Modules over Projective Schemes

Daniel Murfet

May 16, 2006

Definition 1. Let S be a graded ring, set X = ProjS and let M a graded S-module. We define a sheaf of modules M^{\sim} on X as follows. For each $\mathfrak{p} \in ProjS$ we have the local ring $S_{(\mathfrak{p})}$ and the $S_{(\mathfrak{p})}$ -module $M_{(\mathfrak{p})}$ (GRM, Definition 4). Let $\Gamma(U, M^{\sim})$ be the set of all functions $s : U \longrightarrow \coprod_{\mathfrak{p} \in U} M_{(\mathfrak{p})}$ with $s(\mathfrak{p}) \in M_{(\mathfrak{p})}$ for each \mathfrak{p} , which are *locally fractions*. That is, for every $\mathfrak{p} \in U$ there is an open neighborhood $\mathfrak{p} \in V \subseteq U$ and $m \in M, f \in S$ of the same degree, such that for every $\mathfrak{q} \in V$ we have $f \notin \mathfrak{q}$ and $s(\mathfrak{q}) = m/f \in M_{(\mathfrak{q})}$. It is easy to check that M^{\sim} is a sheaf of modules with the obvious restriction maps and the action $(r \cdot s)(\mathfrak{p}) = r(\mathfrak{p}) \cdot m(\mathfrak{p})$.

If $\phi : M \longrightarrow N$ is a morphism of graded S-modules then for every $\mathfrak{p} \in ProjS$ we have a canonical morphism of $S_{(\mathfrak{p})}$ -modules $\phi_{(\mathfrak{p})} : M_{(\mathfrak{p})} \longrightarrow N_{(\mathfrak{p})}$ (GRM,Definition 4) and we define a morphism of sheaves of modules

$$\widetilde{\phi}: \widetilde{M} \longrightarrow \widetilde{N}$$
$$\widetilde{\phi}_V(s)(\mathfrak{p}) = \phi_{(\mathfrak{p})}(s(\mathfrak{p}))$$

This defines an additive functor $(-)^{\sim}$: SGrMod $\longrightarrow \mathfrak{Mod}(X)$, where SGrMod is the complete, cocomplete abelian category of graded S-modules (GRM, Proposition 21).

Remark 1. Let S be a graded ring, set X = ProjS and let $f \in S_+$ be homogenous. The ring morphism $S_{(f)} \longrightarrow \Gamma(D_+(f), \mathcal{O}_X)$ defined by $a/f^n \mapsto a/f^n$ induces a morphism of schemes $\varphi : D_+(f) \longrightarrow SpecS_{(f)}$ which is precisely the isomorphism of (H, 2.5b).

Proposition 1. Let S be a graded ring, set X = ProjS and let M a graded S-module. Then

- (a) For $\mathfrak{p} \in X$ there is a canonical isomorphism of $S_{(\mathfrak{p})}$ -modules $\widetilde{M}_{\mathfrak{p}} \cong M_{(\mathfrak{p})}$ natural in M.
- (b) For homogenous $f \in S_+$ let $\varphi : D_+(f) \longrightarrow SpecS_{(f)}$ be the canonical isomorphism. There is a canonical isomorphism of sheaves of modules $\varphi_*(M^{\sim}|_{D_+(f)}) \cong (M_{(f)})^{\sim}$ natural in M.
- (c) The sheaf M^{\sim} is quasi-coherent. If S is noetherian and M finitely generated, M^{\sim} is coherent.

Proof. (a) Define a map $(M^{\sim})_{\mathfrak{p}} \longrightarrow M_{(\mathfrak{p})}$ by $(U, s) \mapsto s(\mathfrak{p})$. The fact that this is an isomorphism follows as in the proof of (H, 2.5*a*). It is easy to check that this maps the action of $\mathcal{O}_{X,\mathfrak{p}}$ to the action of $S_{(\mathfrak{p})}$ in a way compatible with the ring isomorphism $\mathcal{O}_{X,\mathfrak{p}} \cong S_{(\mathfrak{p})}$. Naturality in M is obvious. (TODO) Copy the rest of the written proof. The iso of (b) should be the one arising from adjoitness.

Lemma 2. Let S be a graded ring and set $X = \operatorname{ProjS}$. Then the functor $(-)^{\sim} : \operatorname{SGrMod} \longrightarrow \operatorname{\mathfrak{Mod}}(X)$ is exact.

Proof. A sequence in SGrMod is exact iff. it is exact as a sequence of S-modules. As in the affine case, we show the functor $\tilde{.}$ is exact by using the natural isomorphism $\widetilde{M}_{\mathfrak{p}} \cong M_{(\mathfrak{p})}$ and the fact that homogenous localisation is exact (GRM,Lemma 6).

Throughout this note the tensor product $M \otimes_S N$ has the canonical grading. If $\phi : M \longrightarrow M'$ is a morphism of graded modules, the induced morphism $M \otimes_S N \longrightarrow M' \otimes_S N$ is also a morphism of graded modules. Similarly for a morphism $N \longrightarrow N'$. Let $\varphi : S \longrightarrow T$ be a morphism of graded rings. If M is a graded S-module, then $M \otimes_S T$ becomes a graded T-module by considering T as

a graded S-module and using the canonical grading on the tensor product. If $\phi : M \longrightarrow M'$ is a morphism of graded modules, the induced morphism $M \otimes_S T \longrightarrow M' \otimes_S T$ is also a morphism of graded modules.

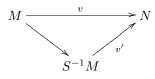
Definition 2. Let $\varphi : S \longrightarrow T$ be a morphism of graded rings and let U be the open subset $\{\mathfrak{p} | \mathfrak{p} \not\supseteq \varphi(S_+)\}$ of *ProjT*. In (H,Ex.2.14) we defined a morphism of schemes $\Phi : U \longrightarrow ProjS$ defined by $\Phi(\mathfrak{p}) = \varphi^{-1}\mathfrak{p}$ on points and on sections by

$$\Phi_V^{\#}: \mathcal{O}_{ProjS}(V) \longrightarrow \mathcal{O}_{ProjT}(\Phi^{-1}V)$$
$$\Phi_V^{\#}(s)(\mathfrak{p}) = \varphi_{(\mathfrak{p})}(s(\varphi^{-1}\mathfrak{p}))$$

where $\varphi_{(\mathfrak{p})}: S_{(\varphi^{-1}\mathfrak{p})} \longrightarrow T_{(\mathfrak{p})}$ is the ring morphism defined by $a/s \mapsto \varphi(a)/\varphi(s)$.

