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Normalisation is an important tool in modern algebra, and there are many different approaches
to the result. The easiest version is for an infinite field, and we give this proof first. Next we give
a proof that works for arbitrary fields and gives more information, but requires a lot more work.
For yet another version that involves separable algebraic extensions, see our EFT notes.

Lemma 1. Let R be a domain and f(x1, . . . , xn) ∈ R[x1, . . . , xn] a nonzero polynomial. If Q ⊆ R
is an infinite set then there exist a1, . . . , an ∈ Q such that f(a1, . . . , an) 6= 0.

Proof. The proof is an easy induction, with the case n = 1 being elementary. See our EFT
notes.

Proposition 2. Let k be an infinite field and A a nonzero finitely generated k-algebra. Either A
is integral over k or there are elements y1, . . . , yr ∈ A which are algebraically independent over k
such that A is integral over k[y1, . . . , yr].

Proof. Let A = k[s1, . . . , sn] where s1, . . . , sn ∈ A. We assume that A is not integral over k, in
which case at least one of the si is not algebraic over k. If the set {s1, . . . , sn} is algebraically
independent, then we are done.

Otherwise assume that sn is algebraic over k[s1, . . . , sn−1] (by relabeling if necessary). Let
f(x1, . . . , xn) be a nonzero polynomial with f(s1, . . . , sn) = 0 and let F be the homogenous part
of f of highest degree. If the degree of F is e, then for any constants λ1, . . . , λn−1 ∈ k the
polynomial f(x1 + λ1xn, . . . , xn−1 + λn−1xn, xn) expands to

F (λ1, . . . , λn−1, 1)xe
n + b1x

e−1
n + . . . + be (1)

where bi ∈ k[x1, . . . , xn−1] for 1 ≤ i ≤ e. Let g be F (x1, . . . , xn−1, 1). If F does not involve xn

then g = F and we conclude that g is a nonzero polynomial. If F does involve powers of xn

and g = 0 then look at the terms of F involving the highest power of xn - these become distinct
monomials in g, and g = 0 implies that the coefficients in F of these terms were all zero, which is
impossible. Hence g is a nonzero polynomial, and since k is infinite we can arrange λ1, . . . , λn−1

such that F (λ1, . . . , λn−1, 1) is nonzero. If we write ti = si − λisn for 1 ≤ i ≤ n− 1 and evaluate
(1) at t1, . . . , tn−1, sn we find

0 = f(s1, . . . , sn)

= f
(
t1 + λ1sn, . . . , tn−1 + λn−1sn, sn

)
= F (λ1, . . . , λn−1, 1)se

n +
e∑

i=1

bi(t1, . . . , tn−1)se−i
n

Dividing through by F (λ1, . . . , λn−1, 1) gives an equation of integral dependence for sn over
k[t1, . . . , tn−1]. Since si = ti + λisn for 1 ≤ i ≤ n − 1, this implies that A is integral over
k[t1, . . . , tn−1]. Note that the ti are linear combinations of s1, . . . , sn.

If {t1, . . . , tn−1} is an algebraically independent set, then we are done. Otherwise we assume
tn−1 is algebraic over k[t1, . . . , tn−2] (if necessary by relabeling) and apply the above argument
to produce q1, . . . , qn−2 ∈ A which are linear combinations of t1, . . . , tn−1 with the property that
k[t1, . . . , tn−1] is integral over k[q1, . . . , qn−2]. Hence the qi are linear combinations of s1, . . . , sn
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and A is integral over k[q1, . . . , qn−2]. We keep proceeding in this way until we find a set which is
algebraically independent. This is guaranteed to happen, since if we reached k[v] with v algebraic
over k, then A would be integral over k[v] which is integral over k. But we assumed that A was
not integral over k.

So finally we end up with an algebraically independent family y1, . . . , yr such that A is integral
over k[y1, . . . , yr]. Moreover the yi are linear combinations of s1, . . . , sn.

