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These notes closely follow Matsumura’s book [Mat80] on commutative algebra. Proofs are
the ones given there, sometimes with slightly more detail. Our focus is on the results needed in
algebraic geometry, so some topics in the book do not occur here or are not treated in their full
depth. In particular material the reader can find in the more elementary [AM69] is often omitted.
References on dimension theory are usually to Robert Ash’s webnotes since the author prefers this
approach to that of [AM69].
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1 General Rings

Throughout these notes all rings are commutative, and unless otherwise specified all modules are
left modules. A local ring A is a commutative ring with a single maximal ideal (we do not require
A to be noetherian).

Lemma 1 (Nakayama). Let A be a ring, M a finitely generated A-module and I an ideal of A.
Suppose that IM = M . Then there exists an element a ∈ A of the form a = 1+x, x ∈ I such that
aM = 0. If moreover I is contained in the Jacobson radical, then M = 0.

Corollary 2. Let A be a ring, M an A-module, N and N ′ submodules of M and I an ideal of
A. Suppose that M = N + IN ′, and that either (a) I is nilpotent or (b) I is contained in the
Jacobson radical and N ′ is finitely generated. Then M = N .
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Proof. In case (a) we have M/N = I(M/N) = I2(M/N) = · · · = 0. In (b) apply Nakayama’s
Lemma to M/N .

In particular let (A,m, k) be a local ring and M an A-module. Suppose that either m is
nilpotent or M is finitely generated. Then a subset G of M generates M iff. its image in
M/mM = M ⊗A k generates M ⊗A k as a k-vector space. In fact if N is submodule generated by
G, and if the image of G generates M ⊗A k, then M = N +mM whence M = N by the Corollary.
Since M ⊗A k is a finitely generated vector space over the field k, it has a finite basis, and if we
take an arbitrary preimage of each element this collection generates M . A set of elements which
becomes a basis in M/mM (and therefore generates M) is called a minimal basis. If M is a finitely
generated free A-module, then it is clear that

rankAM = rankk(M/mM)

In fact, of rankAM = n ≥ 1 and {x1, . . . , xn} is a basis of M , then {x1 + mM, . . . , xn + mM} is
a basis of the k-module M/mM . Or equivalently, the xi ⊗ 1 are a basis of the k-module M ⊗ k.

Let A be a ring and α : Z −→ A. The kernel is (n) for some integer n ≥ 0 which we call the
characteristic of A. The characteristic of a field is either 0 or a prime number, and if A is local
the characteristic ch(A) is either 0 or a power of a prime number (m is a primary ideal and the
contraction of primary ideals are primary, and 0 and (pn) are the only primary ideals in Z).

Lemma 3. Let A be an integral domain with quotient field K, all localisations of A can be viewed
as subrings of K and in this sense A =

⋂
mAm where the intersection is over all maximal ideals.

Proof. Given x ∈ K we put D = {a ∈ A | ax ∈ A}, we call D the ideal of denominators of x. The
element x is in A iff. D = A and x ∈ Ap iff. D * p. Therefore if x /∈ A, there exists a maximal
ideal m such that D ⊆ p and x /∈ Am for this m.

Lemma 4. Let A be a ring and S ⊆ T multiplicatively closed subsets. Then

(a) There is a canonical isomorphism of S−1A-algebras T−1A ∼= T−1(S−1A) defined by a/t 7→
(a/1)/(t/1).

(b) If M is an A-module then there is a canonical isomorphism of S−1A-modules T−1M ∼=
T−1(S−1M) defined by m/t 7→ (m/1)/(t/1).

Proof. (a) Just using the universal property of localisation we can see T−1A ∼= T−1(S−1A) as
S−1A-algebras via the map a/t 7→ (a/1)/(t/1). (b) is also easily checked.

Lemma 5. Let A be an integral domain with quotient field K and B a subring of K containing
A. If Q is the quotient field of B then there is a canonical isomorphism of B-algebras K ∼= Q.

If φ : A −→ B is a ring isomorphism and S ⊆ A is multiplicatively closed (denote also by S the
image in B) then there is an isomorphism of rings S−1A ∼= S−1B making the following diagram
commute

S−1A +3 S−1B

A
φ

+3

OO

B

OO

Lemma 6. Let A be a ring, S ⊆ A a multiplicatively closed subset and p a prime ideal with
p ∩ S = ∅. Let B = S−1A. Then there is a canonical ring isomorphism BpB

∼= Ap.

Proof. A −→ B −→ BpB sends elements of A not in p to units, so we have an induced ring
morphism Ap −→ BpB defined by a/s 7→ (a/1)/(s/1) and it is easy to check this is an isomorphism.
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Let ψ : A −→ B be a morphism of rings and I an ideal of A. The extended ideal IB consists
of sums

∑
ψ(ai)bi with ai ∈ I, bi ∈ B. Consider the exact sequence of A-modules

0 −→ I −→ A −→ A/I −→ 0

Tensoring with B gives an exact sequence of B-modules

I ⊗A B −→ A⊗A B −→ (A/I)⊗A B −→ 0

The image of I ⊗A B in B ∼= A ⊗A B is simply IB. So there is an isomorphism of B-modules
B/IB ∼= (A/I)⊗A B defined by b+ IB 7→ 1⊗ b. In fact, this is an isomorphism of rings as well.
Of course, for any two A-algebras E,F twisting gives a ring isomorphism E ⊗A F ∼= F ⊗A E.

Lemma 7. Let φ : A −→ B be a morphism of rings, S a multiplicatively closed subset of A and
set T = φ(S). Then for any B-module M there is a canonical isomorphism of S−1A-modules
natural in M

α : S−1M −→ T−1M

α(m/s) = m/φ(s)

In particular there is a canonical isomorphism of S−1A-algebras S−1B ∼= T−1B.

Proof. One checks easily that α is a well-defined isomorphism of S−1A-modules. In the case
M = B the S−1A-module S−1B becomes a ring in the obvious way, and α preserves this ring
structure.

In particular, let S be a multiplicatively closed subset of a ring A, let I be an ideal of A and
let T denote the image of S in A/I. Then there is a canonical isomorphism of rings

T−1(A/I) ∼= A/I ⊗A S−1A ∼= S−1A/I(S−1A)

(a+ I)/(s+ I) 7→ a/s+ I(S−1A)

Definition 1. A ring A is catenary if for each pair of prime ideals q ⊂ p the height of the prime
ideal p/q in A/q is finite and is equal to the length of any maximal chain of prime ideals between p
and q. Clearly the catenary property is stable under isomorphism, and any quotient of a catenary
ring is catenary. If S ⊆ A is a multiplicatively closed subset and A is catenary, then so is S−1A.

Lemma 8. Let A be a ring. Then the following are equivalent:

(i) A is catenary;

(ii) Ap is catenary for every prime ideal p;

(iii) Am is catenary for every maximal ideal m.

Proof. The implications (i) ⇒ (ii) ⇒ (iii) are obvious. (iii) ⇒ (i) If q ⊂ p are primes, find a
maximal ideal m containing p and pass to the catenary ring Am to see that the required property
is satisfied for q, p.

Lemma 9. Let A be a noetherian ring. Then A is catenary if for every pair of prime ideals q ⊂ p
we have ht.(p/q) = ht.p− ht.q.

Proof. Since A is noetherian, all involved heights are finite. Suppose A satisfies the condition and
let q ⊂ p be prime ideals. Obviously ht.(p/q) is finite, and there is at least one maximal chain
between p and q with length ht.(p/q). Let

q = q0 ⊂ q1 ⊂ · · · ⊂ qn = p

be a maximal chain of length n. Then by assumption 1 = ht.(qi/qi−1) = ht.qi − ht.qi−1 for
1 ≤ i ≤ n. Hence ht.p = ht.q + n, so n = ht.(p/q), as required.

3



Definition 2. A ring A is universally catenary if A is noetherian and every finitely generated
A-algebra is catenary. Equivalently, a noetherian ring A is universally catenary if A is catenary
and A[x1, . . . , xn] is catenary for n ≥ 1.

Lemma 10. Let A be a ring and S ⊆ A a multiplicatively closed subset. Then there is a canonical
ring isomorphism S−1(A[x]) ∼= (S−1A)[x]. In particular if q is a prime ideal of A[x] and p = q∩A
then A[x]q ∼= Ap[x]qAp[x].

Proof. The ring morphism A −→ S−1A induced A[x] −→ (S−1A)[x] which sends elements of
S ⊆ A[x] to units. So there is an induced ring morphism ϕ : S−1(A[x]) −→ (S−1A)[x] defined by

ϕ

(
a0 + a1x+ · · ·+ anx

n

s

)
=
a0

s
+
a1

s
x+ · · ·+ an

s
xn

This is easily checked to be an isomorphism. In the second claim, there is an isomorphism
Ap[x] ∼= A[x]p, where the second ring denotes (A−p)−1(A[x]), and qAp[x] denotes the prime ideal
of Ap[x] corresponding to qA[x]p. Using the isomorphism ϕ it is clear that qAp[x] ∩ Ap = pAp.
Using Lemma 6, there is clearly an isomorphism of rings A[x]q ∼= Ap[x]qAp[x].

If R is a ring and M an R-module, then let Z(M) denote the set of zero-divisors in M . That
is, all elements r ∈ R with rm = 0 for some nonzero m ∈M .

Lemma 11. Let R be a nonzero reduced noetherian ring. Then Z(R) =
⋃
i pi, with the union

being taken over all minimal prime ideals pi.

Proof. Since R is reduced,
⋂
i pi = 0. If ab = 0 with b 6= 0, then b /∈ pj for some j, and therefore

a ∈ pj ⊆
⋃
i pi. The reverse inclusion follows from the fact that no minimal prime can contain a

regular element (since otherwise by Krull’s PID Theorem it would have height ≥ 1).