We make a few small observations:

• If $u : A \longrightarrow B$ is a ring morphism, M an A-module and N a B-module, $v : M \longrightarrow N$ a morphism of A-modules (where N becomes an A-module via u), and if $S \subseteq A$ is a multiplicatively closed set such that u(s) is a unit for all $s \in S$, then v factorises uniquely as



where v' is the morphism of A-modules defined by $v'(m/s) = u(s)^{-1} \cdot v(m)$.

- Let S be a graded ring, p a homogenous prime of S. Then there is a canonical morphism of rings φ_p : S_(p) → S_p defined by a/s → a/s. In fact this morphism is injective, since if a, s ∈ S are homogenous of degree e ≥ 0 and s ∉ p and a/s = 0 in S_p, then there is t ∉ p with ta = 0. Some homogenous component t_d of t does not belong to p, and t_da = 0 implies a/s = 0 in S_(p). Similarly if M is a graded S-module there is an injective morphism M_(p) → M_p of S_(p)-modules. If A is any ring considered as a graded ring and p a prime ideal of A (which is of course homogenous) then φ_p : A_(p) → A_p is an isomorphism and if M is an A-module considered as a graded A-module then M_(p) → M_p is an isomorphism.
- Let M, N be graded S-modules. The composite of $M_{(\mathfrak{p})} \otimes_{S_{(\mathfrak{p})}} N_{(\mathfrak{p})} \longrightarrow M_{\mathfrak{p}} \otimes_{S_{\mathfrak{p}}} N_{\mathfrak{p}}$ (induced by the inclusions of $M_{(\mathfrak{p})}, N_{(\mathfrak{p})}, S_{(\mathfrak{p})}$) with the canonical isomorphism $M_{\mathfrak{p}} \otimes_{S_{\mathfrak{p}}} N_{\mathfrak{p}} \longrightarrow (M \otimes_{S} N)_{\mathfrak{p}}$ gives a morphism of $S_{(\mathfrak{p})}$ -modules

$$\begin{split} \lambda_{\mathfrak{p}} &: M_{(\mathfrak{p})} \otimes_{S_{(\mathfrak{p})}} N_{(\mathfrak{p})} \longrightarrow (M \otimes_{S} N)_{(\mathfrak{p})} \\ & m/s \otimes n/t \mapsto (m \otimes n)/st \end{split}$$

Proposition 3. Let S be a graded ring generated by S_1 as an S_0 -algebra, set X = ProjS and let M, N be graded S-modules. We claim that there is an isomorphism of sheaves of modules on X natural in M, N

$$\Lambda: \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N} \longrightarrow (M \otimes_S N)^{\sim}$$
$$\underline{m}/s \stackrel{.}{\otimes} n/t \mapsto (m \otimes n)/st$$

Proof. Let Q be the presheaf of \mathcal{O}_X -modules on X defined by

$$Q(U) = \widetilde{M}(U) \otimes_{\mathcal{O}_X(U)} \widetilde{N}(U)$$

Previous notes show that for $\mathfrak{p} \in X$ there is an isomorphism

$$\alpha_{\mathfrak{p}}: Q_{\mathfrak{p}} \longrightarrow M_{(\mathfrak{p})} \otimes_{S_{(\mathfrak{p})}} N_{(\mathfrak{p})}$$
$$(U, s \otimes t) \mapsto s(\mathfrak{p}) \otimes t(\mathfrak{p})$$

Which maps the action of $\mathcal{O}_{X,\mathfrak{p}}$ to the action of $S_{(\mathfrak{p})}$. It is easy to check that the following defines a morphism of \mathcal{O}_X -modules:

$$\Lambda: \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N} \longrightarrow (M \otimes_S N)^{\sim}$$
$$\Lambda_U(s)(\mathfrak{p}) = \lambda_{\mathfrak{p}} \alpha_{\mathfrak{p}}(s(\mathfrak{p}))$$

Since S is generated by S_1 as an S_0 -algebra, the open sets $D_+(f)$ for $f \in S_1$ cover X, and it suffices to show that $\Lambda|_{D_+(f)}$ is an isomorphism for all $f \in S_1$. The important step in the proof is showing that the following is an isomorphism of $S_{(f)}$ -modules:

$$\lambda_f : M_{(f)} \otimes_{S_{(f)}} N_{(f)} \longrightarrow (M \otimes_S N)_{(f)}$$
$$\lambda_f(m/f^j \otimes n/f^k) = (m \otimes n)/f^{j+k}$$

The fact that this is a well-defined map follows from the same argument used above for $\lambda_{\mathfrak{p}}$. For $m, n \in \mathbb{Z}$ define a \mathbb{Z} -bilinear map $M_m \times N_n \longrightarrow M_{(f)} \otimes_{S_{(f)}} N_{(f)}$ by mapping (x, y) to $x/f^m \otimes y/f^n$ (if m < 0 replace x/f^m by $f^{-m}x/1$). This induces $M_m \otimes_{\mathbb{Z}} N_n \longrightarrow M_{(f)} \otimes_{S_{(f)}} N_{(f)}$ and hence a morphism $M \otimes_{\mathbb{Z}} N \longrightarrow M_{(f)} \otimes_{S_{(f)}} N_{(f)}$. This morphism maps elements of the form $(sx) \otimes y - x \otimes (sy)$ to zero, and hence induces

$$\gamma_f: M \otimes_S N \longrightarrow M_{(f)} \otimes_{S_{(f)}} N_{(f)}$$
$$\gamma_f(m \otimes n) = \sum_{d, e \in \mathbb{Z}} m_d / f^d \otimes n_e / f^e$$

