhood \(V \) of each point \(y \in Y \) such that \(g^{-1}V \to V \) is affine. Given \(y \in Y \) let \(S \) be an affine open neighborhood of \(q(y) \) and set \(U = f^{-1}S, V = q^{-1}S \). By assumption \(U \) is affine and \(g^{-1}V = p^{-1}U \) so we have a pullback diagram

\[
\begin{array}{ccc}
g^{-1}V & \xrightarrow{g^V} & V \\
\downarrow & & \downarrow \\
U & \to & S
\end{array}
\]

If \(W \subseteq V \) is affine then \(g^V W = U \times_S W \) is a pullback of affine schemes and therefore affine. Therefore \(g^V \) is an affine morphism, as required.

Lemma 6. Let \(X \) be a scheme and \(\mathcal{L} \) an invertible sheaf with global section \(f \in \Gamma(X, \mathcal{L}) \). Then the inclusion \(X_f \to X \) is affine.

Proof. The open set \(X_f \) is defined in (MOS, Lemma 29), and it follows from Remark (MOS, Remark 2) that we can find an affine open cover of \(X \) whose intersections with \(X_f \) are all affine. This shows that the inclusion \(X_f \to X \) is an affine morphism of schemes.

If \(X \) is a scheme over \(S \) with structural morphism \(f : X \to S \) then we denote by \(\mathcal{A}(X) \) the canonical \(\mathcal{O}_S \)-algebra \(f_*\mathcal{O}_X \). When there is no chance of confusion, if \(X \) is an \(S \)-scheme affine over \(S \) then it follows from Lemma 1 and (5.18) that \(\mathcal{A}(X) \) is a quasi-coherent sheaf of \(\mathcal{O}_S \)-algebras. If \(X, Y \) are two schemes over \(S \) with structural morphisms \(f, g \) then a morphism \(h : X \to Y \) of schemes over \(S \) consists of a continuous map \(\psi : X \to Y \) and a morphism of sheaves of rings \(\theta : \mathcal{O}_Y \to h_*\mathcal{O}_X \). The composite \(g_*\mathcal{O}_Y \to g_*h_*\mathcal{O}_X = f_*\mathcal{O}_X \) is a morphism of \(\mathcal{O}_S \)-algebras \(\mathcal{A}(h) : \mathcal{A}(Y) \to \mathcal{A}(X) \). This defines a contravariant functor

\[
\mathcal{A}(-) : \text{Sch}/S \to \text{Alg}(S)
\]

from the category of schemes over \(S \) to the category of sheaves of commutative \(\mathcal{O}_S \)-algebras.
We begin with the case where S is a ringed space $g:Y\to X$, where X is a scheme. Then by (Ex 2.4) we have a bijection $\text{Hom}_S(X,Y) \cong \text{Hom}_{\mathfrak{Alg}(S)}(\mathfrak{a}(Y),\mathfrak{a}(X))$.

Proof. We begin with the case where $Y = \text{Spec} A$ and $S = \text{Spec} B$ are affine for a B-algebra A. We know from (Ex 2.4) that there is a bijection $\text{Hom}_S(X,Y) \cong \text{Hom}_B(A,\mathcal{O}_X(X))$. Let $f:Y\to S$ be the structural morphism, so that $\mathfrak{a}(Y) = f_*\mathcal{O}_Y$. Then by (5.2) we have $\mathfrak{a}(Y) \cong \tilde{A}$ as sheaves of algebras (see our Modules over a Ringed Space notes for the properties of the functor $\sim: \mathcal{B}\text{Alg} \to \mathfrak{Alg}(S)$). Therefore the adjunction $\sim \dashv \Gamma$ (these are functors between $\mathcal{B}\text{Alg}$ and $\mathfrak{Alg}(S)$) gives us a bijection

$$\text{Hom}_{\mathfrak{Alg}(S)}(\mathfrak{a}(Y),\mathfrak{a}(X)) \cong \text{Hom}_{\mathfrak{Alg}(S)}(\tilde{A},\mathfrak{a}(X)) \cong \text{Hom}_B(A,\mathcal{O}_X(X))$$

It is not difficult to check that this has the desired form, so we have the desired bijection in this special case. One extends easily to the case where $Y \cong \text{Spec} A$ and $S \cong \text{Spec} B$.