Lemma 3. Let A = k[x1, . . . , xn] be a polynomial ring over a field k. If a1, . . . , an ∈ A are such
that A is integral over k[a1, . . . , an], then {a1, . . . , an} is an algebraically independent set over k.

Proof. Let K = k(x1, . . . , xn) be the quotient field of A. Then {x1, . . . , xn} is a transcendence
basis of K/k. Since each xi is integral over the subfield k(a1, . . . , an), it follows that the extension
K/k(a1, . . . , an) is algebraic. Hence {a1, . . . , an} contains a transcendence basis - but all such
bases have the same number of elements, so the ai must be algebraically independent.

Proposition 4. Let A = k[x1, . . . , xn] be a polynomial ring over a field k, and let a be a nonzero
proper ideal. There are elements y1, . . . , yn ∈ A which are algebraically independent over k satis-
fying the following conditions:

1. A is integral over B = k[y1, . . . , yn].

2. a ∩B is generated as an ideal in B by y1, . . . , yh for some 1 ≤ h ≤ n.

Moreover, given any nonzero a ∈ a we can find y1, . . . , yn satisfying the above conditions with
y1 = a.

Proof. First we prove the result in the case where a = (a1) is principal. By assumption a1 =
g(x1, . . . , xn) is a polynomial with coefficients in k. We claim that there are positive integers ri,
2 ≤ i ≤ n such that A is integral over B = k[a1, y2, . . . , yn] where for i ≥ 2 we define

yi = xi − xri
1 (2)

For the moment let ri be arbitrary positive integers. Then

g(x1, y2 + xr2
1 , . . . , yn + xrn

1 )− a1 = 0

If we write the polynomial g as a sum of monomials
∑

α g(α)xα1
1 . . . xαn

n then∑
α

g(α)xα1
1 (y2 + xr2

1 )α2 . . . (yn + xrn
1 )αn − a1 = 0

For each α with g(α) 6= 0 we pick up a term x
f(α)
1 , where f(α) = α1 + r2α2 + . . . + αnrn. There

are only finitely many α with g(α) 6= 0, and we can find an integer s > 1 which is greater than
α1, . . . , αn for every such α. If we put ri = si−1 for 2 ≤ i ≤ n then it is straightforward to check
that the f(α) will all be distinct. Hence there will be a unique β with g(β) 6= 0 that maximises
f(β), and we can write

g(β)xf(β)
1 +

∑
j<f(β)

pj(a1, y2, . . . , yn)xj
1 = 0

This proves that x1 is integral over B. Considering (2), we see that x2, . . . , xn are also integral
over B, so finally A is integral over B. We apply Lemma 3 to see that {a1, y2, . . . , yn} is an
algebraically independent set. Thus the first assertion of the Proposition holds.

Now we show that a ∩B = a1B, which will prove the second assertion. Clearly a1B ⊆ a ∩B.
Let t = a1c ∈ a∩B, where c ∈ A. Then in K we have c = t(a1)−1 so that c ∈ A∩k(a1, y2, . . . , yn).
Since the set {a1, y2, . . . , yn} is algebraically independent, B is isomorphic to a polynomial ring
and the subfield k(a1, y2, . . . , yn) of K is isomorphic to the quotient field of B. Since A is in-
tegral over B and any UFD is integrally closed, it follows immediately that c ∈ B and hence
t = a1c ∈ a1B as required. Thus a1B = a ∩ B and the proof of the case where a principal is
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complete. Note that we have also shown that in the field K, A ∩ k(a1, y2, . . . , yn) = B.