This is a morphism of S-modules relative to the canonical ring morphism $S \longrightarrow S_{(f)}$ which maps $s \in S_q$ to s/f^q . Since this morphism maps powers of f to units, we obtain a morphism of S-modules $(M \otimes_S N)_f \longrightarrow M_{(f)} \otimes_{S_{(f)}} N_{(f)}$ which maps $(m \otimes n)/f^j$ to $\gamma_f(m \otimes n)$. The restriction to $(M \otimes_S N)_{(f)}$ gives a morphism of $S_{(f)}$ -modules

$$\lambda'_f : (M \otimes_S N)_{(f)} \longrightarrow M_{(f)} \otimes_{S_{(f)}} N_{(f)}$$
$$\lambda'_f((m \otimes n)/f^j) = \sum_{d,e \in \mathbb{Z}} m_d/f^d \otimes n_e/f^e$$

It is easily checked that λ'_f is inverse to λ_f , completing the proof that λ_f is an isomorphism. Let $\varphi : D_+(f) \longrightarrow Spec(S_{(f)})$ be the canonical isomorphism of schemes. Combining earlier notes, there is an isomorphism of $\mathcal{O}_{Spec(S_{(f)})}$ -modules

$$\begin{split} \kappa : \varphi_* \left((\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N})|_{D_+(f)} \right) &\cong \varphi_* (\widetilde{M}|_{D_+(f)} \otimes_{\mathcal{O}_X|_{D_+(f)}} \widetilde{N}|_{D_+(f)}) \\ &\cong \varphi_* (\widetilde{M}|_{D_+(f)}) \otimes_{\mathcal{O}_{SpecS_{(f)}}} \varphi_* (\widetilde{N}|_{D_+(f)}) \\ &\cong \widetilde{M_{(f)}} \otimes_{\mathcal{O}_{SpecS_{(f)}}} \widetilde{N_{(f)}} \\ &\cong (M_{(f)} \otimes_{S_{(f)}} N_{(f)})^{\sim} \end{split}$$

If V is an open subset of $Spec(S_{(f)})$, $\mathfrak{p} \in \varphi^{-1}V$ and $s \in (\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N})(\varphi^{-1}V)$ with $s(\mathfrak{p}) = (U, \sum_i a_i \otimes b_i)$ with $U \subseteq \varphi^{-1}V$ and $a_i \in \widetilde{M}(U), b_i \in \widetilde{N}(U)$ such that $a_i(\mathfrak{p}) = m_i/s_i \in M_{(\mathfrak{p})}$ and $b_i(\mathfrak{p}) = n_i/t_i \in N_{(\mathfrak{p})}$, then

$$\kappa_V(s)(\varphi(\mathfrak{p})) = \sum_i (m_i/f^{j_i} \otimes n_i/f^{k_i})/(s_i t_i/f^{j_i+k_i})$$

where m_i, s_i are of degree j_i and n_i, t_i of degree k_i for all i. To show that $\Lambda|_{D_+(f)}$ is an isomorphism, it suffices to show that $\varphi_*\Lambda|_{D_+(f)}$ is an isomorphism. For this it suffices to check commutativity of the following diagram:

$$\varphi_*(\widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N}) \xrightarrow{\varphi_* \Lambda|_{D_+(f)}} \varphi_*((M \otimes_S N))|_{D_+(f)})$$

$$\downarrow \omega$$

$$(M_{(f)} \otimes_{S_{(f)}} N_{(f)}) \xrightarrow{\widetilde{\lambda_f}} ((M \otimes_S N)_{(f)}))$$

But given V, \mathfrak{p} and s as above, we have

$$\begin{split} \widetilde{\lambda_f}_V(\kappa_V(s))(f(\mathfrak{p})) &= (\lambda_f)_{\varphi(\mathfrak{p})} \left(\sum_i (m_i/f^{j_i} \otimes n_i/f^{k_i})/(s_i t_i/f^{j_i+k_i}) \right) \\ &= \sum_i \lambda_f \left(m_i/f^{j_i} \otimes n_i/f^{k_i} \right)/(s_i t_i/f^{j_i+k_i}) \\ &= \sum_i \left((m_i \otimes n_i)/f^{j_i+k_i} \right)/(s_i t_i/f^{j_i+k_i}) \\ &= \sum_i \gamma_{\mathfrak{p}}^{-1}(m_i \otimes n_i/s_i t_i) \\ &= \omega_V(\Lambda_{\varphi^{-1}V}(s))(f(\mathfrak{p})) \end{split}$$

as required. Hence $\Lambda : \widetilde{M} \otimes_{\mathcal{O}_X} \widetilde{N} \longrightarrow (M \otimes_S N)^{\sim}$ is an isomorphism of \mathcal{O}_X -modules. It is straightforward to check that Λ is natural in N and M.

Corollary 4. Let S be a graded ring generated by S_1 as an S_0 -algebra. If M, N are graded S-modules and \mathfrak{p} homogenous prime of S not containing S_+ then there is an isomorphism of $S_{(\mathfrak{p})}$ -modules $\lambda_{\mathfrak{p}}: M_{(\mathfrak{p})} \otimes_{S_{(\mathfrak{p})}} N_{(\mathfrak{p})} \longrightarrow (M \otimes_S N)_{(\mathfrak{p})}$ natural in M, N.

Proof. We know that under the stated hypotheses Λ is an isomorphism. Hence the induced morphisms on the stalks are isomorphisms, implying that $\lambda_{\mathfrak{p}}$ is an isomorphism for all $\mathfrak{p} \in X$. Naturality of this isomorphism with respect to morphisms of graded modules is easy to check. \Box

Proposition 5. Let $\varphi : S \longrightarrow T$ be a morphism of graded rings, where S is generated by S_1 as an S_0 -algebra. If \mathfrak{p} is a homogenous prime ideal of T not containing $\varphi(S_+)$ then for every graded S-module M there is a canonical isomorphism of $T_{(\mathfrak{p})}$ -modules

$$\begin{split} \kappa: M_{(\varphi^{-1}\mathfrak{p})} \otimes_{S_{(\varphi^{-1}\mathfrak{p})}} T_{(\mathfrak{p})} & \longrightarrow (M \otimes_S T)_{(\mathfrak{p})} \\ m/s \otimes r/t & \mapsto (m \otimes r)/\varphi(s)t \end{split}$$