In the general case, cover S with open affines S_α with $g^{-1}S_\alpha$ an affine open subset of Y (by Proposition 4 we may as well assume $\{S_\alpha\}_{\alpha \in \Lambda}$ is the set of all affine subsets of S). Let $f_\alpha:f^{-1}S_\alpha \to S_\alpha, g_\alpha : g^{-1}S_\alpha \to S_\alpha$ be induced by f,g respectively. Then by the special case already treated, the following maps are bijections

$$\text{Hom}_{S_\alpha}(f^{-1}S_\alpha,g^{-1}S_\alpha) \to \text{Hom}_{\mathfrak{Alg}(S_\alpha)}(\mathfrak{a}(Y)|_{S_\alpha},\mathfrak{a}(X)|_{S_\alpha})$$

(1)

Suppose that $h,h': X \to Y$ are morphisms of schemes over S with $\mathfrak{a}(h) = \mathfrak{a}(h')$. Then $\mathfrak{a}(h)|_{S_\alpha} = \mathfrak{a}(h')|_{S_\alpha}$ and therefore $h_\alpha = h'_\alpha$. Since the $g^{-1}S_\alpha$ cover Y it follows that $h = h'$. This shows that the map $\text{Hom}_S(X,Y) \to \text{Hom}_{\mathfrak{Alg}(S)}(\mathfrak{a}(Y),\mathfrak{a}(X))$ is injective. To see that it is surjective, let $\phi : \mathfrak{a}(Y) \to \mathfrak{a}(X)$ be given, and let $h_\alpha : f^{-1}S_\alpha \to g^{-1}S_\alpha$ correspond to $\phi|_{S_\alpha}$ via (1). Since every affine open subset of S occurs among the S_α, we can use injectivity of (1) to see that the h_α can be glued to give $h : X \to Y$ with $\mathfrak{a}(h) = \phi$, which completes the proof. □

Let \mathfrak{Sch}/A denote the full subcategory of \mathfrak{Sch}/S consisting of all schemes affine over S. Then there is an induced functor $\mathfrak{a}(\cdot) : \mathfrak{Sch}/A \to \mathfrak{Qco}\mathfrak{Alg}(S)$ into the full subcategory of all quasi-coherent sheaves of commutative \mathcal{O}_S-algebras.
Corollary 8. The functor $\mathcal{A}(-) : \text{Sch}/S \to \text{QcoAlg}(S)$ is fully faithful. In particular, if X,Y are S-schemes affine over S then an S-morphism $h : X \to Y$ is an isomorphism if and only if $\mathcal{A}(h) : \mathcal{A}(Y) \to \mathcal{A}(X)$ is an isomorphism.

2 The Spec Construction

In this section X is a scheme and \mathcal{B} is a quasi-coherent sheaf of commutative \mathcal{O}_X-algebras. Then for an affine open subset $U \subseteq X$ the scheme $\text{Spec} \mathcal{B}(U)$ is canonically a scheme over U, via the morphism $\pi_U : \text{Spec} \mathcal{B}(U) \to \text{Spec} \mathcal{O}_X(U) \cong U$. It is clear that π_U is affine, and given another affine open set V we denote $\pi_U^{-1}(U \cap V)$ by $X_{U,V}$. If $U \subseteq V$ are affine open subsets, then let $\rho_{U,V} : \text{Spec} \mathcal{B}(U) \to \text{Spec} \mathcal{B}(V)$ be induced by the restriction $\mathcal{B}(V) \to \mathcal{B}(U)$. Our aim in this section is to glue the schemes $\text{Spec} \mathcal{B}(U)$ to define a “canonical” scheme affine over X associated to \mathcal{B}. We begin with an important technical Lemma (which will also be used in our construction of Proj).

Lemma 9. Let X be a scheme and $U \subseteq V$ affine open subsets. If \mathcal{F} is a quasi-coherent sheaf of modules on X then the following morphism of $\mathcal{O}_X(U)$-modules is an isomorphism

$$\mathcal{F}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \to \mathcal{F}(U)$$

$$a \otimes b \mapsto b \cdot a|_U$$

Proof. We reduce immediately to the case where $X = V$, and then to the case where $X = \text{Spec} A$ is actually an affine scheme. So there is a ring B and an open immersion $i : Y = \text{Spec} B \to X$ whose open image in X is U. Factor $U \to X$ as an isomorphism $j : U \cong Y$ followed by i. Let \mathcal{F} be a quasi-coherent sheaf of modules on X and induce a morphism of $\mathcal{O}_X(U)$-modules $\mathcal{F}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_X(U) \to \mathcal{F}(U)$ with $a \otimes b \mapsto b \cdot a|_U$. We have to show this is an isomorphism. Using various isomorphisms defined in our Section 2.5 notes we have an isomorphism of abelian groups

$$\mathcal{F}(X) \otimes_{\mathcal{O}_X(X)} \mathcal{O}_X(U) \cong \mathcal{F}(X) \otimes_{A} B \cong (\mathcal{F}(X) \otimes_{A} B)(Y)$$

$$\cong i^* \mathcal{F}(Y) \cong i^* \mathcal{F}(Y)$$

$$\cong (j_* \mathcal{F}|_U)(Y) \cong \mathcal{F}(U)$$

Using the explicit calculations of these isomorphisms, one can check that it sends $a \otimes b$ to $b \cdot a|_U$, which proves our claim.