Lemma 12. Let R be a nonzero reduced noetherian ring. Assume that every element of R is
either a unit or a zero-divisor. Then dim(R) = 0.

Proof. Let p1, . . . , pn be the minimal primes of R. Then by Lemma 11, Z(R) = p1 ∪ · · · ∪ pn.
Let p be a prime ideal. Since p is proper, p ⊆ Z(R) and therefore p ⊆ pi for some i. Since pi is
minimal, p = pi, so the pi are the only primes in R. Since these all have height zero, it is clear
that dim(R) = 0.

Lemma 13. Let R be a reduced ring, p a minimal prime ideal of R. Then Rp is a field.

Proof. If p = 0 this is trivial, so assume p 6= 0. Since pRp is the only prime ideal in Rp, it is also
the nilradical. So if x ∈ p then txn = 0 for some t /∈ p and n > 0. But this implies that tx is
nilpotent, and therefore zero since R is reduced. Therefore pRp = 0 and Rp is a field.

Let A1, . . . , An be rings. Let A be the product ring A =
∏n
i=1Ai. Ideals of A are in bijection

with sequences I1, . . . , In with Ii an ideal of Ai. This sequence corresponds to

I1 × · · · × In

This bijection identifies the prime ideals of A with sequences I1, . . . , In in which every Ii = Ai
except for a single Ij which is a prime ideal of Aj . So the primes look like

A1 × · · · × pi × · · · ×An

for some i and some prime ideal pi of Ai. Given i and a prime ideal pi of Ai, let p be the prime
ideal A1 × · · · × pi × · · ·An. Then the projection of rings A −→ Ai gives rise to a ring morphism

Ap −→ (Ai)pi

(a1, . . . , ai, . . . , an)/(b1, . . . , bi, . . . , bn) 7→ ai/bi
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It is easy to check that this is an isomorphism. An orthogonal set of idempotents in a ring A is a
set e1, . . . , er with 1 = e1 + · · ·+ er, e2i = ei and eiej = 0 for i 6= j. If A =

∏n
i=1Ai is a product

of rings, then the elements e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) are clearly such a set.
Conversely if e1, . . . , er is an orthogonal set of idempotents in a ring A, then the ideal eiA

becomes a ring with identity ei. The map

A −→ e1A× · · · × erA

a 7→ (e1a, . . . , era)

is a ring isomorphism.

Proposition 14. Any nonzero artinian ring A is a finite direct product of local artinian rings.

Proof. See [Eis95] Corollary 2.16. This shows that there is a finite list of maximal ideals m1, . . . ,mn

(allowing repeats) and a ring isomorphism A −→
∏n
i=1Ami

defined by a 7→ (a/1, . . . , a/1).

Proposition 15. Let ϕ : A −→ B be a surjective morphism of rings, M an A-module and
p ∈ SpecB. There is a canonical morphism of Bp-modules natural in M

κ : HomA(B,M)p −→ HomAϕ−1p
(Bp,Mϕ−1p)

κ(u/s)(b/t) = u(b)/ϕ−1(st)

If A is noetherian, this is an isomorphism.

Proof. Let a morphism of A-modules u : B −→M , s, t ∈ B \ p and b ∈ B be given. Choose k ∈ A
with ϕ(k) = st. We claim the fraction u(b)/k ∈ Mϕ−1p doesn’t depend on the choice of k. If we
have ϕ(l) = st also, then

ku(b) = u(kb) = u(ϕ(k)b) = u(ϕ(l)b) = u(lb) = lu(b)

so u(b)/l = u(b)/k, as claimed. Throughout the proof, given x ∈ B we write ϕ−1(x) for an
arbitrary element in the inverse image of x. One checks the result does not depend on this choice.
We can now define a morphism of Bp-modules κ(u/s)(b/t) = u(b)/ϕ−1(st) which one checks is
well-defined and natural in M .

Now assume that A is noetherian. In showing that κ is an isomorphism, we may as well assume
ϕ is the canonical projection A −→ A/a for some ideal a. In that case the prime ideal p is q/a for
some prime q of A containing a, and if we set S = A \ q and T = ϕ(S) we have by Lemma 7 an
isomorphism

HomA(B,M)p = T−1HomA(A/a,M)
∼= S−1HomA(A/a,M)
∼= HomS−1A(S−1(A/a), S−1M)
∼= HomS−1A(T−1(A/a), S−1M)
= HomAϕ−1p

(Bp,Mϕ−1p)

We have use the fact that A is noetherian to see that A/a is finitely presented, so we have the
second isomorphism in the above sequence. One checks easily that this isomorphism agrees with
κ, completing the proof.

Remark 1. The right adjoint HomA(B,−) to the restriction of scalars functor exists for any
morphism of rings ϕ : A −→ B, but as we have just seen, this functor is not local unless the
ring morphism is surjective. This explains why the right adjoint f ! to the direct image functor in
algebraic geometry essentially only exists for closed immersions.
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2 Flatness

Definition 3. Let A be a ring and M an A-module. We say M is flat if the functor − ⊗A M :
AMod −→ AMod is exact (equivalently M ⊗A − is exact). Equivalently M is flat if whenever
we have an injective morphism of modules N −→ N ′ the morphism N ⊗A M −→ N ′ ⊗A M is
injective. This property is stable under isomorphism.

We say M is faithfully flat if a morphism N −→ N ′ is injective if and only if N ⊗A M −→
N ′ ⊗AM is injective. This property is also stable under isomorphism. An A-algebra A −→ B is
flat if B is a flat A-module and we say A −→ B is a flat morphism.

Example 1. Nonzero free modules are faithfully flat.

Lemma 16. We have the following fundamental properties of flatness:

• Transitivity: If φ : A −→ B is a flat morphism of rings and N a flat B-module, then N is
also flat over A.

• Change of Base: If φ : A −→ B is a morphism of rings and M is a flat A-module, then
M ⊗A B is a flat B-module.

• Localisation: If A is a ring and S a multiplicatively closed subset, then S−1A is flat over A.

Proof. The second and third claims are done in our Atiyah & Macdonald notes. To prove the first
claim, let M −→ M ′ be a monomorphism of A-modules and consider the following commutative
diagram of abelian groups

M ⊗A N

��

// M ′ ⊗A N

��
M ⊗A (B ⊗B N)

��

// M ′ ⊗A (B ⊗B N)

��
(M ⊗A B)⊗B N // (M ′ ⊗A B)⊗B N

Since B is a flat A-module and N is a flat B-module the bottom row is injective, hence so is the
top row.

Lemma 17. Let φ : A −→ B be a morphism of rings and N a B-module which is flat over A. If
S is a multiplicatively closed subset of B, then S−1N is flat over A. In particular any localisation
of a flat A-module is flat.

Proof. If M −→M ′ is a monomorphism of A-modules then we have a commutative diagram

M ⊗A S−1N

��

// M ′ ⊗A S−1N

��
(M ⊗A N)⊗B S−1B // (M ′ ⊗A N)⊗B S−1B

The bottom row is clearly injective, and hence so is the top row, which shows that S−1N is flat
over A.

Lemma 18. Let A be a ring and M,N flat A-modules. Then M ⊗A N is also flat over A.

Lemma 19. Let φ : A −→ B be a flat morphism of rings and S a multiplicatively closed subset
of A. Then T = φ(S) is a multiplicatively closed subset of B and T−1B is flat over S−1A.

Proof. This follows from Lemma 7 and stability of flatness under base change.
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Lemma 20. Let A −→ B be a morphism of rings. Then the functor −⊗AB : AMod −→ BMod
preserves projectives.

Proof. The functor −⊗A B is left adjoint to the restriction of scalars functor. This latter functor
is clearly exact, so since any functor with an exact right adjoint must preserve projectives, P ⊗AB
is a projective B-module for any projective A-module P .

Lemma 21. Let A −→ B be a flat morphism of rings. If I is an injective B-module then it is
also an injective A-module.

Proof. The restriction of scalars functor has an exact left adjoint − ⊗A B : AMod −→ BMod,
and therefore preserves injectives.

Lemma 22. Let φ : A −→ B be a flat morphism of rings, and let M,N be A-modules. Then there
is an isomorphism of B-modules TorAi (M,N)⊗AB ∼= TorBi (M⊗AB,N⊗AB). If A is noetherian
and M finitely generated over A, there is an isomorphism of B-modules ExtiA(M,N) ⊗A B ∼=
ExtiB(M ⊗A B,N ⊗A B).

Proof. Let X : · · · −→ X1 −→ X0 −→ M −→ 0 be a projective resolution of the A-module M .
Since B is flat, the sequence

X ⊗A B : · · · −→ X1 ⊗A B −→ X0 ⊗A B −→M ⊗A B −→ 0

is a projective resolution of M ⊗A B. The chain complex of B-modules (X ⊗A B)⊗B (B ⊗A N)
is isomorphic to (X ⊗A N)⊗A B. The exact functor −⊗A B commutes with taking homology so
there is an isomorphism of B-modules TorAi (M,N)⊗AB ∼= TorBi (M ⊗AB,N ⊗AB), as required.

If A is noetherian andM finitely generated we can assume that theXi are finite free A-modules.
Then ExtiA(M,N) is the i-cohomology module of the sequence

0 −→ Hom(X0, N) −→ Hom(X1, N) −→ Hom(X2, N) −→ · · ·

Since tensoring with B is exact, ExtiA(M,N) ⊗A B is isomorphic as a B-module to the i-th
cohomology of the following sequence

0 −→ Hom(X0, N)⊗A B −→ Hom(X1, N)⊗A B −→ · · ·

After a bit of work, we see that this cochain complex is isomorphic to HomB(X ⊗A B,N ⊗A B),
and the i-th cohomology of this complex is ExtiB(M ⊗A B,N ⊗A B), as required.