Proof. Note that $T_{(\mathfrak{p})}$ becomes a $S_{(\varphi^{-1}\mathfrak{p})}$ -module via the ring morphism $\varphi_{(\mathfrak{p})} : S_{(\varphi^{-1}\mathfrak{p})} \longrightarrow T_{(\mathfrak{p})}$. Define a map

$$\begin{split} \varepsilon : M_{(\varphi^{-1}\mathfrak{p})} \times T_{(\mathfrak{p})} &\longrightarrow (M \otimes_S T)_{(\mathfrak{p})} \\ (m/s, r/t) &\mapsto (m \otimes r)/\varphi(s)t \end{split}$$

One checks that this map is well-defined and $S_{(\varphi^{-1}\mathfrak{p})}$ -bilinear, so it induces a morphism of $T_{(\mathfrak{p})}$ modules

$$\begin{split} \kappa: M_{(\varphi^{-1}\mathfrak{p})} \otimes_{S_{(\varphi^{-1}\mathfrak{p})}} T_{(\mathfrak{p})} & \longrightarrow (M \otimes_S T)_{(\mathfrak{p})} \\ m/s \otimes r/t & \mapsto (m \otimes r)/\varphi(s)t \end{split}$$

The tricky part is defining the inverse to κ . Let $f \in S_1$ be such that $f \notin \varphi^{-1}\mathfrak{p}$ (this is possible since the $D_+(f)$ for $f \in S_1$ cover $\operatorname{Proj}S$). For $i \in \mathbb{Z}$ and $j \geq 0$ define a \mathbb{Z} -bilinear map $M_i \times T_j \longrightarrow M_{(\varphi^{-1}\mathfrak{p})} \otimes_{S_{(\varphi^{-1}\mathfrak{p})}} T_{(\mathfrak{p})}$ by mapping (m, r) to $m/f^i \otimes r/\varphi(f)^j$. Inducing morphisms out of the tensor products over \mathbb{Z} gives a morphism of abelian groups $M \otimes_{\mathbb{Z}} T \longrightarrow M_{(\varphi^{-1}\mathfrak{p})} \otimes_{S_{(\varphi^{-1}\mathfrak{p})}} T_{(\mathfrak{p})}$, which maps elements of the form $(m \cdot s) \otimes t - m \otimes (s \cdot t)$ to zero, and thus induces a morphism of T-modules $M \otimes_S T \longrightarrow M_{(\varphi^{-1}\mathfrak{p})} \otimes_{S_{(\varphi^{-1}\mathfrak{p})}} T_{(\mathfrak{p})}$. The T-module structure on the second group is given by the canonical ring morphism $T \longrightarrow T_{(\mathfrak{p})}$, which maps $t \in T_q$ to $t/\varphi(f)^q$.

The morphism $T \longrightarrow T_{(\mathfrak{p})}$ maps homogenous elements of T not in \mathfrak{p} to units. So we end up with a morphism of abelian groups

$$\begin{aligned} \kappa' : (M \otimes_S T)_{(\mathfrak{p})} &\longrightarrow M_{(\varphi^{-1}\mathfrak{p})} \otimes_{S_{(\varphi^{-1}\mathfrak{p})}} T_{(\mathfrak{p})} \\ \kappa'((m \otimes r)/q) &= m/f^i \otimes r\varphi(f)^i/q \end{aligned}$$

where $m \in M_i, r \in T_j$ and $q \in T_{i+j}$. It is not difficult to check that κ, κ' are mutually inverse, completing the proof that κ is an isomorphism of $T_{(\mathfrak{p})}$ -modules.

Proposition 6. Let $\varphi : S \longrightarrow T$ be a morphism of graded rings where S is generated by S_1 as an S_0 -algebra, and let $f : U \longrightarrow \operatorname{Proj} S$ be the induced morphism of schemes. If M is a graded S-module there is an isomorphism of sheaves of modules on U natural in M

$$\eta: f^*(\widetilde{M}) \longrightarrow (M \otimes_S T)^{\sim}|_U$$
$$[T, m/s] \stackrel{.}{\otimes} \dot{b/t} \mapsto (m \otimes b)/\varphi(s)t$$

Proof. Let Z be the presheaf of \mathcal{O}_U modules defined for $W \subseteq U$ by

$$Z(W) = (f^{-1}M)(W) \otimes_{f^{-1}\mathcal{O}_X(W)} \mathcal{O}_Y(W)$$

For $\mathfrak{p} \in U$ there is an isomorphism of groups

$$\tau_{\mathfrak{p}}: Z_{\mathfrak{p}} \cong \widetilde{M}_{\varphi^{-1}\mathfrak{p}} \otimes_{\mathcal{O}_{X,\varphi^{-1}\mathfrak{p}}} \mathcal{O}_{Y,\mathfrak{p}} \cong M_{(\varphi^{-1}\mathfrak{p})} \otimes_{S_{(\varphi^{-1}\mathfrak{p})}} T_{(\mathfrak{p})} \cong (M \otimes_{S} T)_{(\mathfrak{p})}$$

If $W \subseteq U$ and $a \in (f^{-1}\widetilde{M})(W), b \in \mathcal{O}_Y(W)$ with $a(\mathfrak{p}) = (Q, (W, t)), W \supseteq f(Q), t \in \widetilde{M}(W)$ then $\tau_{\mathfrak{p}}(V, a \otimes b) = (m \otimes r)/\varphi(s)t$ where $t(\varphi^{-1}\mathfrak{p}) = m/s$ and $b(\mathfrak{p}) = r/t$. We define

$$\eta: f^*(M) \longrightarrow (M \otimes_S T)^{\sim}|_U$$

$$\eta_W(s)(\mathfrak{p}) = \tau_{\mathfrak{p}}(s(\mathfrak{p}))$$

One checks that η is a well-defined morphism of \mathcal{O}_U -modules, which is an isomorphism since $\tau_{\mathfrak{p}}$ is an isomorphism for every $\mathfrak{p} \in U$. Naturality in M is easily checked.