Proposition 10. Let X be a scheme and $U \subseteq V$ affine open subsets. If \mathcal{B} is a quasi-coherent sheaf of commutative \mathcal{O}_X-algebras then the following diagram is a pullback

$$\begin{array}{ccc}
\text{Spec} \mathcal{B}(U) & \xrightarrow{\rho_{U,V}} & \text{Spec} \mathcal{B}(V) \\
\pi_U \downarrow & & \downarrow \pi_V \\
U & \to & V
\end{array}$$

In particular $\rho_{U,V}$ is an open immersion inducing an isomorphism of $\text{Spec} \mathcal{B}(U)$ with $\pi_V^{-1} U$.

Proof. It follows from Lemma 9 that the following diagram is a pushout of rings

$$\begin{array}{ccc}
\mathcal{O}_X(V) & \to & \mathcal{O}_X(U) \\
\downarrow & & \downarrow \\
\mathcal{B}(V) & \to & \mathcal{B}(U)
\end{array}$$

That is, the morphism $\mathcal{B}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \to \mathcal{B}(U)$ given by $a \otimes b \mapsto b \cdot a|_U$ is an isomorphism of $\mathcal{O}_X(V)$-algebras (and $\mathcal{O}_X(U)$-algebras). Applying Spec gives the desired pullback. Since open
immersions are stable under pullback, we see that $\rho_{U,V}$ is an open immersion. Since $\pi^{-1}_V U$ is another candidate for the pullback $U \times_V \text{Spec} \mathcal{B}(V)$ it follows that the open image of $\rho_{U,V}$ is $\pi^{-1}_V U$.

For open affine $U \subseteq X$ we denote by $\overline{\mathcal{B}(U)}$ the sheaf of algebras on U obtained by taking the direct image along $\text{Spec} \mathcal{O}_X(U) \cong U$ of the sheaf of algebras on $\text{Spec} \mathcal{O}_X(U)$ corresponding to the $\mathcal{O}_X(U)$-algebra $\mathcal{B}(U)$. There is an isomorphism of sheaves of algebras on U

$$\delta_U : \mathcal{A}(\text{Spec} \mathcal{B}(U)) \cong \overline{\mathcal{B}(U)}$$

defined as the direct image of the isomorphism of sheaves on $\text{Spec} \mathcal{O}_X(U)$ obtained from the algebra analogue of (5.2d) (see our Modules over a Ringed Space notes). The sheaves of algebras are compatible with restriction in the following sense

Lemma 11. Let X be a scheme, $W \subseteq U$ affine open subsets and \mathcal{B} a quasi-coherent sheaf of commutative \mathcal{O}_X-algebras. There is a canonical isomorphism of sheaves of algebras on W

$$\epsilon_{W,U} : \overline{\mathcal{B}(U)}|_W \rightarrow \overline{\mathcal{B}(W)}$$

$$a/s \mapsto a|_W/s|_W$$

Proof. We have the following commutative diagram

$$\begin{array}{ccc}
\text{Spec} \mathcal{O}_X(W) & \xrightarrow{j} & \text{Spec} \mathcal{O}_X(U) \\
\downarrow{k} & & \downarrow{i} \\
W & \xrightarrow{\iota} & U
\end{array}$$

Since j is an open immersion it induces an isomorphism $\text{Spec} \mathcal{O}_X(W) \cong \text{Im} j$. Let $g : \text{Im} j \rightarrow \text{Spec} \mathcal{O}_X(W)$ be the inverse of this isomorphism, and let $s : \text{Im} j \rightarrow W$ be the morphism induced by l. Let $\epsilon_{W,U}$ be the following isomorphism of sheaves of algebras (using some results from our Modules over Ringed space notes)

$$\epsilon_{W,U} : \overline{\mathcal{B}(U)}|_W = (g_* (\overline{\mathcal{B}(U)}|_{\text{Im} j})) = k_* (s_* (\overline{\mathcal{B}(U)}|_{\text{Im} j})) \cong k_* (\mathcal{B}(U) \otimes_{\mathcal{O}_X(U)} \mathcal{O}_X(W)) \cong k_* \mathcal{B}(W) = \overline{\mathcal{B}(W)}$$

Suppose we are given an open set $T \subseteq W$, $a \in \mathcal{B}(U)$ and $s \in \mathcal{O}_X(U)$ with $l^{-1} T \subseteq D(s)$. Then using the explicit forms of the above isomorphisms, one checks that the section $a/s \in \overline{\mathcal{B}(U)}(T)$ maps to the section $a|_W/s|_W$ of $\overline{\mathcal{B}(W)}(T)$.