In particular for a ring A and prime ideal p ⊆ A we have isomorphisms of Ap-modules for i ≥ 0

Tor
Ap

i (Mp, Np) ∼= TorAi (M,N)p

ExtiAp
(Mp, Np) ∼= ExtiA(M,N)p

the latter being valid for A noetherian and M finitely generated.

Lemma 23. Let A be a ring and M an A-module. Then the following are equivalent

(i) M is a flat A-module;

(ii) Mp is a flat Ap-module for each prime ideal p;

(iii) Mm is a flat Am-module for each maximal ideal m.

Proof. See [AM69] or any book on commutative algebra.

Proposition 24. Let (A,m, k) be a local ring and M an A-module. Suppose that either m is
nilpotent or M is finitely generated over A. Then M is free ⇔ M is projective ⇔ M is flat.

7



Proof. It suffices to show that if M is flat then it is free. We prove that any minimal basis of M
is a basis of M . If M/mM = 0 then M = 0 and M is trivially free. Otherwise it suffices to show
that if x1, . . . , xn ∈M are elements whose images in M/mM = M ⊗A k are linearly independent
over k, then they are linearly independent over A. We use induction on n. For n = 1 let ax = 0.
Then there exist y1, . . . , yr ∈ M and b1, . . . , br ∈ A such that abi = 0 for all i and x =

∑
biyi.

Since x+ mM 6= 0 not all bi are in m. Suppose b1 /∈ m. Then b1 is a unit in A and ab1 = 0, hence
a = 0.

Suppose n > 1 and
∑n
i=1 aixi = 0. Then there exist y1, . . . , yr ∈ M and bij ∈ A(1 ≤ j ≤ r)

such that xi =
∑
j bijyj and

∑
i aibij = 0. Since xn /∈ mM we have bnj /∈ m for at least one j.

Since a1b1j + · · ·+ anbnj = 0 and bnj is a unit, we have

an =
n−1∑
i=1

ciai ci = −bij/bnj

Then

0 =
n∑
i=1

aixi = a1(x1 + c1xn) + · · ·+ an−1(xn−1 + cn−1xn)

Since the residues of x1+c1xn, . . . , xn−1+cn−1xn are linearly independent over k, by the inductive
hypothesis we get a1 = · · · = an−1 = 0 and an =

∑
ciai = 0.

Corollary 25. Let A be a ring and M a finitely generated A-module. Then the following are
equivalent

(i) M is a flat A-module;

(ii) Mp is a free Ap-module for each prime ideal p;

(iii) Mm is a free Am-module for each maximal ideal m.

Proof. This is immediate from the previous two results.

Proposition 26. Let A be a ring and M a finitely presented A-module. Then M is flat if and
only if it is projective.

Proof. See Stenstrom Chapter 1, Corollary 11.5.

Corollary 27. Let A be a noetherian ring, M a finitely generated A-module. Then the following
conditions are equivalent

(i) M is projective;

(ii) M is flat;

(ii) Mp is a free Ap-module for each prime ideal p;

(iii) Mm is a free Am-module for each maximal ideal m.

Proof. Since A is noetherian, M is finitely presented, so (i) ⇔ (ii) is an immediate consequence
of Proposition 26. The rest of the proof follows from Corollary 25.

Lemma 28. Let A −→ B be a flat morphism of rings, and let I, J be ideals of A. Then (I∩J)B =
IB ∩ JB and (I : J)B = (IB : JB) if J is finitely generated.

Proof. Consider the exact sequence of A-modules

I ∩ J −→ A −→ A/I ⊕A/J

Tensoring with B we get an exact sequence

(I ∩ J)⊗A B = (I ∩ J)B −→ B −→ B/IB ⊕B/JB
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This means (I ∩ J)B = IB ∩ JB. For the second claim, suppose firstly that J is a principal ideal
aA and use the exact sequence

(I : aA) i // A
f // A/I

where i is the injection and f(x) = ax+I. Tensoring withB we get the formula (I : a)B = (IB : a).
In the general case, if J = (a1, . . . , an) we have (I : J) =

⋂
i(I : ai) so that

(I : J)B =
⋂

(I : ai)B =
⋂

(IB : ai) = (IB : JB)

Example 2. Let A = k[x, y] be a polynomial ring over a field k and put B = A/(x) ∼= k[y]. Then
B is not flat over A since y ∈ A is regular but is not regular on B. Let I = (x+ y) and J = (y).
Then I ∩ J = (xy + y2) and IB = JB = yB, (I ∩ J)B = y2B 6= IB ∩ JB.

Example 3. Let k be a field, put A = k[x, y] and let K be the quotient field of A. Let B be the
subring k[x, y/x] of K (i.e. the k-subalgebra generated by x and z = y/x). Then A ⊂ B ⊂ K. Let
I = xA, J = yA. Then I ∩ J = xyA and (I ∩ J)B = x2zB, IB ∩ JB = xzB so B is not flat over
A. The map SpecB −→ SpecA corresponding to A −→ B is the projection to the (x, y)-plane
of the surface F : xz = y in (x, y, z)-space. Note F contains the whole z-axis so it does not look
“flat” over the (x, y)-plane.

Proposition 29. Let ϕ : A −→ B be a morphism of rings, M an A-module and N a B-module.
Then for every p ∈ SpecB there is a canonical isomorphism of Bp-modules natural in both variables

κ : Mp∩A ⊗Ap∩A
Np −→ (M ⊗A N)p

κ(m/s⊗ n/t) = (m⊗ n)/ϕ(s)t

Proof. Fix p ∈ SpecB and q = p∩A. There is a canonical ring morphism Aq −→ Bp and we make
Np into an Aq-module using this morphism. One checks that the following map is well-defined
and Aq-bilinear

ε : Mq ×Np −→ (M ⊗A N)p

ε(m/s, n/t) = (m⊗ n)/ϕ(s)t

We show that in fact this is a tensor product of Aq-modules. Let Z be an abelian group and
ψ : Mq ×Np −→ Z an Aq-bilinear map.

Mq ×Np

ε

��

ψ // Z

(M ⊗A N)p

φ

:: (1)

We have to define a morphism of abelian groups φ unique making this diagram commute. For
s /∈ p we define an A-bilinear morphism φ′s : M × N −→ Z by φ′s(m,n) = ψ(m/1, n/s). This
induces a morphism of abelian groups

φ′′s : M ⊗A N −→ Z

φ′′s (m⊗ b) = ψ(m/1, b/s)

We make some observations about these morphisms

• Suppose w/s = w′/s′ in (M ⊗A N)p, with say w =
∑
imi ⊗ ni, w

′ =
∑
im

′
i ⊗ n′i and t /∈ p

such that ts′w = tsw′. That is,
∑
imi ⊗ ts′ni =

∑
im

′
i ⊗ tsn′i. Applying φ′′tss′ to both sides

of this equality gives φ′′s (w) = φ′′s′(w
′).
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• For w/s,w′/s′ ∈ (M ⊗A N)p we have φ′′s (w) + φ′′s′(w
′) = φ′′ss′(s

′w + sw′).

It follows that φ(w/s) = φ′′s (w) gives a well-defined morphism of abelian groups φ : (M⊗AN)p −→
Z which is clearly unique making (1) commute. By uniqueness of the tensor product there is an
induced isomorphism of abelian groups κ : Mq ⊗Aq Np −→ (M ⊗A N)p with κ(m/s ⊗ n/t) =
(m ⊗ n)/ϕ(s)t. One checks that this is a morphism of Bp-modules. The inverse is defined by
(m⊗ n)/t 7→ m/1⊗ n/t. Naturality in both variables is easily checked.

Corollary 30. Let ϕ : A −→ B be a morphism of rings, M an A-module and p ∈ SpecB. Then
there is a canonical isomorphism of Bp-modules Mp∩A ⊗Ap∩A

Bp −→ (M ⊗A B)p natural in M .

We will not actually use the next result in these notes, so the reader not familiar with homo-
logical δ-functors can safely skip it. Alternatively one can provide a proof by following the one
given in Matsumura (the proof we give is more elegant, provided you know about δ-functors).

Proposition 31. Let ϕ : A −→ B be a morphism of rings, M an A-module and N a B-module.
Then for every p ∈ SpecB and i ≥ 0 there is a canonical isomorphism of Bp-modules natural in
M

κi : TorAi (N,M)p −→ Tor
Ap∩A

i (Np,Mp∩A)

Proof. Fix p ∈ SpecB and a B-module N and set q = p ∩A. Then N is a B-A-bimodule and Np

is a Bp-Aq-bimodule so by (TOR,Section 5.1) the abelian group TorAi (N,M) acquires a canonical
B-module structure, and Tor

Aq

i (Np,Mq) acquires a canonical Bp-module structure for any A-
module M and i ≥ 0. Using (TOR,Lemma 14) and (DF,Definition 23) we have two homological
δ-functors between AMod and BpMod

{TorAi (N,−)p}i≥0, {Tor
Aq

i (Np, (−)q)}i≥0

For i > 0 these functors all vanish on free A-modules, so by (DF,Theorem 74) both δ-functors are
universal. For i = 0 we have the canonical natural equivalence of Proposition 29

κ0 : TorA0 (N,−)p
∼= (N ⊗A −)p

∼= Np ⊗Aq (−)q
∼= Tor

Aq

0 (Np, (−)q)

By universality this lifts to a canonical isomorphism of homological δ-functors κ. In particular
for each i ≥ 0 we have a canonical natural equivalence κi : TorAi (N,−)p −→ Tor

Aq

i (Np, (−)q), as
required.

