More Noether Normalisation

Daniel Murfet

January 6, 2005

The following is Theorem 8, Section 4, Chapter V of Volume 1 of Zariski \&Samuel.
Theorem 1 (Noether Normalisation). Let $A=k\left[s_{1}, \ldots, s_{n}\right]$ be a finitely generated domain over an infinite field k, and let K be the quotient field of A. Let d be the transcendence degree of K / k. There are two cases:

Case $d=0: A$ is integral over k;
Case $d \geq 1$: There exist d linear combinations y_{1}, \ldots, y_{d} of the s_{i} which are algebraically independent over k and such that A is integral over $k\left[y_{1}, \ldots, y_{d}\right]$.

Moreover if K is separably generated over k, the y_{j} may be chosen in such a way that K is a separable extension of $k\left(y_{1}, \ldots, y_{d}\right)$, so $\left\{y_{1}, \ldots, y_{d}\right\}$ is a separating transcendence basis of K / k.

Proof. The claim for $d=0$ is trivial, so assume $d \geq 1$. Notice that if A is integral over $k\left[y_{1}, \ldots, y_{d}\right]$ then K is algebraic over $k\left(y_{1}, \ldots, y_{d}\right)$. Since tr.deg. $K / k=d$ it follows that the y_{i} are algebraically independent and $k\left[y_{1}, \ldots, y_{d}\right]$ is a polynomial ring. We assume K / k is separably generated (it is easy to go through and remove this hypothesis in the case K / k is not).

Notice that $K=k\left(s_{1}, \ldots, s_{n}\right)$ so that $1 \leq d \leq n$. If $d=n$ then the s_{i} are algebraically independent over k and the result is trivial. So we can assume $d<n$ and by relabeling s_{1}, \ldots, s_{d} is a separating transcendence basis for K / k (Theorem 30, Ch. II.13). Hence s_{1}, \ldots, s_{d} are algebraically independent over k and $s_{1}, \ldots, s_{d}, s_{n}$ is an algebraically dependent set over k for any $d+1 \leq j \leq n$. Let $f\left(x_{1}, \ldots, x_{d}, x_{d+1}\right) \in k\left[x_{1}, \ldots, x_{d+1}\right]$ be the irreducible relation $f\left(s_{1}, \ldots, s_{d}, s_{n}\right)=0$ (see p. 11 of our EFT notes). Then f is an irreducible polynomial in $k\left[x_{1}, \ldots, x_{d}\right]\left[x_{d+1}\right]$, hence also as an element of $k\left(x_{1}, \ldots, x_{d}\right)\left[x_{d+1}\right]$ (see Lemma 1 on p. 11 of our EFT notes). But we can identify $k\left(x_{1}, \ldots, x_{d}\right)$ with $k\left(s_{1}, \ldots, s_{d}\right)$, proving that $f\left(s_{1}, \ldots, s_{d}, x_{d+1}\right)$ is the minimal polynomial of s_{n} over the field $k\left(s_{1}, \ldots, s_{d}\right)$ (up to a unit of this field, anyway). Since s_{n} is separable algebraic over $k\left(s_{1}, \ldots, s_{d}\right)$, it follows that

$$
\frac{\partial f}{\partial x_{d+1}}\left(s_{1}, \ldots, s_{d}, s_{n}\right) \neq 0
$$

Let F be the homogenous part of f of highest degree. If the degree of F is e, then for any constants $\lambda_{1}, \ldots, \lambda_{d} \in k$ the polynomial $f\left(x_{1}+\lambda_{1} x_{d+1}, \ldots, x_{d}+\lambda_{d} x_{d+1}, x_{d+1}\right)$ expands to

$$
\begin{equation*}
F\left(\lambda_{1}, \ldots, \lambda_{d}, 1\right) x_{d+1}^{e}+b_{1} x_{d+1}^{e-1}+\cdots+b_{e} \tag{1}
\end{equation*}
$$

where $b_{i} \in k\left[x_{1}, \ldots, x_{d}\right]$ for $1 \leq i \leq e$. Put $q_{j}=\partial f / \partial x_{j}\left(s_{1}, \ldots, s_{d}, s_{n}\right) \in A$ for $1 \leq j \leq d+1$. We want the λ_{i} to satisfy the following two equations:

$$
\begin{align*}
& F\left(\lambda_{1}, \ldots, \lambda_{d}, 1\right) \neq 0 \tag{2}\\
& \sum_{j=1}^{d} \lambda_{j} q_{j}+q_{d+1} \neq 0 \tag{3}
\end{align*}
$$

Let X denote the set of tuples $\left(\lambda_{1}, \ldots, \lambda_{d}, 1\right) \in k^{d+1}$ which satisfy (??). Then X is nonempty since $(0, \ldots, 0,1) \in X$. Assume that F is zero on every tuple in X. We show that this implies $F=0$, which is a contradiction.