We now prove the Proposition for arbitrary nonzero, proper ideals a. We proceed by induction
on n, where A = k[x1, . . . , xn]. We have already done the case n = 1, because then A is a PID.
So assume n > 1 and let a1 be a nonzero element of a, and note that since a is proper, a1 /∈ k.
We have just shown that there are elements t2, . . . , tn ∈ A such that a1, t2, . . . , tn are algebraically
independent over k, A is integral over the polynomial ring k[a1, t2, . . . , tn]. Let C = k[t2, . . . , tn].
There are two cases:

Case a ∩ C = 0 : Let B = k[a1, t2, . . . , tn]. We claim that a ∩ B = a1B. Clearly a1B ⊆ a ∩ B.
Suppose t ∈ a ∩B, so that we can write

t =
∑
α

g(α)aα1
1 tα2

2 . . . tαn
n

=
∑

α,α1 6=0

g(α)aα1
1 tα2

2 . . . tαn
n +

∑
α,α1=0

g(α)tα2
2 . . . tαn

n

The first term belongs to a1B ⊆ a, so that the second term belongs to the intersection
a ∩ k[t2, . . . , tn] = a ∩ C, which is zero. Hence t ∈ a1B, and the collection a1, t2, . . . , tn
satisfies the required conditions, completing the proof.

Case a ∩ C 6= 0 : Since the ti are algebraically independent, C is isomorphic to a polynomial ring
in n− 1 variables. By assumption a∩C is a nonzero proper ideal in C. So by the inductive
hypothesis, there are elements y2, . . . , yn algebraically independent over k such that C is
integral over k[y2, . . . , yn] and a∩k[y2, . . . , yn] is generated as an ideal by y2, . . . , yh for some
h ≤ n.

Let B = k[a1, y2, . . . , yn]. Then A is integral over B since A is integral over k[a1, t2, . . . , tn]
which is integral over B. By Lemma 3, the set {a1, y2, . . . , yn} is algebraically independent.
To complete the proof, we show that a ∩B is generated as an ideal in B by a1, y2, . . . , yh.

Suppose t ∈ a ∩B. Then we can write

t =
∑

α,α1 6=0

g(α)aα1
1 yα2

2 . . . yαn
n +

∑
α,|α|>0

g(α)yα2
2 . . . yαn

n + `

where ` ∈ k. Since t ∈ a the sum of the second and third terms belongs to a∩k[y2, . . . , yn] =
(y2, . . . , yh). Since the yi are algebraically independent, this implies that ` = 0 and every
monomial in the second summand involves one of y2, . . . , yh. Hence t ∈ (a1, y2, . . . , yh) as
required.

We now extend this result to a chain of ideals a1 ⊂ . . . ⊂ am.

Proposition 5. Let A = k[x1, . . . , xn] be a polynomial ring over a field k, and let a1 ⊂ . . . ⊂ am

be a chain of nonzero proper ideals. There are elements y1, . . . , yn ∈ A which are algebraically
independent over k satisfying the following conditions:

1. A is integral over B = k[y1, . . . , yn].

2. There are integers 1 ≤ h(1) ≤ . . . ≤ h(m) ≤ n such that ai ∩ B is generated as an ideal in
B by y1, . . . , yh(i) for 1 ≤ i ≤ m.

Moreover, given a sequence of nonzero elements ai ∈ ai we can find y1, . . . , yn satisfying the above
conditions with the further property that if 1 ≤ i ≤ m− 1 and h(i) < h(i + 1) then yh(i)+1 = ai+1

(if m = 1 then we can arrange y1 = a1).
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Proof. By induction the number of ideals m. The case m = 1 was the subject of the previous
Proposition. So assume m > 1 and that the result is true for all chains of m− 1 nonzero proper
ideals. Let a1 ⊂ . . . ⊂ am be given. Find t1, . . . , tn satisfying the conditions for the chain
a1 ⊂ . . . ⊂ am−1, and let s = h(m− 1), and set C = k[t1, . . . , tn].

If s = n then am−1 ∩ C = (t1, . . . , tn). Since the ti are algebraically independent, C is a
polynomial ring and am−1 ∩ C is a maximal ideal. Hence am ∩ C = am−1 ∩ C = (t1, . . . , tn) and
we may put B = C and h(m) = h(m− 1) to complete the proof.

Otherwise we may assume that s < n and am ∩ k[ts+1, . . . , tn] is nonzero, since otherwise we
can modify the proof of Proposition (4) (the part dealing with the case a ∩ C = 0) to see that
am ∩ C = am−1 ∩ C, and we have already dealt with this situation.