Since \mathcal{B} is quasi-coherent, there is an isomorphism $\mu_U : \overline{\mathcal{B}(U)} \cong \mathcal{B}|_U$ of sheaves of algebras on U. Together with δ_U this gives an isomorphism of sheaves of algebras on U

$$\beta_U = \mu_U \delta_U : \mathcal{A}(\text{Spec} \mathcal{B}(U)) \cong \overline{\mathcal{B}(U)} \cong \mathcal{B}|_U$$

In particular for affine $W \subseteq U$ and $b \in \mathcal{B}(U)$ we have the following action of β_U:

$$(\beta_U)_W : \mathcal{O}_{\text{Spec} \mathcal{B}(U)}(X_{U,W}) \rightarrow \mathcal{B}(W)$$

$$b/1 \mapsto b|_W$$

(2)

The schemes $X_{U,V}$ and $X_{V,U}$ are both affine over $U \cap V$ by Lemma 2. And on $U \cap V$ we have an isomorphism of sheaves of algebras

$$\mathcal{A}(X_{U,V}) = \mathcal{A}(\text{Spec} \mathcal{B}(U))|_{U \cap V} \cong \mathcal{B}|_{U \cap V} \cong \mathcal{A}(\text{Spec} \mathcal{B}(V))|_{U \cap V} = \mathcal{A}(X_{V,U})$$
Therefore by Corollary 8 there is an isomorphism $\theta_{U,V} : X_{U,V} \longrightarrow X_{V,U}$ of schemes over $U \cap V$ with $\mathcal{A}(\theta_{U,V}) = (\beta_U)^{-1}|_{U \cap V}(\beta_U)|_{U \cap V}$. If $U \subseteq V$ then $X_{U,V} = Spec(B(U))$ and we claim that the following diagram commutes

$$
\begin{align*}
Spec(B(U)) & \xrightarrow{\theta_{U,V}} X_{V,U} \\
\rho_{U,V} & \downarrow \quad \downarrow \\
Spec(B(V)) &
\end{align*}
$$

The two legs agree on global sections of $Spec(B(V))$ by (2), and they are therefore equal. It is clear that $\theta_{U,V} = \theta_{V,U}^{-1}$ and for affine opens $U, V, W \subseteq X$ we have $\theta_{U,V}(X_{U,V} \cap X_{U,W}) = X_{V,U} \cap X_{V,W}$ since $\theta_{U,V}$ is a morphism of schemes over $U \cap V$. So to glue the $Spec(B(U))$ it only remains to check that $\theta_{U,W} = \theta_{V,W} \circ \theta_{U,V}$ on $X_{U,V} \cap X_{U.W}$. But these are all morphisms of schemes affine over $U \cap V \cap W$, so by using the injectivity of $\mathcal{A}(-)$ the verification is straightforward.

Thus our family of schemes and patches satisfies the conditions of the Glueing Lemma (Ex. 2.12), and we have a scheme $Spec(\mathcal{A})$ together with open immersions $\psi_U : Spec(B(U)) \longrightarrow Spec(\mathcal{A})$ for each affine open subset $U \subseteq X$. These morphisms have the following properties:

(a) The open sets $Im\psi_U$ cover $Spec(\mathcal{A})$.

(b) For affine open subsets $U, V \subseteq X$ we have $\psi_U(X_{U,V}) = Im\psi_U \cap Im\psi_V$ and $\psi_V|_{X_{V,U}} \theta_{U,V} = \psi_U|_{X_{U,V}}$.

In particular for affine open subsets $U \subseteq V$ we have a commutative diagram

$$
\begin{align*}
Spec(\mathcal{A}(V)) & \xrightarrow{\psi_V} Spec(\mathcal{A}) \\
\rho_{U,V} & \downarrow \quad \downarrow \\
Spec(B(U)) &
\end{align*}
$$

The open sets $Im\psi_U$ are a nonempty open cover of $Spec(\mathcal{A})$, and it is a consequence of (b) above and the fact that $\theta_{U,V}$ is a morphism of schemes over $U \cap V$ that the morphisms $Im\psi_U \cong Spec(B(U)) \longrightarrow U \longrightarrow X$ can be glued (that is, for open affines U, V the corresponding morphisms agree on $Im\psi_U \cap Im\psi_V$). Therefore there is a unique morphism of schemes $\pi : Spec(\mathcal{A}) \longrightarrow X$ with the property that for every affine open subset $U \subseteq X$ the following diagram commutes

$$
\begin{align*}
Spec(\mathcal{A}(U)) & \xrightarrow{\psi_U} Spec(\mathcal{A}) \\
\pi_U & \downarrow \quad \downarrow \pi \\
U & \longrightarrow X
\end{align*}
$$

In fact it is easy to see that $\pi^{-1}U = Im\psi_U$, the above diagram is also a pullback. Moreover π is affine by Lemma 3 since all the morphisms π_U are affine.

