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The following is Theorem 8, Section 4, Chapter V of Volume 1 of Zariski &Samuel.

Theorem 1 (Noether Normalisation). Let A = k[s1, . . . , sn] be a finitely generated domain
over an infinite field k, and let K be the quotient field of A. Let d be the transcendence degree of
K/k. There are two cases:

Case d = 0 : A is integral over k;

Case d ≥ 1 : There exist d linear combinations y1, . . . , yd of the si which are algebraically inde-
pendent over k and such that A is integral over k[y1, . . . , yd].

Moreover if K is separably generated over k, the yj may be chosen in such a way that K is a
separable extension of k(y1, . . . , yd), so {y1, . . . , yd} is a separating transcendence basis of K/k.

Proof. The claim for d = 0 is trivial, so assume d ≥ 1. Notice that if A is integral over k[y1, . . . , yd]
then K is algebraic over k(y1, . . . , yd). Since tr.deg.K/k = d it follows that the yi are algebraically
independent and k[y1, . . . , yd] is a polynomial ring. We assume K/k is separably generated (it is
easy to go through and remove this hypothesis in the case K/k is not).

Notice that K = k(s1, . . . , sn) so that 1 ≤ d ≤ n. If d = n then the si are algebraically
independent over k and the result is trivial. So we can assume d < n and by relabeling s1, . . . , sd is a
separating transcendence basis for K/k (Theorem 30, Ch. II.13). Hence s1, . . . , sd are algebraically
independent over k and s1, . . . , sd, sn is an algebraically dependent set over k for any d+1 ≤ j ≤ n.
Let f(x1, . . . , xd, xd+1) ∈ k[x1, . . . , xd+1] be the irreducible relation f(s1, . . . , sd, sn) = 0 (see p.11
of our EFT notes). Then f is an irreducible polynomial in k[x1, . . . , xd][xd+1], hence also as an
element of k(x1, . . . , xd)[xd+1] (see Lemma 1 on p.11 of our EFT notes). But we can identify
k(x1, . . . , xd) with k(s1, . . . , sd), proving that f(s1, . . . , sd, xd+1) is the minimal polynomial of sn

over the field k(s1, . . . , sd) (up to a unit of this field, anyway). Since sn is separable algebraic over
k(s1, . . . , sd), it follows that

∂f

∂xd+1
(s1, . . . , sd, sn) 6= 0

Let F be the homogenous part of f of highest degree. If the degree of F is e, then for any constants
λ1, . . . , λd ∈ k the polynomial f(x1 + λ1xd+1, . . . , xd + λdxd+1, xd+1) expands to

F (λ1, . . . , λd, 1)xe
d+1 + b1x

e−1
d+1 + · · ·+ be (1)

where bi ∈ k[x1, . . . , xd] for 1 ≤ i ≤ e. Put qj = ∂f/∂xj(s1, . . . , sd, sn) ∈ A for 1 ≤ j ≤ d + 1. We
want the λi to satisfy the following two equations:

F (λ1, . . . , λd, 1) 6= 0 (2)
d∑

j=1

λjqj + qd+1 6= 0 (3)

Let X denote the set of tuples (λ1, . . . , λd, 1) ∈ kd+1 which satisfy (??). Then X is nonempty
since (0, . . . , 0, 1) ∈ X. Assume that F is zero on every tuple in X. We show that this implies
F = 0, which is a contradiction.
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For (λ1, . . . , λd, 1) ∈ X let f be the polynomial F (λ1, . . . , λd, xd+1). Then we can find infinitely
many α ∈ k with (λ1, . . . , λd, α) ∈ X and hence f(α) = 0. It follows that

F (λ1, . . . , λd, xd+1) = 0

Now let f be the polynomial F (λ1, . . . , λd−1, xd, xd+1). We show that this polynomial is also zero.
If not, write f as a polynomial in xd+1 with coefficients in k[xd], and let b(xd) be the nonzero
leading coefficient. There are infinitely many α ∈ k with (λ1, . . . , λd−1, α, 1) ∈ X, and applying
the above argument to these tuples we see that F (λ1, . . . , α, xd+1) = 0 and hence f(α, xd+1) = 0.
It follows that b(α) = 0 for infinitely many α, whence b = 0 and so f = 0 as required. So for any
tuple (λ1, . . . , λd, 1) ∈ X we have

F (λ1, . . . , λd−1, λd, xd+1) = 0
F (λ1, . . . , λd−1, xd, xd+1) = 0

In the next step we put f = F (λ1, . . . , λd−2, xd−1, xd, xd+1), write f as a polynomial in xd, xd+1

with coefficients in k[xd−1], and use the fact that there are infinitely many elements α ∈ k with
(λ1, . . . , λd−2, α, λd, 1) ∈ X. Proceeding recursively we find eventually that F = 0, giving the
desired contradiction. We conclude that there is some tuple (λ1, . . . , λd, 1) satisfying equations
(??), (??).

Consider the morphism of k-algebras

ϕ : k[x1, . . . , xd+1] −→ k[x1, . . . , xd+1]
x1 7→ x1 + λ1xd+1

...
xd 7→ xd + λdxd

xd+1 7→ xd+1

If we write ti = si − λisn for 1 ≤ i ≤ d then

0 = f(s1, . . . , sd, sn) = ϕ(f)(t1, . . . , td, sn)

So (??) yields an equation of integral dependence for sn over k[t1, . . . , td]. Hence A is integral
over B = k[t1, . . . , td, sd+1, . . . , sn−1] and so K is an algebraic extension of the quotient field
L = k(t1, . . . , td, sd+1, . . . , sn−1).

By Corollary 1 to Definition 3 of Ch.II.5 (p.4 our EFT notes) to show that sn is separable over
k(t1, . . . , td) it suffices to show that

∂ϕ(f)
∂xd+1

(t1, . . . , td, sn) 6= 0

Using the chain rule for polynomials (p.9 EFT notes) we have

∂ϕ(f)
∂xd+1

=
d∑

j=1

λjϕ

(
∂f

∂xj

)
+ ϕ

(
∂f

∂xd+1

)
But for 1 ≤ j ≤ d + 1,

ϕ

(
∂f

∂xj

)
(t1, . . . , td, sn) =

∂f

∂xj
(s1, . . . , sd, sn)

So ∂ϕ(f)/∂xd+1(t1, . . . , td, sn) 6= 0 by construction of the λi. Hence sn is separable over k(t1, . . . , td).
Let Y be the subfield of K consisting of all elements separable over k(t1, . . . , td). Then Y contains
s1, . . . , sd and hence k(s1, . . . , sd). But every element of K is separable over k(s1, . . . , sd) and
hence over Y . It follows that Y = K and t1, . . . , td is a separating transcendence basis for K/k
(hence also for L/k). It follows that L/k is separably generated.
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Since sn is separable over L (Lemma 2 of Ch.II.5) it follows from Theorem 10 of Ch.II.5 that
K/L is a separable algebraic extension. Clearly B is a finitely generated domain over k and
tr.deg.L/k = d. By transitivity of integral and separable algebraic extensions it suffices to prove
the theorem for B. We continue to apply the above argument until we end up with B = k[t′1, . . . , t

′
d]

for linear combinations t′i of the si.
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