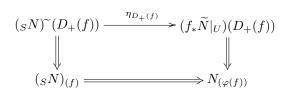
Proposition 7. Let $\varphi : S \longrightarrow T$ be a morphism of graded rings and $f : U \longrightarrow ProjS$ the induced morphism of schemes. If N is a graded T-module then there is an isomorphism of sheaves of modules on ProjS natural in N

$$\eta : (sN)^{\sim} \longrightarrow f_*(N|_U)$$
$$\dot{n/s} \mapsto n/\dot{\varphi}(s)$$

Proof. For $\mathfrak{p} \in U$ define a morphism of abelian groups $z_{\mathfrak{p}} : ({}_{S}N)_{(\varphi^{-1}\mathfrak{p})} \longrightarrow N_{(\mathfrak{p})}$ by $n/s \mapsto n/\varphi(s)$. One checks that $z_{\mathfrak{p}}$ is compatible with the ring morphism $\varphi_{(\mathfrak{p})} : S_{(\varphi^{-1}\mathfrak{p})} \longrightarrow T_{(\mathfrak{p})}$. For $V \subseteq X$ and $s \in ({}_{S}N)^{\sim}(V)$ and $\mathfrak{q} \in f^{-1}V$ we define

$$\eta_V(s)(\mathbf{q}) = z_{\mathbf{q}}(s(\varphi^{-1}\mathbf{q}))$$

Since $\eta_V(s)$ is clearly regular, this is well-defined. One checks that η is a morphism of \mathcal{O}_X -modules as in the affine case. Since the open sets $D_+(f)$ for $f \in S_+$ form a basis for X, to show that η is an isomorphism it suffices to show that $\eta_{D_+(f)}$ is an isomorphism for all $f \in S_+$. But using (5.11b) and the fact that $f^{-1}D_+(f) = D_+(\varphi(f))$ for $f \in S_+$ we obtain a commutative diagram



Where the bottom map is the isomorphism of abelian groups $n/f^m \mapsto n/\varphi(f)^m$. This completes the proof that $\eta : ({}_SN)^{\sim} \longrightarrow f_*(\widetilde{N}|_U)$ is an isomorphism, which one easily checks is natural in N. In particular, considering T as a graded T-module, $f_*(\mathcal{O}_Y|_U) \cong \widetilde{T}$ as \mathcal{O}_X -modules. \Box

Definition 3. Let A be a ring and S a graded A-algebra with structural morphism $\varphi : A \longrightarrow S$. If we grade A-canonically then any A-module M is a graded A-module, and therefore $M \otimes_A S$ is canonically a graded S-module. If $\phi : M \longrightarrow M'$ is a morphism of A-modules then $\phi \otimes_A S : M \otimes_A S \longrightarrow M' \otimes_A S$ preserves grade, so we have an additive functor

$$-\otimes_A S: A\mathbf{Mod} \longrightarrow S\mathbf{GrMod}$$

It is not difficult to check that this morphism is left adjoint to the functor $(-)_0 : SGrMod \longrightarrow AMod$ which picks out the degree 0 subgroup, which is an A-module. The unit $M \longrightarrow (M \otimes_A S)_0$ is the map $m \mapsto m \otimes 1$.

Proposition 8. Let A be a ring, S a graded A-algebra and \mathfrak{p} a homogenous prime ideal of S. Then for every A-module M there is a canonical isomorphism of $S_{(\mathfrak{p})}$ -modules

$$\begin{split} \kappa : M_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} S_{(\mathfrak{p})} &\longrightarrow (M \otimes_A S)_{(\mathfrak{p})} \\ m/s \otimes r/t &\mapsto (m \otimes r)/\varphi(s)t \end{split}$$

where $\mathfrak{q} = \mathfrak{p} \cap A$.

Proof. Let $\varphi : A \longrightarrow S$ be the structural morphism and note that $S_{(\mathfrak{p})}$ becomes an $A_{\mathfrak{q}}$ -module via the canonical ring morphism $A_{\mathfrak{q}} \longrightarrow S_{(\mathfrak{p})}$. Define a map

$$\varepsilon: M_{\mathfrak{q}} \times S_{(\mathfrak{p})} \longrightarrow (M \otimes_A S)_{(\mathfrak{p})}$$
$$(m/s, r/t) \mapsto (m \otimes r)/\varphi(s)t$$

One checks that this map is well-defined and A_q -bilinear, so it induces a morphism of $S_{(p)}$ -modules

$$\kappa: M_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} S_{(\mathfrak{p})} \longrightarrow (M \otimes_A S)_{(\mathfrak{p})}$$
$$m/s \otimes r/t \mapsto (m \otimes r)/\varphi(s)t$$

To show that κ is an isomorphism we construct its inverse. Let $t \notin \mathfrak{p}$ be homogenous of degree $d \geq 0$ and define a bilinear map $M \times S_d \longrightarrow M_\mathfrak{q} \otimes_{A_\mathfrak{q}} S_{(\mathfrak{p})}$ by $(m, s) \mapsto m/1 \otimes s/t$. This induces a morphism of abelian groups

$$\begin{aligned} \phi'_t : M \otimes_{\mathbb{Z}} S_d &\longrightarrow M_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} S_{(\mathfrak{p})} \\ m \otimes s &\mapsto m/1 \otimes s/t \end{aligned}$$

If $\alpha: M \otimes_{\mathbb{Z}} S \longrightarrow M \otimes_A S$ is the canonical morphism of abelian groups, then for $d \geq 0$ the graded subgroup $(M \otimes_A S)_d$ is $\alpha((M \otimes_{\mathbb{Z}} S)_d)$ where $(M \otimes_{\mathbb{Z}} S)_d$ is the image of the monomorphism of abelian groups $M \otimes_{\mathbb{Z}} S_d \longrightarrow M \otimes_{\mathbb{Z}} S$ (GRM,Section 6). Therefore there is an isomorphism of abelian groups $(M \otimes_A S)_d \cong M \otimes_{\mathbb{Z}} S_d/K$ where K is the subgroup generated by elements of the form $(a \cdot x) \otimes y - x \otimes (a \cdot y)$ for $a \in A, x \in M, y \in S_d$. But ϕ'_t takes the value zero on such elements, so we have a morphism of abelian groups

$$\phi_t : (M \otimes_A S)_d \longrightarrow M_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} S_{(\mathfrak{p})}$$
$$m \otimes s \mapsto m/1 \otimes s/t$$