Our next task is to show that $\mathcal{A}(Spec(\mathcal{A})) \cong \mathcal{A}$. For open affine $U \subseteq X$, let $j_U : Im\psi_U \longrightarrow U$ be the morphism induced by π and $\psi_U : Spec(\mathcal{A}(U)) \cong Im\psi_U$ the isomorphism induced by ψ_U, so that $j_U \psi_U = \pi_U$. Then there is an isomorphism of sheaves of algebras on U

$$
\omega_U : \mathcal{A}(Spec(\mathcal{A}))|_U = (j_U)_* (O_{Spec(\mathcal{A})}|_{Im\psi_U}) \\
\cong (j_U)_* ((\psi_U)_* O_{Spec(B(U))}) \\
= (\pi_U)_* O_{Spec(\mathcal{A}(U))} \\
= \mathcal{A}(Spec(\mathcal{A}(U)))
$$
For open affines \(W \subseteq U \) let \(\pi_U|_{X_{U,W}} : X_{U,W} \to W \) be induced from \(\pi_U \). Then there is an isomorphism of sheaves of algebras on \(W \)

\[
\zeta_{W,U} : \mathcal{A}(\text{Spec} \mathcal{B}(U))|_W = (\pi_U|_{X_{U,W}})_*(\mathcal{O}_{\text{Spec} \mathcal{B}(U)}|_{X_{U,W}}) \\
\cong (\pi_U|_{X_{U,W}})_*(\theta_{W,U})_*\mathcal{O}_{\text{Spec} \mathcal{B}(W)}) \\
= \mathcal{A}(\text{Spec} \mathcal{B}(W))
\]

Despite the complicated notation, if one draws a picture it is straightforward to check that the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{A}(\text{Spec} \mathcal{B}(U))|_W & \xrightarrow{\omega_{W|U}} & \mathcal{A}(\text{Spec} \mathcal{B}(U))|_W \\
\downarrow{\zeta_{W,U}} & & \downarrow{\zeta_{W,U}} \\
\mathcal{A}(\text{Spec} \mathcal{B}(W)) & \xrightarrow{\omega_W} & \mathcal{A}(\text{Spec} \mathcal{B}(W))
\end{array}
\] (5)

We claim that the isomorphism \(\zeta_{W,U} \) is compatible with the isomorphism \(\varepsilon_{W,U} \) defined earlier.

Lemma 12. Let \(X \) be a scheme, \(W \subseteq U \) affine open subsets and \(\mathcal{B} \) a quasi-coherent sheaf of commutative \(\mathcal{O}_X \)-algebras. Then the following diagram of sheaves of algebras on \(W \) commutes

\[
\begin{array}{ccc}
\mathcal{A}(\text{Spec} \mathcal{B}(U))|_W & \xrightarrow{\delta_{U|W}} & \mathcal{B}(U)|_W \\
\downarrow{\zeta_{W,U}} & & \downarrow{\varepsilon_{W,U}} \\
\mathcal{A}(\text{Spec} \mathcal{B}(W)) & \xrightarrow{\delta_W} & \mathcal{B}(W) \\
& & \xrightarrow{\mu_W} \mathcal{B}|_W
\end{array}
\]

Proof. First we check that the square on the left commutes by beginning at \(\mathcal{B}(U)|_W \) and showing at the two morphisms to \(\mathcal{A}(\text{Spec} \mathcal{B}(W)) \) agree. For this, we need only check they agree on sections of the form \(a/s \), and this is straightforward. We can use the same trick to check commutativity of the triangle on the right. \(\square \)

For an affine open subset \(U \subseteq X \) let \(\phi_U : \mathcal{A}(\text{Spec} \mathcal{B}(|U|) \to \mathcal{B}|_U \) be the isomorphism of sheaves of algebras on \(U \) given by the composite \(\phi_U = \beta_U \omega_U \). Lemma 12 and (5) show that \(\phi_U|_W = \phi_W \) for open affines \(W \subseteq U \), so together the \(\phi_U \) give an isomorphism of sheaves of algebras \(\phi : \mathcal{A}(\text{Spec} \mathcal{B}) \to \mathcal{B} \) with \(\phi|_U = \phi_U \).

In summary:

Definition 2. Let \(X \) be a scheme and \(\mathcal{B} \) a commutative quasi-coherent sheaf of \(\mathcal{O}_X \)-algebras. Then we can canonically associate to \(\mathcal{B} \) a scheme \(\pi : \text{Spec} \mathcal{B} \to X \) affine over \(X \). For every open affine subset \(U \subseteq X \) there is an open immersion \(\psi_U : \text{Spec} \mathcal{B}(U) \to \text{Spec} \mathcal{B} \) with the property that the diagram (4) is a pullback and the diagram (3) commutes for any open affines \(U \subseteq V \). There is also a canonical isomorphism of sheaves of algebras \(\mathcal{A}(\text{Spec} \mathcal{B}) \cong \mathcal{B} \).
Corollary 13. Let S be a scheme. The functor $\mathcal{A}(-) : \mathbf{Sch}/_A S \rightarrow \mathbf{Qco}(S)$ is an equivalence. In particular schemes X, Y affine over S are S-isomorphic if and only if $\mathcal{A}(X) \cong \mathcal{A}(Y)$.

Proof. We know from Corollary 8 that the functor is fully faithful, and the above construction together with the fact that $\mathcal{A}(\text{Spec}(B)) \cong B$ shows that it is representative. Therefore it is an equivalence.