We know from Lemma 23 that flatness is a local property. We are now ready to show that
relative flatness (i.e. flatness with respect to a morphism of rings) is also local. This is particularly
important in algebraic geometry. The reader who skipped Proposition 31 will also have to skip
the implication (iii) ⇒ (i) in the next result, but this will not affect their ability to read the rest
of these notes.

Corollary 32. Let A −→ B be a morphism of rings and N a B-module. Then the following
conditions are equivalent

(i) N is flat over A.

(ii) Np is flat over Ap∩A for all prime ideals p of B.

(iii) Nm is flat over Am∩A for all maximal ideals m of B.

Proof. (i) ⇒ (ii) If N is flat over A then Np∩A is flat over Ap∩A for any prime p of B. By an
argument similar to the one given in Lemma 19 we see that Np is isomorphic as a Bp∩A-module
to a localisation of Np∩A. Applying Lemma 17 to the ring morphism Ap∩A −→ Bp∩A we see that
Np is flat over Ap∩A, as required. (ii) ⇒ (iii) is trivial. (iii) ⇒ (i) For every A-module M and
maximal ideal m of B we have by Proposition 31

TorA1 (N,M)m
∼= TorAm∩A

1 (Nm,Mm∩A) = 0

since by assumption Nm is flat over Am∩A. Therefore TorA1 (N,M) = 0 for every A-module M ,
which implies that N is flat over A and completes the proof.
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Lemma 33. Let A −→ B be a morphism of rings. Then the following conditions are equivalent

(i) B is flat over A;

(ii) Bp is flat over Ap∩A for all prime ideals p of B;

(iii) Bm is flat over Am∩A for all maximal ideals m of B.

2.1 Faithful Flatness

Theorem 34. Let A be a ring and M an A-module. The following conditions are equivalent:

(i) M is faithfully flat over A;

(ii) M is flat over A, and for any nonzero A-module N we have N ⊗AM 6= 0;

(iii) M is flat over A, and for any maximal ideal m of A we have mM 6= M .

Proof. (i) ⇒ (ii) Let N be an A-module and ϕ : N −→ 0 the zero map. Then if M is faithfully
flat and N ⊗AM = 0 we have ϕ⊗AM = 0 which means that ϕ is injective and therefore N = 0.
(ii) ⇒ (iii) Since A/m 6= 0 we have (A/m) ⊗A M = M/mM 6= 0 by hypothesis. (iii) ⇒ (ii)
Let N be a nonzero A-module and pick 0 6= x ∈ N . Let ϕ : A −→ N be 1 7→ x. If I = Kerϕ
then there is an injective morphism of modules A/I −→ N . Let m be a maximal ideal containing
I. Then M ⊃ mM ⊇ IM so (A/I) ⊗A M = M/IM 6= 0. Since M is flat the morphism
(A/I)⊗AM −→ N ⊗AM is injective so N ⊗AM 6= 0. (ii) ⇒ (i) Let ψ : N −→ N ′ be a morphism
of modules with kernel K −→ N . If N ⊗AM −→ N ′ ⊗AM is injective then K ⊗AM = 0, which
is only possible if K = 0.

Corollary 35. Let A and B be local rings, and ψ : A −→ B a local morphism of rings. Let M be
a nonzero finitely generated B-module. Then

M is flat over A⇐⇒M is faithfully flat over A

In particular, B is flat over A if and only if it is faithfully flat over A.

Proof. Let m and n be the maximal ideals of A and B, respectively. Then mM ⊆ nM since ψ is
local, and nM 6= M by Nakayama, so the assertion follows from the Theorem.

Lemma 36. We have the following fundamental properties of flatness:

• Transitivity: If φ : A −→ B is a faithfully flat morphism of rings and N a faithfully flat
B-module, then N is a faithfully flat A-module.

• Change of Base: If φ : A −→ B is a morphism of rings and M is a faithfully flat A-module,
then M ⊗A B is a faithfully flat B-module.

• Descent: If φ : A −→ B is a ring morphism and M is a faithfully flat B-module which is
also faithfully flat over A, then B is faithfully flat over A.

Proof. The diagram in the proof of transitivity for flatness makes it clear that faithful flatness is
also transitive. Similarly the flatness under base change proof in our Atiyah & Macdonald notes
shows that faithful flatness is also stable under base change. The descent property is also easily
checked.

Proposition 37. Let ψ : A −→ B be a faithfully flat morphism of rings. Then

(i) For any A-module N , the map N −→ N⊗AB defined by x 7→ x⊗1 is injective. In particular
ψ is injective and A can be viewed as a subring of B.

(ii) For any ideal I of A we have IB ∩A = I.

(iii) The map Ψ : Spec(B) −→ Spec(A) is surjective.
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(iv) If B is noetherian then so is A.

Proof. (i) Let 0 6= x ∈ N . Then 0 6= Ax ⊆ N and since B is flat we see that Ax⊗AB is isomorphic
to the submodule (x⊗ 1)B of N ⊗A B. It follows from Theorem 34 that x⊗ 1 6= 0.

(ii) By change of base, B ⊗A (A/I) = B/IB is faithfully flat over A/I. Now the assertion
follows from (i). For (iii) let p ∈ Spec(A). The ring Bp = B ⊗A Ap is faithfully flat over Ap so
by (ii) pBp 6= Bp. Take a maximal ideal m of Bp containing pBp. Then m ∩Ap ⊇ pAp, therefore
m ∩Ap = pAp since pAp is maximal. Putting q = m ∩B, we get

q ∩A = (m ∩B) ∩A = m ∩A = (m ∩Ap) ∩A = pAp ∩A = p

as required. (iv) Follows immediately from (ii).

Theorem 38. Let ψ : A −→ B be a morphism of rings. The following conditions are equivalent.

(1) ψ is faithfully flat;

(2) ψ is flat, and Ψ : Spec(B) −→ Spec(A) is surjective;

(3) ψ is flat, and for any maximal ideal m of A there is a maximal ideal n of B lying over m.

Proof. (1) ⇒ (2) was proved above. (2) ⇒ (3) By assumption there exists q ∈ Spec(B) with
q∩A = m. If n is any maximal ideal of B containing q then n∩A = m as m is maximal. (3) ⇒ (1)
The existence of n implies mB 6= B, so B is faithfully flat over A by Theorem 34.

Definition 4. In algebraic geometry we say a morphism of schemes f : X −→ Y is flat if the
local morphisms OY,f(x) −→ OX,x are flat for all x ∈ X. We say the morphism is faithfully flat if
it is flat and surjective.

Lemma 39. Let A be a ring and B a faithfully flat A-algebra. Let M be an A-module. Then

(i) M is flat (resp. faithfully flat) over A ⇔ M ⊗A B is so over B,

(ii) If A is local and M finitely generated over A we have M is A-free ⇔ M ⊗A B is B-free.

Proof. (i) Let N −→ N ′ be a morphism of A-modules. Both claims follow from commutativity of
the following diagram

(N ⊗AM)⊗A B //

��

(N ′ ⊗AM)⊗A B

��
N ⊗A (M ⊗A B)

��

// N ′ ⊗A (M ⊗A B)

��
N ⊗A (B ⊗B (M ⊗A B)) //

��

N ′ ⊗A (B ⊗B (M ⊗A B))

��
(N ⊗A B)⊗B (M ⊗A B) // (N ′ ⊗A B)⊗B (M ⊗A B)

(ii) The functor −⊗AB preserves coproducts, so the implication (⇒) is trivial. (⇐) follows from
(i) because, under the hypothesis, freeness of M is equivalent to flatness as we saw in Proposition
24.
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2.2 Going-up and Going-down

Definition 5. Let φ : A −→ B be a morphism of rings. We say that the going-up theorem holds
for φ if the following condition is satisfied:

(GU) For any p, p′ ∈ Spec(A) such that p ⊂ p′ and for any prime q ∈ Spec(B) lying
over p, there exists q′ ∈ Spec(B) lying over p′ such that q ⊂ q′.

Similarly we say that the going-down theorem holds for φ if the following condition is satisfied:

(GD) For any p, p′ ∈ Spec(A) such that p ⊂ p′ and for any prime q′ ∈ Spec(B) lying
over p′, there exists q ∈ Spec(B) lying over p such that q ⊂ q′.

Lemma 40. The condition (GD) is equivalent to the following condition (GD’): For any p ∈
Spec(A) and any minimal prime overideal q of pB we have q ∩A = p.

Proof. (GD) ⇒ (GD’) Clearly q ∩ A ⊇ p. If this inclusion is proper then by (GD) there exists a
prime q1 of B with q1 ⊂ q and q1 ∩A = p, contradicting minimality of q. (GD’) ⇒ (GD) Suppose
primes p ⊂ p′ of A are given and q′ ∩ A = p′. We can shrink q′ to a prime q minimal among all
prime ideals containing pB, and by assumption q ∩A = p, which completes the proof.

Let a be any proper radical ideal in a noetherian ring B. Then a is the intersection of all
its minimal primes p1, . . . , pn and the closed irreducible sets V (p1) ⊆ V (a) are the irreducible
components of the closed set V (a) in the noetherian space Spec(B).

Let φ : A −→ B a morphism of rings, put X = Spec(A), Y = Spec(B) and let Ψ : Y −→ X
the corresponding morphism of affine schemes, and suppose B is noetherian. Then (GD′) can be
formulated geometrically as follows: let p ∈ X, put X ′ = V (p) ⊆ X and let Y ′ be an arbitrary
irreducible component of Ψ−1(X ′) (which we assume is nonempty). Then Ψ maps Y ′ generically
onto X ′ in the sense that the generic point of Y ′ is mapped to the generic point p of X ′.