We define

$$\kappa' : (M \otimes_A S)_{(\mathfrak{p})} \longrightarrow M_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} S_{(\mathfrak{p})}$$
$$z/t \mapsto \phi_t(z)$$

To see this is well-defined, suppose that z/t = z'/t' where $t \in S_d, t' \in S_e$ and $z \in (M \otimes_A S)_d, z' \in (M \otimes_A S)_e$. Suppose $z = \sum_i m_i \otimes s_i$ and $z' = \sum_i m'_i \otimes s'_i$ and let $q \notin \mathfrak{p}$ be homogenous with $qt' \cdot z = qt \cdot z'$ in $M \otimes_A S$. Therefore

$$\sum_i m_i \otimes s_i qt' = \sum_i m'_i \otimes s'_i qt$$

Applying $\phi_{qtt'}$ to both sides gives $\phi_t(z) = \phi_{t'}(z')$, which shows that κ' is a well-defined morphism of sets. It is a morphism of abelian groups since

$$\phi_t(z) + \phi_{t'}(z') = \phi_{tt'}(t'z + tz')$$

Since κ is clearly inverse to κ' this completes the proof.

Corollary 9. Let A be a ring and S a graded A-algebra with structural morphism $f : \operatorname{ProjS} \longrightarrow \operatorname{SpecA}$. For any A-module M there is an isomorphism of sheaves of modules on ProjS natural in M

$$\zeta : f^*(\widetilde{M}) \longrightarrow (M \otimes_A S)^{\sim}$$
$$[Q, m/s] \otimes b/t \mapsto (m \otimes b)/\varphi(s)t$$

Proof. Set Y = ProjS, X = SpecA and for a homogenous prime ideal \mathfrak{p} write $\mathfrak{q} = \mathfrak{p} \cap A$ and using Proposition 8 define $\zeta_{\mathfrak{p}}$ to be the following isomorphism of $\mathcal{O}_{Y,\mathfrak{p}}$ -modules

$$\zeta_{\mathfrak{p}}: Z_{\mathfrak{p}} \cong \widetilde{M}_{\mathfrak{q}} \otimes_{\mathcal{O}_{X,\mathfrak{q}}} \mathcal{O}_{Y,\mathfrak{p}} \cong M_{\mathfrak{q}} \otimes_{A_{\mathfrak{q}}} S_{(\mathfrak{p})} \cong (M \otimes_{A} S)_{(\mathfrak{p})}$$

where Z is the presheaf of modules $Z(U) = f^{-1}\widetilde{M}(U) \otimes \mathcal{O}_Y(U)$ on ProjS which sheafifies to give $f^*(\widetilde{M})$, and $\varphi: A \longrightarrow S$ is the structural morphism. Then for open $U \subseteq ProjS$ we define

$$\zeta_U(s)(\mathfrak{p}) = \zeta_{\mathfrak{p}}(s(\mathfrak{p}))$$

To see that this is a well-defined section of $(M \otimes_A S)^{\sim}$, note that every point $\mathfrak{p} \in U$ has an open neighborhood $\mathfrak{p} \in V \subseteq U$ such that $s|_V$ is of the form

$$s|_V = \sum_{i=1}^{n} [Q, m_i/s_i] \stackrel{.}{\otimes} b_i/t_i$$

where $m_i \in M, s_i \in A$ and $b_i, t_i \in S$ are homogenous of the same degree for each *i* and *Q* is an open subset of *X* containing f(V). Using this fact it is not difficult to see that $\zeta_U(s) \in (M \otimes_A S)^{\sim}(U)$. One checks that ζ is a well-defined morphism of sheaves of modules, which is an isomorphism since ζ_p is for every $\mathfrak{p} \in ProjS$. Naturality in *M* is easily checked.

Proposition 10. Let S be a finitely generated graded A-algebra with structural morphism f: $ProjS \longrightarrow SpecA$. For any graded S-module M there is an isomorphism of sheaves of modules on SpecA natural in M

$$\begin{aligned} \zeta: \Gamma(\operatorname{Proj} S, \widetilde{M})^{\sim} &\longrightarrow f_{*}(\widetilde{M}) \\ \dot{n/s} &\mapsto (1/\varphi(s)) \cdot n|_{f^{-1}U} \end{aligned}$$

where $\varphi: A \longrightarrow S$ is the structural morphism.

Proof. Set Y = ProjS and X = SpecA. The canonical ring morphism $A \longrightarrow \Gamma(Y)$ makes $\Gamma(Y, \widetilde{M})$ into an A-module. It follows from (TPC, Proposition 3), (TPC, Proposition 1) and (H,5.8) that the functor $f_* : \mathfrak{Mod}(Y) \longrightarrow \mathfrak{Mod}(X)$ preserve quasi-coherentness. Therefore we have an isomorphism of sheaves of modules on X (MOS, Proposition 3)

$$\Gamma(Y,\widetilde{M})^{\sim} = \Gamma(X, f_*(\widetilde{M}))^{\sim} \cong f_*(\widetilde{M})$$

This is clearly natural in M and has the desired effect on the section n/s.

Definition 4. Let S be a graded ring and set X = ProjS. For any $n \in \mathbb{Z}$ we define the sheaf of modules $\mathcal{O}_X(n) = S(n)^{\sim}$ (GRM, Definition 3) which we will denote by $\mathcal{O}(n)$ if there is no chance of confusion. We call $\mathcal{O}_X(1)$ the twisting sheaf. For any sheaf of modules \mathscr{F} we denote $\mathscr{F} \otimes \mathcal{O}_X(n)$ by $\mathscr{F}(n)$, and tensoring with $\mathcal{O}_X(n)$ defines the additive functor $-(n) : \mathfrak{Mod}(X) \longrightarrow \mathfrak{Mod}(X)$.