If A is a commutative ring, then the composite $\Gamma(-)\mathcal{A}(-)$ gives an equivalence $\mathbf{Sch}/_A \text{Spec}A \rightarrow A\mathbf{Alg}$. Any quasi-coherent sheaf of commutative algebras on $\text{Spec}A$ is isomorphic to B for some commutative A-algebra B. The morphism $\text{Spec}B \rightarrow \text{Spec}A$ is affine and $\mathcal{A}(\text{Spec}B) \cong \tilde{B}$, so it follows that $\text{Spec}(\tilde{B}) \cong \text{Spec}B$ as schemes over A. In particular any scheme X affine over $\text{Spec}A$ is A-isomorphic to $\text{Spec}B$ for some commutative A-algebra B. Therefore

Lemma 14. Let S be an affine scheme. Then an S-scheme X is affine over S if and only if X is an affine scheme.

3 The Sheaf Associated to a Module

Let X be a scheme and \mathcal{B} a commutative quasi-coherent sheaf of \mathcal{O}_X-algebras. Let $\mathbf{Mod}(\mathcal{B})$ denote the category of all sheaves of \mathcal{B}-modules and $\mathbf{Qco}(\mathcal{B})$ the full subcategory of quasi-coherent sheaves of \mathcal{B}-modules (SOA, Definition 1). Note that these are precisely the sheaves of \mathcal{B}-modules that are quasi-coherent as sheaves of \mathcal{O}_X-modules, so in this section there is no harm in simply calling these sheaves “quasi-coherent” (SOA, Proposition 19). In this section we define for every finite morphism $f : X \rightarrow Y$ a functor

$$\sim : \mathbf{Qco}(\mathcal{A}(X)) \rightarrow \mathbf{Mod}(X)$$

which is the relative version of the functor $A\mathbf{Mod} \rightarrow \mathbf{Mod}(\text{Spec}A)$ for a ring A. Note that $\mathbf{Qco}(\mathcal{A}(X))$ is an abelian category (SOA, Corollary 20).

Lemma 15. Let X be a scheme and $U \subseteq V$ affine open subsets. If \mathcal{B} is a commutative quasi-coherent sheaf of \mathcal{O}_X-algebras, and \mathcal{M} a quasi-coherent sheaf of \mathcal{B}-modules, then the following morphism of $\mathcal{B}(U)$-modules is an isomorphism

$$\mathcal{M}(V) \otimes_{\mathcal{B}(V)} \mathcal{B}(U) \rightarrow \mathcal{M}(U)$$

$$a \otimes b \mapsto b \cdot a|_U$$

(6) (7)

Proof. Such a morphism of $\mathcal{B}(U)$-modules certainly exists. We know from Lemma 9 that there are isomorphisms of $\mathcal{O}_X(U)$-modules

$$\mathcal{B}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \cong \mathcal{B}(U)$$

$$\mathcal{M}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U) \cong \mathcal{M}(U)$$

So at least we have an isomorphism of abelian groups

$$\mathcal{M}(V) \otimes_{\mathcal{B}(V)} \mathcal{B}(U) \cong \mathcal{M}(V) \otimes_{\mathcal{B}(V)} (\mathcal{B}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U))$$

$$\cong (\mathcal{M}(V) \otimes_{\mathcal{B}(V)} \mathcal{B}(V)) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U)$$

$$\cong \mathcal{M}(V) \otimes_{\mathcal{O}_X(V)} \mathcal{O}_X(U)$$

$$\cong \mathcal{M}(U)$$

It is easily checked that this map agrees with (6), which is therefore an isomorphism.

Throughout the remainder of this section, $f : X \rightarrow Y$ is a finite morphism and $\mathcal{A}(X) = f_*\mathcal{O}_X$ the corresponding commutative quasi-coherent sheaf of \mathcal{O}_Y-algebras.
Proposition 16. Let \mathcal{M} a quasi-coherent sheaf of $\mathcal{A}(X)$-modules. There is a canonical quasi-coherent sheaf of modules \mathcal{M} on X with the property that for every affine open subset $V \subseteq Y$ there is an isomorphism

$$\mu_V : \mathcal{M}|_{f^{-1}V} \longrightarrow (\psi_V)_*(\mathcal{M}(V)^\sim)$$

where $\psi_V : Spec\mathcal{O}_X(f^{-1}V) \longrightarrow f^{-1}V$ is the canonical isomorphism.

Proof. Let \mathcal{U} be the set of all affine subsets of Y, so that $\mathcal{U}' = \{f^{-1}V\}_{V \in \mathcal{U}}$ is an indexed affine open cover of X. For each $V \in \mathcal{U}$ we have the $\Gamma(V, \mathcal{A}(X)) = \mathcal{O}_X(f^{-1}V)$-module $\mathcal{M}(V)$ and therefore a sheaf of modules $\mathcal{M}(V)$ on $X = Spec\mathcal{O}_X(f^{-1}V)$. Taking the direct image along ψ_V we have a sheaf of modules $\mathcal{M}_V = (\psi_V)_*(\mathcal{M}(V)^\sim)$ on $f^{-1}V$. We want to glue the sheaves \mathcal{M}_V.