Theorem 41. Let φ : A −→ B be a flat morphism of rings. Then the going-down theorem holds
for φ.

Proof. Let p′ ⊂ p be prime ideals of A and let q be a prime ideal of B lying over p. Then Bq is
flat over Ap by Lemma 33, hence faithfully flat since Ap −→ Bq is local. Therefore Spec(Bq) −→
Spec(Ap) is surjective. Let q′′ be a prime ideal of Bq lying over p′Ap. Then q′ = q′′∩B is a prime
ideal of B lying over p′ and contained in q.

Theorem 42. Let B be a ring and A a subring over which B is integral. Then

(i) The canonical map Spec(B) −→ Spec(A) is surjective.

(ii) If two prime ideals q ⊆ q′ lie over the same prime ideal of A then they are equal.

(iii) The going-up theorem holds for A ⊆ B.

(iv) If A is a local ring and m its maximal ideal, then the prime ideals of B lying over m are
precisely the maximal ideals of B.

(v) If A and B are integral domains and A is integrally closed, then the going-down theorem
holds for A ⊆ B.

Proof. See [AM69] or [Mat80] Theorem 5.

2.3 Constructible Sets

Definition 6. A topological space X is noetherian if the descending chain condition holds for
the closed sets in X. The spectrum Spec(A) of a noetherian ring A is noetherian. If a space
is covered by a finite number of noetherian subspaces then it is noetherian. Any subspace of a
noetherian space is noetherian. A noetherian space is quasi-compact. In a noetherian space X
any nonempty closed set Z is uniquely decomposed into a finite number of irreducible closed sets
Z = Z1 ∪ · · · ∪Zn such that Zi * Zj for i 6= j. The Zi are called the irreducible components of Z.
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Lemma 43 (Noetherian Induction). Let X be a noetherian topological space, and P a property
of closed subsets of X. Assume that for any closed subset Y of X, if P holds for every proper
closed subset of Y , then P holds for Y (in particular P holds for the empty set). Then P holds
for X.

Proof. Suppose that P does not hold for X, and let Z be the set of all proper closed subsets
of X which do not satisfy P. Then since X is noetherian Z has a minimal element Y . Since
Y is minimal, every proper closed subset of Y must satisfy P, and therefore Y satisfies P,
contradicting the fact that Y ∈ Z.

Lemma 44. Let X be a noetherian topological space, and P a property of general subsets of X.
Assume that for any subset Y of X, if P holds for every proper subset Y ′ of Y with Y ′ ⊂ Y , then
P holds for Y (in particular P holds for the empty set). Then P holds for X.

Proof. Suppose that P does not hold for X, and let Z be the set of all closures Q of proper subsets
Q of X with Q ⊂ X and P not holding for Q. Let Q be a minimal element of Z. If Q′ is any
proper subset of Q with Q′ ⊂ Q then Q′ must satisfy P, otherwise Q′ would contradict minimality
of Q in Z. But by assumption this implies that Q satisfies P, which is a contradiction.

Definition 7. Let X be a topological space and Z a subset of X. We say Z is locally closed in
X if it satisfies the following equivalent properties

(i) Every point z ∈ Z has an open neighborhood U in X such that U ∩ Z is closed in U .

(ii) Z is the intersection of an open set in X and a closed set in X.

(iii) Z is an open subset of its closure.

Definition 8. Let X be a noetherian space. We say a subset Z of X is a constructible set in X
if it is a finite union of locally closed sets in X, so Z =

⋃m
i=1(Ui ∩Fi) with Ui open and Fi closed.

The set F of all constructible subsets of X is the smallest collection of subsets of X containing all
the open sets which is closed with respect to the formation of finite intersections and complements.
It follows that all open and closed sets are constructible, and F is also closed under finite unions.

We say that a subset Z is pro-constructible (resp. ind-constructible) if it is the intersection
(resp. union) of an arbitrary collection of constructible sets in X.

Proposition 45. Let X be a noetherian space and Z a subset of X. Then Z is constructible if
and only if the following condition is satisfied.

(∗) For each irreducible closed set X0 in X, either X0∩Z is not dense in X0, or X0∩Z
contains a nonempty open set of X0.

Proof. Assume that Z is constructible and Z ∩ X0 nonempty. Then we can write X0 ∩ Z =⋃m
i=1 Ui ∩Fi for Ui open in X, Fi closed and irreducible in X (by taking irreducible components)

and Ui∩Fi nonempty for all i. Then Ui ∩ Fi = Fi since Fi is irreducible, therefore X0 ∩ Z =
⋃
i Fi.

If X0 ∩ Z is dense in X0, we have X0 =
⋃
i Fi so that some Fi, say F1, is equal to X0. Then

U1 ∩X0 = U1 ∩ F1 is a nonempty open subset of X0 contained in X0 ∩ Z.
Next we prove the converse. We say that a subset T of X has the property P if whenever a

subset Z of T satisfies (∗) it is constructible. We need to show that X has the property P, for
which we use the form of noetherian induction given in Lemma 44. Suppose that Y is a subset
of X with P holding for every proper subset Y ′ of Y with Y ′ ⊂ Y . We need to show that P
holds for Y . Let Z be a nonempty subset of Y satisfying (∗), and let Z = F1 ∪ . . . ∪ Fr be the
decomposition of Z into irreducible components. Since Z = Z ∩ F1 ∪ · · · ∪ Z ∩ Fr we have

F1 = F1 ∩ Z = F1 ∩
(
Z ∩ F1 ∪ . . . ∪ Z ∩ Fr

)
= (F1 ∩ Z ∩ F1) ∪ · · · ∪ (F1 ∩ Z ∩ Fr)

Since F1 is irreducible and not contained in any other Fi we must have F1 = Z ∩ F1, so F1 ∩ Z
is dense in F1, whence by (∗) there exists a proper closed subset F ′ of F1 such that F1 \ F ′ ⊆ Z.
Then, putting F ∗ = F ′ ∪F2 ∪ · · · ∪Fr we have Z = (F1 \F ′)∪ (Z ∩F ∗). The set F1 \F ′ is locally
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closed in X, so to complete the proof it suffices to show that Z ∩ F ∗ is constructible in X. Since
Z ∩ F ∗ ⊆ F ∗ ⊂ Z ⊆ Y , by the inductive hypothesis P holds for Z∩F ∗, so it suffices to show that
Z ∩ F ∗ satisfies (∗). If X0 is irreducible and Z ∩ F ∗ ∩X0 = X0, the closed set F ∗ must contain
X0 and so Z ∩ F ∗ ∩X0 = Z ∩X0, which contains a nonempty open subset of X0 since Z satisfies
(∗), and clearly Z ∩X0 is dense in X0.

Lemma 46. Let φ : A −→ B be a morphism of rings and f : Spec(B) −→ Spec(A) the corre-
sponding morphism of schemes. Then f dominant if and only if Kerφ ⊆ nil(A). In particular if
A is reduced, the f dominant if and only if φ is injective.

Proof. Let X = Spec(A) and Y = Spec(B). The closure f(Y ) is the closed set V (I) defined by
the ideal I =

⋂
p∈Y φ

−1p = φ−1
⋂

p∈Y p, which is φ−1(nil(B)). Clearly Kerφ ⊆ I. Suppose that
f(Y ) is dense in X. Then V (I) = X, whence I = nil(A) and so Kerφ ⊆ nil(A). Conversely,
suppose Kerφ ⊆ nil(A). Then it is clear that I = φ−1(nil(B)) = nil(A), which means that
f(Y ) = V (I) = X.

3 Associated Primes

This material can be found in [AM69] Chapter 11, webnotes of Robert Ash or in [Mat80] itself.
There is not much relevant to add here, apart from a few small comments.

Lemma 47. Let A be a ring and M an A-module. Let a be an ideal in A that is maximal among
all annihilators of nonzero elements of M . Then a is prime.

Proof. Say a = Ann(x). Given ab ∈ a we must show that a ∈ a or b ∈ a. Assume a /∈ a.
Then ax 6= 0. We note that Ann(ax) ⊇ a. By hypothesis it cannot properly be larger. Hence
Ann(ax) = a. Now b annihilates ax; hence b ∈ a.

Lemma 48. Let A be a noetherian ring and M an A-module. If 0 6= a ∈ M then Ann(a) is
contained in an associated prime of M .

Proposition 49. Let A be a noetherian ring and M a nonzero finitely generated A-module. A
maximal ideal m is an associated prime of M if and only if no element of m is regular on M .

Proof. One implication is obvious. If x ∈ m is not regular on M , say x ∈ Ann(b) for some nonzero
b, then x is contained in an associated prime of M . Thus m is contained in the finite union of the
associated primes of M , and since m is maximal it must be one of them.

Proposition 50. Let A be a nonzero noetherian ring, I an ideal, and M a nonzero finitely
generated A-module. If there exist elements x, y ∈ I with x regular on A and y regular on M , then
there exists an element of I regular on both A and M .

Proof. Let p1, . . . , pn be the associated primes of A and q1, . . . , qm the associated primes of M .
By assumption I is not contained in any of these primes. But if no element of I is regular on both
A and M , then I is contained in the union p1 ∪ · · · ∪ pn ∪ q1 ∪ · · · ∪ qm, and therefore contained
in one of these primes, which is a contradiction.