Proposition 11. Let S be a graded ring generated by S_1 as an S_0 -algebra and set X = ProjS. For $m, n \in \mathbb{Z}$ there is a canonical isomorphism of sheaves of modules

$$\tau^{m,n}: \mathcal{O}_X(m) \otimes \mathcal{O}_X(n) \longrightarrow \mathcal{O}_X(m+n)$$
$$\dot{a/s} \otimes \dot{b/t} \mapsto a\dot{b/st}$$

Lemma 12. Let S be a graded ring generated by S_1 as an S_0 -algebra and set X = ProjS. For $n, e, d \in \mathbb{Z}$ the following diagram commutes



Proposition 13. Let $\varphi : S \longrightarrow T$ be a morphism of graded rings where S is generated by S_1 as an S_0 -algebra. If $\Phi : U \longrightarrow ProjS$ is the induced morphism of schemes then there is a canonical isomorphism of sheaves of modules on U

$$\beta : \Phi^* \mathcal{O}(1) \longrightarrow \mathcal{O}(1)|_U$$
$$\beta_Q([W, \dot{a}/s] \otimes \dot{b}/t) = \varphi(a)\dot{b}/\varphi(s)t$$

Where $Q \subseteq U, W \supseteq \Phi(Q)$ are open with Q nonempty, $a \in S_{d+1}, s \in S_d$ for some $d \ge 0$ and $b, t \in T_e$ for some $e \ge 0$ be such that $Q \subseteq D_+(t)$ and $W \subseteq D_+(s)$.

Proof. This follows immediately from the definition of the isomorphism β and our notes in previous Sections.

1 Sheaf Hom

Lemma 14. Let S be a graded ring generated by S_1 as an S_0 -algebra, and set X = ProjS. For $n \in \mathbb{Z}$ there is a canonical isomorphism of sheaves of modules

$$\lambda : \mathcal{O}(-n) \longrightarrow \mathcal{O}(n)^{\vee}$$
$$\dot{\lambda}_U(a/s)_V(b/t) = ab/st$$

Proof. There is a canonical isomorphism of sheaves of modules $\tau^{n,-n} : \mathcal{O}(n) \otimes \mathcal{O}(-n) \cong \mathcal{O}_X$. Tensoring both sides with $\mathcal{O}(n)^{\vee}$ and using (MRS,Lemma 83) we obtain an isomorphism. There is another morphism of sheaves of modules $\lambda' : \mathcal{O}(-n) \longrightarrow \mathcal{O}(n)^{\vee}$ corresponding under the bijection of (MRS,Proposition 76) to $\tau^{-n,n} : \mathcal{O}(-n) \otimes \mathcal{O}(n) \longrightarrow \mathcal{O}_X$. It is straightforward to check that in fact $\lambda' = \lambda$, which yields the action of λ on the special sections in the statement.

Proposition 15. Let S be a graded ring generated by S_1 as an S_0 -algebra, and set X = ProjS. For sheaves of modules \mathscr{F}, \mathscr{G} on X and $n \in \mathbb{Z}$ there are canonical isomorphisms of sheaves of modules natural in \mathscr{F}, \mathscr{G}

$$\mathscr{H}om(\mathscr{F},\mathscr{G}(n)) \cong \mathscr{H}om(\mathscr{F}(-n),\mathscr{G}) \cong \mathscr{H}om(\mathscr{F},\mathscr{G})(n)$$

Proof. Using Lemma 14, (MRS,Proposition 75) and (MRS,Proposition 77) we have a canonical isomorphism of sheaves of modules

$$\begin{aligned} \mathscr{H}om(\mathscr{F},\mathscr{G}(n)) &\cong \mathscr{H}om(\mathscr{F},\mathcal{O}(n)\otimes\mathscr{G}) \\ &\cong \mathscr{H}om(\mathscr{F},\mathcal{O}(-n)^{\vee}\otimes\mathscr{G}) \\ &\cong \mathscr{H}om(\mathscr{F},\mathscr{H}om(\mathcal{O}(-n),\mathscr{G})) \\ &\cong \mathscr{H}om(\mathscr{F}\otimes\mathcal{O}(-n),\mathscr{G}) = \mathscr{H}om(\mathscr{F}(-n),\mathscr{G}) \end{aligned}$$

Continuing we have

$$\begin{aligned} \mathscr{H}om(\mathscr{F}(-n),\mathscr{G}) &\cong \mathscr{H}om(\mathcal{O}(-n)\otimes\mathscr{F},\mathscr{G}) \\ &\cong \mathscr{H}om(\mathcal{O}(-n),\mathscr{H}om(\mathscr{F},\mathscr{G})) \\ &\cong \mathcal{O}(-n)^{\vee}\otimes\mathscr{H}om(\mathscr{F},\mathscr{G}) \\ &\cong \mathcal{O}(n)\otimes\mathscr{H}om(\mathscr{F},\mathscr{G}) \cong \mathscr{H}om(\mathscr{F},\mathscr{G})(n) \end{aligned}$$

as required.

Corollary 16. Let S be a graded ring generated by S_1 as an S_0 -algebra, and set $X = \operatorname{Proj}S$. For sheaves of modules \mathscr{F}, \mathscr{G} on X and $n \in \mathbb{Z}$ there is a canonical isomorphism of $\Gamma(X, \mathcal{O}_X)$ -modules natural in \mathscr{F}, \mathscr{G}

$$Hom(\mathscr{F},\mathscr{G}(n)) \cong Hom(\mathscr{F}(-n),\mathscr{G})$$

Corollary 17. Let S be a graded ring generated by S_1 as an S_0 -algebra, and set X = ProjS. For $m, n \in \mathbb{Z}$ there is a canonical isomorphism of sheaves of modules

$$\gamma: \mathcal{O}(m-n) \longrightarrow \mathscr{H}om(\mathcal{O}(n), \mathcal{O}(m))$$
$$\gamma_U(\dot{a/s})_V(\dot{b/t}) = a\dot{b/st}$$

Proof. For $m, n \in \mathbb{Z}$ we have an isomorphism of sheaves of modules (MRS, Proposition 75)

$$\mathcal{H}om(\mathcal{O}(n), \mathcal{O}(m)) \cong \mathcal{O}(n)^{\vee} \otimes \mathcal{O}(m)$$
$$\cong \mathcal{O}(-n) \otimes \mathcal{O}(m)$$
$$\cong \mathcal{O}(m-n)$$

Call the inverse of this morphism γ_1 . There is another morphism of sheaves of modules $\gamma_2 : \mathcal{O}(m-n) \longrightarrow \mathscr{H}om(\mathcal{O}(n), \mathcal{O}(m))$ corresponding under the bijection of (MRS,Proposition 76) to the morphism $\tau^{m-n,n} : \mathcal{O}(m-n) \otimes \mathcal{O}(n) \longrightarrow \mathcal{O}(m)$. We claim that $\gamma_1 = \gamma_2$. To show this, we reduce to a section $a/s \in \Gamma(U, \mathcal{O}(m-n))$ with U contained in $D_+(f)$ for some $f \in S_1$. Then using the fact that $1/f^n \otimes af^n/s \in \Gamma(U, \mathcal{O}(-n) \otimes \mathcal{O}(m))$ maps to a/s under $\tau^{-n,m}$, one checks that γ_1 and γ_2 agree on a/s. This isomorphism γ now has the required properties.