So we may assume am ∩ k[ts+1, . . . , tn] is a nonzero proper ideal. There are algebraically
independent elements ys+1, . . . , yn such that k[ts+1, . . . , tn] is integral over k[ys+1, . . . , yn] and
am ∩ k[ys+1, . . . , yn] is generated by ys+1, . . . , yh(m) for some s + 1 ≤ h(m) ≤ n. Moreover, we
may choose ys+1 = am. Let B = k[t1, . . . , ts, ys+1, . . . , yn]. Then A is integral over C which is
integral over B, so A is integral over B. Lemma 3 implies that the set {t1, . . . , ts, ys+1, . . . , yn} is
algebraically independent.

Clearly h(m− 1) = s < h(m) ≤ n. It only remains to check the second condition is satisfied.
First we have to check that for 1 ≤ i ≤ m − 1 the ideal ai ∩ B is still generated (as an ideal in
B, not C) by the elements t1, . . . , th(i). Clearly the ideal generated by these elements belongs to
ai ∩B. Now suppose t ∈ ai ∩B ⊆ ai ∩ C. Since ai ∩ C is the ideal in C generated by t1, . . . , th(i)

we can write
t =

∑
α

g(α)tα1
1 . . . tαn

n (3)

where each monomial involves a postive power of tj for some 1 ≤ j ≤ h(i). Since t ∈ B there is
another expression

t =
∑

β

f(β)tβ1
1 . . . tβs

s y
βs+1
s+1 . . . yβn

n (4)

Since ys+1, . . . , yn ∈ k[ts+1, . . . , tn] for each β involved in (4) we can write

y
βs+1
s+1 . . . yβn

n =
∑

γ

fβ(γ)tγ1
s+1 . . . tγn−s

n

Hence (4) becomes
t =

∑
β

∑
γ

f(β)fβ(γ)tβ1
1 . . . tβs

s tγ1
s+1 . . . tγn−s

n

Comparing this with (3) and using the algebraic independence of the ti we conclude that any
monomial in (4) involves a positive power of tj for some 1 ≤ j ≤ h(i). That is, ai ∩B is generated
as an ideal in B by t1, . . . , th(i).

Finally, we show that am∩B = (t1, . . . , ts, ys+1, . . . , yh(m)) in B. By definition the intersection
am ∩ k[ys+1, . . . , yn] is generated in k[ys+1, . . . , yn] by ys+1, . . . , yh(m) and t1, . . . , ts ∈ am−1 ⊂ am,
so the right-to-left inclusion is clear. Suppose t ∈ am ∩ B. If h(m) = n then there is nothing to
prove (since am is proper), so assume h(m) < n. We can write

t =
∑

β

g(β)yβ1
h(m)+1 . . . yβn

n +
∑
α

f(α)tα1
1 . . . tαn

s y
αs+1
s+1 . . . yαn

n

where each monomial in the second summand involves a postive power of one of t1, . . . , ts or
ys+1, . . . , yh(m). Hence the second summand belongs to am, so the first summand belongs to am ∩
k[ys+1, . . . , yn] and consequently by algebraic independence each monomial in the first summand
must involve a positive power of one of ys+1, . . . , yh(m). Since this is impossible, the first summand
is zero and this implies t ∈ (t1, . . . , ts, ys+1, . . . , yh(m)), which completes the proof.

Lemma 6. Let A ⊆ B be rings, with B integral over A. Let b be an ideal of B containing a prime
ideal p of B. If b ∩A = p ∩A then b = p.
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Proof. Suppose otherwise that p ⊂ b and let b ∈ b \ p. Since b is integral over A, we have an
equation

bn + a1b
n−1 + . . . + an = 0 ai ∈ A

Clearly an ∈ b ∩A = p ∩A. Hence

b(bn−1 + a1b
n−2 + . . . an−1) ∈ p

So bn−1 +a1b
n−2 + . . . an−1 ∈ p. Applying the same argument to an−1 and proceeding recursively,

we find that b ∈ p, a contradiction. Hence b = p.