4 Dimension

This is covered in [AM69], so we restrict ourselves here to mentioning some of the major points.
Recall that an ideal q ⊆ R in a ring is primary if it is proper and if whenever xy ∈ q we have
either x ∈ q or yn ∈ q for some n > 0. Then the radical of q is a prime ideal p, and we say q is
a p-primary ideal. If a is an ideal and b ⊇ a is p-primary, then in the ring R/a the ideal b/a is
p/a-primary. A minimal primary decomposition of an ideal b is an expression

b = q1 ∩ · · · ∩ qn
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where ∩j 6=iqj * qi for all i, and the primes pi = r(qi) are all distinct. If a is an ideal contained in
b, then

b/a = q1/a ∩ · · · ∩ qn/a

is a minimal primary decomposition of b/a in A/a.
Let A be a nonzero ring. Recall that dimension of an A-module M is the Krull dimension of

the ring A/Ann(M) and is defined for all modules M (−1 if M = 0). The rank is defined for free
A-modules, and is the common size of any basis (0 if M = 0). Throughout these notes dim(M)
will denote the dimension, not the rank.

Definition 9. Let (A,m, k) be a noetherian local ring of dimension d. An ideal of definition is an
m-primary ideal. Recall that the dimension of A is the size of the smallest collection of elements
of A which generates an m-primary ideal. Recall that rankk(m/m2) is equal to the size of the
smallest set of generators for m as an ideal, so always d ≤ rankk(m/m2).

A system of parameters is a set of d elements generating an m-primary ideal. If d = rankk(m/m2),
or equivalently there is a system of parameters generating m, we say that A is a regular local ring
and we call such a system of parameters a regular system of parameters.

Proposition 51. Let (A,m) be a noetherian local ring of dimension d ≥ 1 and let x1, . . . , xd be
a system of parameters of A. Then

dim(A/(x1, . . . , xi)) = d− i = dim(A)− i

for each 1 ≤ i ≤ d.

Proof. Put A = A/(x1, . . . , xi). If i = d then the zero ideal in A is an ideal of definition, so clearly
dim(A) = 0. If 1 ≤ i < d then dim(A) ≤ d− i since xi+1, . . . , xd generate an ideal of definition of
A. Let dim(A) = p. If p = 0 then (x1, . . . , xi) must be an ideal of definition, contradicting i < d.
So p ≥ 1, and if y1, . . . , yp is a system of parameters of A, then x1, . . . , xi, y1, . . . , yp generate an
ideal of definition of A, so that p+ i ≥ d. That is, p ≥ d− i.

Definition 10. Let A be a nonzero ring and I a proper ideal. The height of I, denoted ht.I, is
the minimum of the heights of the prime ideals containing I

ht.I = inf{ht.p | p ⊇ I}

This is a number in {0, 1, 2, . . . ,∞}. Equivalently we can take the infimum over the heights of
primes minimal over I. Clearly ht.0 = 0 and if I ⊆ J are proper ideals then it is clear that
ht.I ≤ ht.J . If I is a prime ideal then ht.I is the usual height of a prime ideal. If A is a noetherian
ring then ht.I <∞ for every proper ideal I, since Ap is a local noetherian ring and ht.p = dim(Ap).

Lemma 52. Let A be a nonzero ring and I a proper ideal. Then we have

ht.I = inf{ht.IAm |m is a maximal ideal and I ⊆ m}

Lemma 53. Let A be a noetherian ring and suppose we have an exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

in which M ′,M,M ′′ are nonzero and finitely generated. Then dimM = max{dimM ′, dimM ′′}.

Proof. We know that Supp(M) = Supp(M ′)∪Supp(M ′′) and for all three modules the dimension
is the supremum of the coheights of prime ideals in the support. So the result is straightforward
to check.
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4.1 Homomorphism and Dimension

Let φ : A −→ B be a morphism of rings. If p ∈ Spec(A) then put κ(p) = Ap/pAp. Let Bp denote
the ring T−1B where T = φ(A−p). There is an isomorphism of A-algebras Bp

∼= B⊗AAp. There
is a commutative diagram of rings

B //

))RRRRRRRRRRRRRRRR Bp
// Bp/pBp

��
B ⊗A κ(p)

The vertical isomorphism is defined by b/φ(s)+ pBp 7→ b⊗ (1/s+ pAp). We call Spec(B⊗A κ(p))
the fibre over p of the map Φ : Spec(B) −→ Spec(A). Since primes of Bp/pBp clearly correspond
to primes q of B with q ∩ A = p, it is easy to see that the ring morphism B −→ B ⊗A κ(p) gives
rise to a continuous map Spec(B ⊗A κ(p)) −→ SpecB which gives a homeomorphism between
Φ−1(p) and Spec(B ⊗A κ(p)). See [AM69] Chapter 3.

Lemma 54. Let q be a prime ideal of B with q ∩ A = p and let P be the corresponding prime
ideal of B ⊗A κ(p). Then there is an isomorphism of A-algebras

Bq ⊗A κ(p) ∼= (B ⊗A κ(p))P

b/t⊗ (a/s+ pAp) 7→ (b⊗ (a/1 + pAp))/(t⊗ (s/1 + pAp))

Proof. It is not difficult to see that there is an isomorphism of rings Bq
∼= (Bp)qBp defined by

b/t 7→ (b/1)/(t/1). Consider the prime ideal qBp/pBp. We know that there is a ring isomorphism

(B ⊗A κ(p))P
∼= (Bp/pBp)qBp/pBp

∼= (Bp)qBp/p(Bp)qBp
∼= Bq/pBq

by the comments following Lemma 7. It is not hard to check there is a ring isomorphism Bq/pBq
∼=

Bq⊗A κ(p) defined by b/t+ pBq 7→ b/t⊗ 1 (the inverse of b/t⊗ (a/s+ pAp) is bφ(a)/tφ(s)+ pBq).
So by definition of P there is an isomorphism of rings (B ⊗A κ(p))P

∼= Bq ⊗A κ(p), and this is
clearly an isomorphism of A-algebras.

In particular if φ : A −→ B is a ring morphism, p ∈ Spec(A) and q ∈ Spec(B) such that
q ∩A = p, then there is an isomorphism of rings (B/pB)q/pB

∼= Bq/pBq, so we have ht.(q/pB) =
dim(Bq ⊗A κ(p)).

Theorem 55. Let φ : A −→ B be a morphism of noetherian rings. Let q ∈ Spec(B) and put
p = q ∩A. Then

(1) ht.q ≤ ht.p + ht.(q/pB). In other words dim(Bq) ≤ dim(Ap) + dim(Bq ⊗A κ(p)).

(2) We have equality in (1) if the going-down theorem holds for φ (in particular if φ is flat).

(3) If Φ : Spec(B) −→ Spec(A) is surjective and if the going-down theorem holds, then we have
dim(B) ≥ dim(A) and ht.I = ht.(IB) for any proper ideal I of A.

Proof. (1) Replacing A by Ap and B by Bq we may suppose that (A, p) and (B, q) are noetherian
local rings such that q ∩ A = p, and we must show that dim(B) ≤ dim(A) + dim(B/pB). Let I
be a p-primary ideal of A. Then pn ⊆ I for some n > 0, so pnB ⊆ IB ⊆ pB. Thus the ideals pB
and IB have the same radical, and so by definition dim(B/pB) = dim(B/IB). If dimA = 0 then
we can take I = 0 and the result is trivial. So assume dimA = r ≥ 1 and let I = (a1, . . . , ar) for
a system of parameters a1, . . . , ar. If dim(B/IB) = 0 then IB is an q-primary ideal of B and so
dim(B) ≤ r, as required. Otherwise if dim(B/IB) = s ≥ 1 let b1 + IB, . . . , bs + IB be a system
of parameters of B/IB. Then b1, . . . , bs, a1, . . . , ar generate an ideal of definition of B. Hence
dim(B) ≤ r + s.

(2) We use the same notation as above. If ht.(q/pB) = s ≥ 0 then there exists a prime chain
of length s, q = q0 ⊃ q1 ⊃ · · · ⊃ qs such that qs ⊇ pB. As p = q ∩ A ⊇ qi ∩ A ⊇ p all the qi
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lie over p. If ht.p = r ≥ 0 then there exists a prime chain p = p0 ⊃ p1 ⊃ · · · ⊃ pr in A, and by
going-down there exists a prime chain qs = t0 ⊃ t1 ⊃ · · · ⊃ tr of B such that ti ∩A = pi. Then

q = q0 ⊃ · · · ⊃ qs ⊃ t1 ⊃ · · · ⊃ tr

is a prime chain of length r + s, therefore ht.q ≥ r + s.
(3) (i) follows from (2) since dim(A) = sup{ht.p | p ∈ Spec(A)}. (ii) Since Φ is surjective IB

is a proper ideal. Let q be a minimal prime over IB such that ht.q = ht.(IB) and put p = q ∩A.
Then ht.(q/pB) = 0, so by (2) we find that ht.(IB) = ht.q = ht.p ≥ ht.I. For the reverse
inclusion, let p be a minimal prime ideal over I such that ht.p = ht.I and take a prime q of B
lying over p. Replacing q if necessary, we may assume that q is a minimal prime ideal over pB.
Then ht.I = ht.p = ht.q ≥ ht.(IB).

Theorem 56. Let A be a nonzero subring of B, and suppose that B is integral over A. Then

(1) dim(A) = dim(B).

(2) Let q ∈ Spec(B) and set p = q ∩A. Then we have coht.p = coht.q and ht.q ≤ ht.p.

(3) If the going-down theorem holds between A and B, then for any ideal J of B with J ∩A 6= A
we have ht.J = ht.(J ∩A).

Proof. (1) By Theorem 42 the going-up theorem holds for A ⊆ B and Spec(B) −→ Spec(A) is
surjective, so we can lift any chain of prime ideals p0 ⊂ p1 ⊂ · · · ⊂ pn in A to a chain of prime
ideals q0 ⊂ · · · ⊂ qn in B. On the other hand, if q ⊆ q′ are prime ideals of B and q ∩A = q′ ∩A,
then q = q′, so any chain of prime ideals in B restricts to a chain of the same length in A. Hence
dim(A) = dim(B).