Remark 2. With the notation of Proposition 17, let $s \in S_{m-n}$ be given. Then multiplication by s defines a morphism of graded S-modules $S(n) \longrightarrow S(m)$, which induces a morphism of sheaves of modules $\mathcal{O}(n) \longrightarrow \mathcal{O}(m)$. This is precisely the morphism $\gamma_X(s/1)$.

2 Quasi-Structures

See (GRM,Definition 10) for the definition of the equivalence relation of "quasi-isomorphism" on graded modules over a graded ring, which we use in the next result.

Proposition 18. Let S be a graded ring generated by S_1 as an S_0 -algebra. If M, N are quasiisomorphic graded S-modules then there is a canonical isomorphism of sheaves of modules $\widetilde{M} \cong \widetilde{N}$. In particular if $M \sim 0$ then $M^{\sim} = 0$.

Proof. Let M be a graded S-module, $\mathfrak{p} \in ProjS$ and $d \ge 0$. Let $f \in S_1$ be such that $f \notin \mathfrak{p}$ and define a morphism of $S_{(\mathfrak{p})}$ -modules

$$\gamma_f: M\{d\}_{(\mathfrak{p})} \longrightarrow M_{(\mathfrak{p})}$$
$$m/s \mapsto m/sf^d$$

This is an isomorphism with inverse $m/s \mapsto f^d m/s$. If N is a graded S-module with $M \sim N$, so there is an isomorphism of graded S-modules $\phi : M\{d\} \longrightarrow N\{d\}$ for some $d \geq 0$, then the following composite is an isomorphism of $S_{(\mathfrak{p})}$ -modules

$$M_{(\mathfrak{p})} \cong M\{d\}_{(\mathfrak{p})} \cong N\{d\}_{(\mathfrak{p})} \cong N_{(\mathfrak{p})}$$
$$m/s \mapsto f^d m/s \mapsto \phi(f^d m)/s \mapsto \phi(f^d m)/s f^d$$

One checks easily that this does not depend on the homogenous $f \in S_1 \setminus \mathfrak{p}$ chosen, so we have a canonical isomorphism of $S_{(\mathfrak{p})}$ -modules $\tau_{\mathfrak{p}} : M_{(\mathfrak{p})} \longrightarrow N_{(\mathfrak{p})}$ for every homogenous prime ideal $\mathfrak{p} \in ProjS$. In the usual way one checks that this gives rise to an isomorphism of sheaves of modules

$$\tau: \widetilde{M} \longrightarrow \widetilde{N}$$
$$\tau_U(s)(\mathfrak{p}) = \tau_{\mathfrak{p}}(s(\mathfrak{p}))$$

which completes the proof.

Corollary 19. Let S be a graded ring generated by S_1 as an S_0 -algebra. If $\phi : M \longrightarrow N$ is a morphism of graded S-modules then

- (i) ϕ is a quasi-isomorphism $\Longrightarrow \widetilde{\phi} : \widetilde{M} \longrightarrow \widetilde{N}$ is an isomorphism.
- (ii) ϕ is a quasi-monomorphism $\Longrightarrow \widetilde{\phi} : \widetilde{M} \longrightarrow \widetilde{N}$ is a monomorphism.
- (iii) ϕ is a quasi-epimorphism $\Longrightarrow \widetilde{\phi} : \widetilde{M} \longrightarrow \widetilde{N}$ is an epimorphism.

Proof. The claims (i), (ii), (iii) follow from (GRM,Lemma 26) and exactness of the functor $\tilde{-}$.

Proposition 20. Let S be a graded ring finitely generated by S_1 as an S_0 -algebra, and let M be a quasi-finitely generated graded S-module. Then

(i) $M \sim 0$ if and only if $M^{\sim} = 0$.

(ii) If S is noetherian then M^{\sim} is a coherent sheaf of modules on ProjS.

Proof. (i) We know from Proposition 18 that if $M \sim 0$ then $M^{\sim} = 0$. For the converse we can reduce to the case where M is finitely generated (GRM,Lemma 24). If $\widetilde{M} = 0$ then $M_{(\mathfrak{p})} = 0$ for every $\mathfrak{p} \in ProjS$, and therefore $M \sim 0$ by (GRM,Proposition 30).

(*ii*) Using Proposition 18 and (GRM,Lemma 24) we can reduce to the case where M is finitely generated, which is (H,5.11c).

Corollary 21. Let S be a noetherian graded ring finitely generated by S_1 as an S_0 -algebra and $\phi: M \longrightarrow N$ a morphism of quasi-finitely generated graded S-modules. Then

(i) ϕ is a quasi-monomorphism $\Leftrightarrow \widetilde{\phi} : \widetilde{M} \longrightarrow \widetilde{N}$ is a monomorphism.

(ii) ϕ is a quasi-epimorphism $\Leftrightarrow \widetilde{\phi} : \widetilde{M} \longrightarrow \widetilde{N}$ is an epimorphism.

(iii) ϕ is a quasi-isomorphism $\Leftrightarrow \widetilde{\phi} : \widetilde{M} \longrightarrow \widetilde{N}$ is an isomorphism.

Proof. Using (GRM,Lemma 25) and Proposition 20 we can prove the reverse implications in Corollary 19 using exactness of $\tilde{-}$.