Let $W \subseteq V$ be affine open subsets of Y and $\rho_{W,V} : X_W \longrightarrow X_V$ the canonical open immersion. Using Lemma 15 we have an isomorphism of sheaves of modules on X_W

$$\alpha_{W,V} : \rho_{W,V}^*(\mathcal{M}(V)^\sim) \cong (\mathcal{M}(V) \otimes_{\mathcal{O}_X(f^{-1}V)} \mathcal{O}_X(f^{-1}W))^\sim \cong \mathcal{M}(W)^\sim$$

Let $X_{V,W}$ be the affine open subset $(\psi_V)^{-1}(f^{-1}W)$ of X_V, denote by $\rho_{W,V} : X_W \longrightarrow X_{V,W}$ the isomorphism induced by $\rho_{W,V}$, and let $\psi_{V,W} : X_{V,W} \longrightarrow f^{-1}W$ be the isomorphism induced by ψ_V. Notice that $\psi_{V,W} = \psi_W \circ (\rho_{W,V})^{-1}$. We have an isomorphism of sheaves of modules on $f^{-1}W$

$$\mathcal{M}_W = (\psi_W)_*(\mathcal{M}(W)^\sim) \cong (\psi_W)_*\rho_{W,V}^*(\mathcal{M}(V)^\sim)$$

$$\cong (\psi_W)_*(\rho_{W,V}^*(\mathcal{M}(V)^\sim)|_{X_{V,W}})$$

$$= (\psi_W)_*(\rho_{W,V}^*(\mathcal{M}(V)^\sim)|_{X_{V,W}}|_{f^{-1}W})$$

$$= (\mathcal{M}_V|_{f^{-1}W})$$

using (MRS, Proposition 107) and (MRS, Proposition 111). So for every affine open inclusion $W \subseteq V$ we have an isomorphism

$$\varphi_{V,W} : \mathcal{M}_W|_{f^{-1}W} \longrightarrow \mathcal{M}_W$$

$$m/s \mapsto m|_W/s|_W$$

Clearly $\varphi_{U,U} = 1$ and if $Q \subseteq W \subseteq V$ are open affine subsets then $\varphi_{V,Q} = \varphi_{W,Q} \circ \varphi_{V,W}|_{f^{-1}Q}$. This means that for open affine $U, V \subseteq Y$ the isomorphisms $\varphi_{V,W}^{-1} \varphi_{U,W}$ for open affine $W \subseteq U \cap V$ glue together to give an isomorphism of sheaves of modules

$$\varphi_{V,U} : \mathcal{M}_V|_{f^{-1}U \cap f^{-1}V} \longrightarrow \mathcal{M}_U|_{f^{-1}U \cap f^{-1}V}$$

$$\varphi_{U,W} \circ \varphi_{V,U}|_{f^{-1}W} = \varphi_{V,W}$$ for affine open $W \subseteq U \cap V$

The notation is unambiguous, since this definition agrees with the earlier one if $U \subseteq V$. By construction these isomorphisms can be glued (GS, Proposition 1) to give a canonical sheaf of modules \mathcal{M} on X and a canonical isomorphism of sheaves of modules $\mu_V : \mathcal{M}|_{f^{-1}V} \longrightarrow \mathcal{M}_V$ for every open affine $V \subseteq Y$. These isomorphisms are compatible in the following sense: we have $\mu_V = \varphi_{U,V} \circ \mu_U$ on $f^{-1}U \cap f^{-1}V$ for any open affine $U, V \subseteq Y$. It is clear that \mathcal{M} is quasi-coherent since the modules $(\mathcal{M}(U)^\sim)$ are.

Proposition 17. If $\beta : \mathcal{M} \longrightarrow \mathcal{N}$ is a morphism of quasi-coherent sheaves of $\mathcal{A}(X)$-modules then there is a canonical morphism $\tilde{\beta} : \mathcal{M} \longrightarrow \mathcal{N}$ of sheaves of modules on X and this defines an additive functor $\mathcal{O}(\mathcal{Q}(\mathcal{A}(X))) \longrightarrow Mod(\mathcal{X})$.