(2) Since B/q is integral over A/p it is clear from (1) that coht.p = coht.q. If q = q0 ⊃ · · · ⊃ qn
is a chain of prime ideals in B then intersecting with A gives a chain of length n descending from
p. Hence ht.q ≤ ht.p.

(3) Given the going-down theorem, it is clear that ht.q = ht.p in (2). Let J be a proper ideal of
B with J ∩A 6= A and let q be such that ht.J = ht.q. Then ht.(J ∩A) ≤ ht.(q∩A) = ht.q = ht.J .
On the other hand, B/J is integral over B/J ∩ A, so every prime ideal p of A containing J ∩ A
can be lifted to a prime ideal q of B containing J . In particular we can lift a prime ideal p with
ht.(J ∩A) = ht.p, to see that ht.J ≤ ht.q = ht.p = ht.(J ∩A), as required.

5 Depth

Definition 11. Let A be a ring, M an A-module and a1, . . . , ar a sequence of elements of A.
We say a1, . . . , ar is an M -regular sequence (or simply M -sequence) if the following conditions are
satisfied:

(1) For each 2 ≤ i ≤ r, ai is regular on M/(a1, . . . , ai−1)M and a1 is regular on M .

(2) M 6= (a1, . . . , an)M .

If a1, . . . , ar is an M -regular sequence then so is a1, . . . , ai for any i ≤ r. When all ai belong to an
ideal I we say a1, . . . , ar is an M -regular sequence in I. If, moreover, there is no b ∈ I such that
a1, . . . , ar, b is M -regular, then a1, . . . , ar is said to be a maximal M -regular sequence in I. Notice
that the notion of M -regular depends on the order of the elements in the sequence. If M,N are
isomorphic A-modules then a sequence is regular on M iff. it is regular on N .

Lemma 57. A sequence a1, . . . , ar with r ≥ 2 is M -regular if and only if a1 is regular on M
and a2, . . . , ar is an M/a1M -regular sequence. If the sequence a1, . . . , ar is a maximal M -regular
sequence in I then a2, . . . , ar is a maximal M/a1M -regular sequence in I.
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Proof. The key point is that for ideals a ⊆ b there is a canonical isomorphism of A-modules
M/bM ∼= N/bN where N = M/aM . If a1, . . . , ar is M -regular then a1 is regular on M , a2 is
regular on N = M/a1M and for 3 ≤ i ≤ r, ai is regular on

M/(a1, . . . , ai−1)M ∼= N/(a2, . . . , ai−1)N

Hence a2, . . . , ar is an N -regular sequence. The converse follows from the same argument.

More generally if a1, . . . , ar is an M -regular sequence and we set N = M/(a1, . . . , ar)M , and
if b1, . . . , bs is an N -regular sequence, then a1, . . . , ar, b1, . . . , bs is an M -regular sequence.

Lemma 58. If a1, . . . , ar is an A-regular sequence and M is a flat A-module, then a1, . . . , ar is
also M -regular provided (a1, . . . , ar)M 6= M .

Proof. Left multiplication by a1 defines a monomorphism A −→ A since a1 is A-regular. Tensoring
with M and using the fact that M is flat we see that left multiplication by a1 also gives a
monomorphismM −→M , as required. Similarly tensoring with the monomorphism a2 : A/a1 −→
A/a1 we get a monomorphism M/a1M −→M/a1M , and so on.

Lemma 59. Let A be a ring and M an A-module. Given an integer n ≥ 1, a sequence a1, . . . , ar
is M -regular if and only if it is Mn-regular.

Proof. Suppose the sequence a1, . . . , ar is M -regular. We prove it is Mn-regular by induction on r.
The case r = 1 is trivial, so assume r > 1. By the inductive hypothesis the sequence a1, . . . , ar−1 is
Mn-regular. Let L = (a1, . . . , ar−1)M . Then (a1, . . . , ar−1)Mn = Ln and there is an isomorphism
of A-modules Mn/Ln ∼= (M/L)n. So we need only show that ar is regular on (M/L)n. Since by
assumption it is regular on M/L, this is not hard to check. Clearly (a1, . . . , ar)Mn 6= Mn, so the
sequence a1, . . . , ar is Mn-regular, as required. The converse is similarly checked.

Lemma 60. Let A be a nonzero ring, M an A-module and a1, . . . , ar ∈ A. If a1, . . . , ar ∈ Am is
Mm-regular for every maximal ideal m of A then the sequence a1, . . . , ar is M -regular.

Proof. This follows from the fact that given an A-module M an element a ∈ A is regular on M if
and only if its image in Am is regular on Mm for every maximal ideal m of A.

Lemma 61. Suppose that a1, . . . , ar is M -regular and a1ξ1 + · · · + arξr = 0 for ξi ∈ M . Then
ξi ∈ (a1, . . . , ar)M for all i.

Proof. By induction on r. For r = 1, a1ξ1 = 0 implies that ξ1 = 0. Let r > 1. Since ar is regular
on M/(a1, . . . , ar−1)M we have ξr =

∑r−1
i=1 aiηi, so

∑r−1
i=1 ai(ξi + arηi) = 0. By the inductive

hypothesis for i < r we have ξi + arηi ∈ (a1, . . . , ar−1)M so that ξi ∈ (a1, . . . , ar)M .

Theorem 62. Let A be a ring and M an A-module, and let a1, . . . , ar be an M -regular sequence.
Then for every sequence n1, . . . , nr of integers > 0 the sequence an1

1 , . . . , anr
r is M -regular.

Proof. Suppose we can prove the following statement

(∗) Given an integer n > 0, an A-module M and any M -regular sequence a1, . . . , ar
the sequence an1 , a2, . . . , ar is also M -regular.

We prove the rest of the Theorem by induction on r. For r = 1 this follows immediately from (∗).
Let r > 1 and suppose a1, . . . , ar is M -regular. Then by (∗) an1

1 , a2, . . . , ar is M -regular. Hence
a2, . . . , ar is M/an1

1 M -regular. By the inductive hypothesis an2
2 , . . . , anr

r is M/an1
1 M -regular and

therefore an1
1 , . . . , anr

r is M -regular by Lemma 57.
So it only remains to prove (∗), which we do by induction on n. The case n = 1 is trivial, so let

n > 1 be given, along with an A-moduleM and anM -regular sequence a1, . . . , ar. By the inductive
hypothesis an−1

1 , a2, . . . , ar is M -regular and clearly an1 is regular on M . Since (an1 , a2, . . . , ar) ⊆
(an−1

1 , a2, . . . , ar) it is clear thatM 6= (an1 , a2, . . . , ar)M . Let i > 1 and assume that an1 , a2, . . . , ai−1

is an M -regular sequence. We need to show that ai is regular on M/(an1 , a2, . . . , ai−1)M . Suppose
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that aiω = an1 ξ1 +a2ξ2 + · · ·+ai−1ξi−1. Then ω = an−1
1 η1 +a2η2 + · · ·+ai−1ηi−1 by the inductive

hypothesis. So

an−1
1 (a1ξ1 − aiη1) + a2(ξ2 − aiη2) + · · ·+ ai−1(ξi−1 − aiηi−1) = 0

Hence a1ξ1−aiη1 ∈ (an−1
1 , a2, . . . , ai−1)M by Lemma 61. It follows that aiη1 ∈ (a1, a2, . . . , ai−1)M ,

hence η1 ∈ (a1, . . . , ai−1)M and so ω ∈ (an1 , a2, . . . , ai−1)M , as required. This proves (∗) and
therefore completes the proof.

Let A be a ring. There is an isomorphism of A[x1, . . . , xn]-modules M ⊗A A[x1, . . . , xn] ∼=
M [x1, . . . , xn] where the latter module consists of polynomials in x1, . . . , xn with coefficients in M
(see our Polynomial Ring notes). For any f(x1, . . . , xn) ∈M [x1, . . . , xn] and tuple (a1, . . . , an) ∈
An we can define an element of M

f(a1, . . . , an) =
∑
α

aα1
1 · · · aαn

n · f(α)

For an element r ∈ R and h ∈M [x1, . . . , xn]

(f + h)(a1, . . . , an) = f(a1, . . . , an) + h(a1, . . . , an)
(r · f)(a1, . . . , an) = r · f(a1, . . . , an)

For an ideal I in R the R-submodule IM [x1, . . . , xn] consists of all polynomials whose coefficients
are in the R-submodule IM ⊆M .

Let us review the definition of the associated graded ring and modules. Let A be a ring and I
an ideal of A. Then the abelian group

grI(A) = A/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · ·

becomes a graded ring in a fairly obvious way. For an A-module M we have the graded grI(A)-
module

grI(M) = M/IM ⊕ IM/I2M ⊕ I2M/I3M ⊕ · · ·
If A is noetherian and M is a finitely generated A-module, then grI(A) is a noetherian ring and
if grI(M) is a finitely generated grI(A)-module.

Given elements a1, . . . , an ∈ A and I = (a1, . . . , an), we define a morphism of abelian groups
ψ : M [x1, . . . , xn] −→ grI(M) as follows: if f is homogenous of degreem ≥ 0, define ψ(f) to be the
image of f(a1, . . . , an) in ImM/Im+1M . This defines a morphism of groups M [x1, . . . , xn]m −→
ImM/Im+1M and together these define the morphism of groups ψ. Since ψ maps IM [x1, . . . , xn]
to zero it induces a morphism of abelian groups φ : (M/IM)[x1, . . . , xn] −→ grI(M), and

Proposition 63. Let A be a ring and M an A-module. Let a1, . . . , an ∈ A and set I =
(a1, . . . , an). Then the following conditions are equivalent

(a) For every m > 0 and for every homogenous polynomial f(x1, . . . , xn) ∈ M [x1, . . . , xn] of
degree m such that f(a1, . . . , an) ∈ Im+1M , we have f ∈ IM [x1, . . . , xn].