Definition 1. For a field k an affine k-algebra is a finitely generated k-algebra which is also an
integral domain. Since by definition the zero ring is not a domain, any affine k-algebra is nonzero.

Lemma 7. Let A be an affine k-algebra. Then A is integral over k if and only if A is a finite
algebraic extension of k.

Proof. The condition is clearly sufficient. To that it is necessary, suppose that A is integral over
k. By Corollary 5.24 of A & M it suffices to show that A is a field. If m is a maximal ideal of A,
then m and 0 both contract to 0 in k ⊆ A, so by the previous Lemma m = 0 and A is a field.

Theorem 8. Let k be a field, A an affine k-algebra, and a1 ⊂ a2 ⊂ . . . ⊂ am a chain of nonzero
proper ideals in A. Suppose A can be generated over k by n elements. Then either A is integral
over k or there is an integer 1 ≤ r ≤ n and elements y1, . . . , yr ∈ A which are algebraically
independent over k satisfying the following conditions:

1. A is integral over B = k[y1, . . . , yr].

2. There are integers 1 ≤ h(1) ≤ . . . ≤ h(m) ≤ r such that ai ∩B is generated as an ideal in B
by y1, . . . , yh(i).

Proof. Let A be an affine k-algebra with a chain of nonzero proper ideals a1 ⊂ . . . ⊂ am. Assume
that A is not integral over k. If A can be generated by n elements then there is an isomorphism
of k-algebras

φ : k[x1, . . . , xn]/p −→ A

with p a nonzero prime ideal (If p = 0 then by Proposition 5 we are done). Let a′i be ideals
of k[x1, . . . , xn] containing p such that φ identifies a′i and ai. Then p ⊂ a′1 ⊂ . . . ⊂ a′m is a
chain of nonzero proper ideals in k[x1, . . . , xn]. By Proposition 5 there exist elements z1, . . . , zn

which are algebraically independent such that k[x1, . . . , xn] is integral over B′ = k[z1, . . . , zn],
a′i ∩B′ is generated by z1, . . . , zh(i) and p∩B′ is generated by z1, . . . , zh(0). Lemma 6 implies that
1 ≤ h(0) < h(1) ≤ n.

Let a ∈ A and φ(g + p) = a. Let gn + f1g
n−1 + . . . + fn = 0 be an equation of integral

dependence for g, where fi ∈ k[z1, . . . , zn] for each i. Mapping to the quotient ring and applying
φ we find an equation of integral dependence for a over k[φ(z1 + p), . . . , φ(zn + p)].

Let r = n − h(0) and set y1 = φ(zh(0)+1 + p), . . . , yr = φ(zn + p). It is still true that A is
integral over B = k[y1, . . . , yr] and we now show that these elements are algebraically independent
(in particular, they are all nonzero and distinct). For if a polynomial in the zh(0)+1, . . . , zn belonged
to p, then since p ∩ B′ = (z1, . . . , zh(0)) we could apply algebraic independence of the zi to see
that the polynomial was zero.

Consider the integers f(i) = h(i) − h(0) for 1 ≤ i ≤ m. Clearly 1 ≤ f(1) ≤ . . . ≤ f(m) ≤ r
and our next task is to show that ai ∩ B is generated as an ideal in B by y1, . . . , yf(i). Clearly
the ideal generated by these elements is contained in ai ∩ B. To prove the reverse inclusion, let
a ∈ ai ∩B and g ∈ k[x1, . . . , xn] be such that φ(g + p) = a. Then g ∈ a′i and modulo p, g is equal
to a polynomial v(zh(0)+1, . . . , zn). Thus v(zh(0)+1, . . . , zn) ∈ a′i ∩B′ and consequently

v(zh(0)+1, . . . , zr) = d1z1 + . . . + dh(i)zh(i)

for dj ∈ B′ = k[z1, . . . , zn]. Using the fact that a = φ(g + p) we find that a belongs to the ideal
generated in B by y1, . . . , yf(i), which completes the proof.
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