Proof. For every affine open $V \subseteq Y$, $\beta_V : \mathcal{M}(V) \longrightarrow \mathcal{N}(V)$ is a morphism of $\Gamma(V, \mathcal{A}(X)) = \mathcal{O}_X(f^{-1}V)$-modules, and therefore gives a morphism $(\beta_V)^\sim : \mathcal{M}(V)^\sim \longrightarrow \mathcal{N}(V)^\sim$ of sheaves of
modules on X_V. Let $b_V : \mathcal{M}_V \rightarrow \mathcal{N}_V$ be the morphism $(\psi_V)_*(\beta_V)^\sim$. One checks easily that for open affine $U, V \subseteq Y$ and $T = f^{-1}(U \cap V)$ the following diagram commutes

$$
\begin{array}{c}
\mathcal{M}_V|_T \xrightarrow{b_V|_T} \mathcal{N}_V|_T \\
\downarrow \quad \downarrow \\
\mathcal{M}_U|_T \xrightarrow{b_U|_T} \mathcal{N}_U|_T
\end{array}
$$

Therefore there is a unique morphism of sheaves of modules β^\sim with the property that for every affine open $V \subseteq X$ the following diagram commutes (GS, Proposition 6)

$$
\begin{array}{c}
\mathcal{M}|_{f^{-1}V} \xrightarrow{\beta|_{f^{-1}V}} \mathcal{N}|_{f^{-1}V} \\
\mu_V \downarrow \quad \downarrow \mu_V \\
\mathcal{M}|_V \xrightarrow{b_V} \mathcal{N}|_V
\end{array}
$$

Using this unique property it is easy to check that \sim defines an additive functor.

Proposition 18. The additive functor $\sim : \mathcal{Qco}(\mathscr{A}(X)) \rightarrow \mathcal{Mod}(X)$ is exact.

Proof. Since $\mathcal{Qco}(\mathscr{A}(X))$ is an abelian subcategory of $\mathcal{Mod}(\mathscr{A}(X))$ (SOA, Corollary 20), a sequence is exact in the former category if and only if it is exact in the latter, which is if and only if it is exact as a sequence of sheaves of abelian groups. So suppose we have an exact sequence of quasi-coherent $\mathscr{A}(X)$-modules

$$
\begin{array}{c}
\mathcal{M}' \xrightarrow{\varphi} \mathcal{M} \xrightarrow{\psi} \mathcal{M}''
\end{array}
$$

This is exact in $\mathcal{Mod}(X)$, so using (MOS, Lemma 5) we have for every open affine $V \subseteq Y$ an exact sequence of $\mathcal{O}_X(f^{-1}V)$-modules

$$
\begin{array}{c}
\mathcal{M}'(V) \xrightarrow{\varphi_V} \mathcal{M}(V) \xrightarrow{\psi_V} \mathcal{M}''(V)
\end{array}
$$

Since the functor $\sim : \mathcal{O}_X(f^{-1}V)\mathcal{Mod} \rightarrow \mathcal{Mod}(X_V)$ is exact, we have an exact sequence of sheaves of modules on X_V

$$
\begin{array}{c}
\mathcal{M}'(V) \xrightarrow{\sim\varphi_V} \mathcal{M}(V) \xrightarrow{\sim\psi_V} \mathcal{M}''(V)
\end{array}
$$

Applying $(\psi_V)_*$ and using the natural isomorphism $(\psi_V)_*\mathcal{M}(V) \cong \mathcal{M}''|_{f^{-1}V}$ we see that the following sequence of sheaves of modules on $f^{-1}V$ is exact

$$
\begin{array}{c}
\mathcal{M}'|_{f^{-1}V} \xrightarrow{\sim\varphi|_{f^{-1}V}} \mathcal{M}|_{f^{-1}V} \xrightarrow{\sim\psi|_{f^{-1}V}} \mathcal{M}''|_{f^{-1}V}
\end{array}
$$

It now follows from (MRS, Lemma 38) that the functor \sim is exact.

Definition 3. Let $f : X \rightarrow Y$ be a finite morphism of noetherian schemes and \mathcal{F} a quasi-coherent sheaf of modules on Y. Then $\mathscr{A}(X)$ coherent (H, II Ex.5.5) and therefore the sheaf of \mathcal{O}_Y-modules $\mathcal{Hom}_{\mathcal{O}_Y}(\mathscr{A}(X), \mathcal{F})$ is quasi-coherent (MOS, Corollary 44). This sheaf becomes a quasi-coherent sheaf of $\mathscr{A}(X)$-modules with the action $(a \cdot \phi)_W(t) = \phi_W(a|_{f^{-1}W}t)$. Therefore we have a quasi-coherent sheaf of modules on X

$$
(f!)(\mathcal{F}) = \mathcal{Hom}_{\mathcal{O}_X}(\mathscr{A}(X), \mathcal{F})^\sim
$$

This defines an additive functor $f!(-) : \mathcal{Qco}(Y) \rightarrow \mathcal{Qco}(X)$.

Remark 2. For any closed immersion $f : X \rightarrow Y$ of schemes there is a right adjoint $f^! : \mathcal{Mod}(Y) \rightarrow \mathcal{Mod}(X)$ to the direct image functor f_*. (MRS, Proposition 97). In the special case where X, Y are noetherian we have just defined another functor $f! : \mathcal{Qco}(Y) \rightarrow \mathcal{Qco}(X)$ and as the notation suggests, these two functors are naturally equivalent.