For $\left(\lambda_{1}, \ldots, \lambda_{d}, 1\right) \in X$ let f be the polynomial $F\left(\lambda_{1}, \ldots, \lambda_{d}, x_{d+1}\right)$. Then we can find infinitely many $\alpha \in k$ with $\left(\lambda_{1}, \ldots, \lambda_{d}, \alpha\right) \in X$ and hence $f(\alpha)=0$. It follows that

$$
F\left(\lambda_{1}, \ldots, \lambda_{d}, x_{d+1}\right)=0
$$

Now let f be the polynomial $F\left(\lambda_{1}, \ldots, \lambda_{d-1}, x_{d}, x_{d+1}\right)$. We show that this polynomial is also zero. If not, write f as a polynomial in x_{d+1} with coefficients in $k\left[x_{d}\right]$, and let $b\left(x_{d}\right)$ be the nonzero leading coefficient. There are infinitely many $\alpha \in k$ with $\left(\lambda_{1}, \ldots, \lambda_{d-1}, \alpha, 1\right) \in X$, and applying the above argument to these tuples we see that $F\left(\lambda_{1}, \ldots, \alpha, x_{d+1}\right)=0$ and hence $f\left(\alpha, x_{d+1}\right)=0$. It follows that $b(\alpha)=0$ for infinitely many α, whence $b=0$ and so $f=0$ as required. So for any tuple $\left(\lambda_{1}, \ldots, \lambda_{d}, 1\right) \in X$ we have

$$
\begin{aligned}
& F\left(\lambda_{1}, \ldots, \lambda_{d-1}, \lambda_{d}, x_{d+1}\right)=0 \\
& F\left(\lambda_{1}, \ldots, \lambda_{d-1}, x_{d}, x_{d+1}\right)=0
\end{aligned}
$$

In the next step we put $f=F\left(\lambda_{1}, \ldots, \lambda_{d-2}, x_{d-1}, x_{d}, x_{d+1}\right)$, write f as a polynomial in x_{d}, x_{d+1} with coefficients in $k\left[x_{d-1}\right]$, and use the fact that there are infinitely many elements $\alpha \in k$ with $\left(\lambda_{1}, \ldots, \lambda_{d-2}, \alpha, \lambda_{d}, 1\right) \in X$. Proceeding recursively we find eventually that $F=0$, giving the desired contradiction. We conclude that there is some tuple $\left(\lambda_{1}, \ldots, \lambda_{d}, 1\right)$ satisfying equations (??), (??).

Consider the morphism of k-algebras

$$
\begin{gathered}
\varphi: k\left[x_{1}, \ldots, x_{d+1}\right] \longrightarrow k\left[x_{1}, \ldots, x_{d+1}\right] \\
x_{1} \mapsto x_{1}+\lambda_{1} x_{d+1} \\
\vdots \\
x_{d} \mapsto x_{d}+\lambda_{d} x_{d} \\
x_{d+1} \mapsto x_{d+1}
\end{gathered}
$$

If we write $t_{i}=s_{i}-\lambda_{i} s_{n}$ for $1 \leq i \leq d$ then

$$
0=f\left(s_{1}, \ldots, s_{d}, s_{n}\right)=\varphi(f)\left(t_{1}, \ldots, t_{d}, s_{n}\right)
$$

So (??) yields an equation of integral dependence for s_{n} over $k\left[t_{1}, \ldots, t_{d}\right]$. Hence A is integral over $B=k\left[t_{1}, \ldots, t_{d}, s_{d+1}, \ldots, s_{n-1}\right]$ and so K is an algebraic extension of the quotient field $L=k\left(t_{1}, \ldots, t_{d}, s_{d+1}, \ldots, s_{n-1}\right)$.

By Corollary 1 to Definition 3 of Ch.II. 5 (p. 4 our EFT notes) to show that s_{n} is separable over $k\left(t_{1}, \ldots, t_{d}\right)$ it suffices to show that

$$
\frac{\partial \varphi(f)}{\partial x_{d+1}}\left(t_{1}, \ldots, t_{d}, s_{n}\right) \neq 0
$$

Using the chain rule for polynomials (p. 9 EFT notes) we have

$$
\frac{\partial \varphi(f)}{\partial x_{d+1}}=\sum_{j=1}^{d} \lambda_{j} \varphi\left(\frac{\partial f}{\partial x_{j}}\right)+\varphi\left(\frac{\partial f}{\partial x_{d+1}}\right)
$$

But for $1 \leq j \leq d+1$,

$$
\varphi\left(\frac{\partial f}{\partial x_{j}}\right)\left(t_{1}, \ldots, t_{d}, s_{n}\right)=\frac{\partial f}{\partial x_{j}}\left(s_{1}, \ldots, s_{d}, s_{n}\right)
$$

So $\partial \varphi(f) / \partial x_{d+1}\left(t_{1}, \ldots, t_{d}, s_{n}\right) \neq 0$ by construction of the λ_{i}. Hence s_{n} is separable over $k\left(t_{1}, \ldots, t_{d}\right)$. Let Y be the subfield of K consisting of all elements separable over $k\left(t_{1}, \ldots, t_{d}\right)$. Then Y contains s_{1}, \ldots, s_{d} and hence $k\left(s_{1}, \ldots, s_{d}\right)$. But every element of K is separable over $k\left(s_{1}, \ldots, s_{d}\right)$ and hence over Y. It follows that $Y=K$ and t_{1}, \ldots, t_{d} is a separating transcendence basis for K / k (hence also for L / k). It follows that L / k is separably generated.

Since s_{n} is separable over L (Lemma 2 of Ch.II.5) it follows from Theorem 10 of Ch.II. 5 that K / L is a separable algebraic extension. Clearly B is a finitely generated domain over k and tr.deg. $L / k=d$. By transitivity of integral and separable algebraic extensions it suffices to prove the theorem for B. We continue to apply the above argument until we end up with $B=k\left[t_{1}^{\prime}, \ldots, t_{d}^{\prime}\right]$ for linear combinations t_{i}^{\prime} of the s_{i}.