(b) If f(x1, . . . , xn) ∈ M [x1, . . . , xn] is homogenous and f(a1, . . . , an) = 0 then the coefficients
of f are in IM .

(c) The morphism of abelian groups φ : (M/IM)[x1, . . . , xn] −→ grI(M) defined by mapping
a homogenous polynomial f(x1, . . . , xn) of degree m to f(a1, . . . , an) ∈ ImM/Im+1M is an
isomorphism.

Proof. It is easy to see that (a) ⇔ (c) and (a) ⇒ (b). To show (b) ⇒ (a) let f ∈M [x1, . . . , xn] be
a homogenous polynomial of degree m > 0 and suppose f(a1, . . . , an) ∈ Im+1M . Any element of
Im+1M can be written as a sum of terms of the form aα1

1 · · · aαn
n ·m with

∑
i αi = m+1. By shifting

one of the ai across we can write f(a1, . . . , an) = g(a1, . . . , an) for a homogenous polynomial
g ∈M [x1, . . . , xn] of degreem all of whose coefficients belong to IM . Hence (f−g)(a1, . . . , an) = 0
so by (b) the coefficients of f − g belong to IM , and this implies implies that the coefficients of f
also belong to IM , as required.
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Definition 12. Let A be a ring and M an A-module. A sequence a1, . . . , an ∈ A is M -quasiregular
if it satisfies the equivalent conditions of the Proposition. Obviously this concept does not depend
on the order of the elements. But a1, . . . , ai for i < n need not be M -quasiregular.

Recall that for an A-module M , a submodule N ⊆ M and x ∈ A the notation (N : x) means
{m ∈ M |xm ∈ N}. This is a submodule of M . If A is a ring, I an ideal and M an A-module,
recall that M is separated in the I-adic topology when

⋂
n I

nM = 0.

Theorem 64. Let A be a ring, M a nonzero A-module, a1, . . . , an ∈ A and I = (a1, . . . , an).
Then

(i) If a1, . . . , an is M -quasiregular and x ∈ A is such that (IM : x) = IM , then (ImM : x) =
ImM for all m > 0.

(ii) If a1, . . . , an is M -regular then it is M -quasiregular.

(iii) If M,M/a1M,M/(a1, a2)M, . . . ,M/(a1, . . . , an−1)M are separated in the I-adic topology,
then the converse of (ii) is also true.

Proof. (i) By induction on m, with the case m = 1 true by assumption. Suppose m > 1 and
xξ ∈ ImM . By the inductive hypothesis ξ ∈ Im−1M . Hence there exists a homogenous polynomial
f ∈M [x1, . . . , xn] of degree m− 1 such that ξ = f(a1, . . . , an). Since xξ = xf(a1, . . . , an) ∈ ImM
the coefficients of f are in (IM : x) = IM . Therefore ξ = f(a1, . . . , an) ∈ ImM .

(ii) By induction on n. For n = 1 this is easy to check. Let n > 1 and suppose a1, . . . , an is M -
regular. Then by the induction hypothesis a1, . . . , an−1 is M -quasiregular. Let f ∈M [x1, . . . , xn]
be homogenous of degree m > 0 such that f(a1, . . . , an) = 0. We prove that f ∈ IM [x1, . . . , xn]
by induction on m (the case m = 0 being trivial). Write

f(x1, . . . , xn) = g(x1, . . . , xn−1) + xnh(x1, . . . , xn)

Then g and h are homogenous of degrees m and m− 1 respectively. By (i) we have

h(a1, . . . , an) ∈ ((a1, . . . , an−1)mM : an) = (a1, . . . , an−1)mM ⊆ ImM

Since by assumption a1, . . . , an is regular on M , so an is regular on M/(a1, . . . , an−1)M and
hence ((a1, . . . , an−1)M : an) = (a1, . . . , an−1)M . So by the induction hypothesis on m we have
h ∈ IM [x1, . . . , xn] (by the argument of Proposition 63). Since h(a1, . . . , an) ∈ (a1, . . . , an−1)mM
there exists H ∈ M [x1, . . . , xn−1] which is homogenous of degree m such that h(a1, . . . , an) =
H(a1, . . . , an−1). Putting

G(x1, . . . , xn−1) = g(x1, . . . , xn−1) + anH(x1, . . . , xn−1)

we have G(a1, . . . , an−1) = 0, so by the inductive hypothesis on n we have G ∈ IM [x1, . . . , xn],
hence g ∈ IM [x1, . . . , xn] and so f ∈ IM [x1, . . . , xn].

(iii) By induction on n ≥ 1. Assume that a1, . . . , an is M -quasiregular and the modules
M,M/a1M, . . . ,M/(a1, . . . , an−1)M are all separated in the I-adic topology. If a1ξ = 0 then
ξ ∈ IM , hence ξ =

∑
aiηi and

∑
a1aiηi = 0, hence ηi ∈ IM and so ξ ∈ I2M . In this way we

see that ξ ∈
⋂
t I
tM = 0. Thus a1 is regular on M , and this also takes care of the case n = 1

since M 6= IM by the separation condition. So assume n > 1. By Lemma 57 it suffices to show
that a2, . . . , an is an N -regular sequence, where N = M/a1M . Since there is an isomorphism of
A-modules for 2 ≤ i ≤ n− 1

M/(a1, . . . , ai)M ∼= N/(a2, . . . , ai)N

The modules N,N/a2N, . . . , N/(a2, . . . , an−1)N are separated in the I-adic topology. So by the
inductive hypothesis it suffices to show that the sequence a2, . . . , an is N -quasiregular.

It suffices to show that if f(x2, . . . , xn) ∈ M [x2, . . . , xn] is homogenous of degree m ≥ 1 with
f(a2, . . . , an) ∈ a1M then the coefficients of f belong to IM . Put f(a2, . . . , an) = a1ω. We claim
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that ω ∈ Im−1M . Let 0 ≤ i ≤ m−1 be the largest integer with ω ∈ IiM . Then ω = g(a1, . . . , an)
for some homogenous polynomial of degree i, and

f(a2, . . . , an) = a1g(a1, . . . , an) (2)

If i < m−1 then g ∈ IM [x1, . . . , xn] and so ω ∈ Ii+1M , which is a contradiction. Hence i = m−1
and so ω ∈ Im−1M . Again using (2) we see that f(x2, . . . , xn)−x1g(x1, . . . , xn) ∈ IM [x1, . . . , xn].
Since f does not involve x1 we have f ∈ IM [x1, . . . , xn], as required.

The theorem shows that, under the assumptions of (iii) any permutation of an M -regular
sequence is M -regular.

Corollary 65. Let A be a noetherian ring, M a finitely generated A-module and let a1, . . . , an
be contained in the Jacobson radical of A. Then a1, . . . , an is M -regular if and only if it is M -
quasiregular. In particular if a1, . . . , an is M -regular so is any permutation of the sequence.

Proof. From [AM69] we know that for any ideal I contained in the Jacobson radical, the I-adic
topology on any finitely generated A-module is separated.

If A is a ring and M an A-module, then any M -regular sequence a1, . . . , an ∈ A gives rise to
a strictly increasing chain of submodules a1M, (a1, a2)M, . . . , (a1, . . . , an)M . Hence the chain of
ideals (a1), (a1, a2), . . . , (a1, . . . , an) must also be strictly increasing.

Lemma 66. Let A be a noetherian ring and M an A-module. Any M -regular sequence a1, . . . , an
in an ideal I can be extended to a maximal M -regular sequence in I.

Proof. If a1, . . . , an is not maximal in I, we can find an+1 ∈ I such that a1, . . . , an, an+1 is an
M -regular sequence. Either this process terminates at a maximal M -regular sequence in I, or it
produces a strictly ascending chain of ideals

(a1) ⊂ (a1, a2) ⊂ (a1, a2, a3) ⊂ · · ·

Since A is noetherian, we can exclude this latter possibility.

Theorem 67. Let A be a noetherian ring, M a finitely generated A-module and I an ideal of A
with IM 6= M . Let n > 0 be an integer. Then the following are equivalent:

(1) ExtiA(N,M) = 0 for i < n and every finitely generated A-module N with Supp(N) ⊆ V (I).

(2) ExtiA(A/I,M) = 0 for i < n.

(3) There exists a finitely generated A-module N with Supp(N) = V (I) and ExtiA(N,M) = 0
for i < n.

(4) There exists an M -regular sequence a1, . . . , an of length n in I.

Proof. (1) ⇒ (2) ⇒ (3) is trivial. With I fixed we show that (3) ⇒ (4) for every finitely generated
module M with IM 6= M by induction on n. We have 0 = Ext0A(N,M) ∼= HomA(N,M). Since
M is finitely generated and nonzero, the set of associated primes of M is finite and nonempty. If
no elements of I are M -regular, then I is contained in the union of these associated primes, and
hence I ⊆ p for some p ∈ Ass(M) (see [AM69] for details). By definition there is a monomorphism
of A-modules φ : A/p −→M . There is an isomorphism of A-modules

(A/p)p
∼= A/p⊗A Ap

∼= Ap/pAp = k

It is not hard to check this is an isomorphism of Ap-modules as well. Since φp is a monomorphism
and k 6= 0 it follows that HomAp(k,Mp) 6= 0. Since p ∈ V (I) = Supp(N) we have Np 6= 0 and
so the k-module Np/pNp 6= 0 is nonzero and therefore free, so Homk(Np/pNp, k) 6= 0. Since
k ∼= (A/p)p as Ap-modules it follows that HomA(N,A/p)p

∼= HomAp(Np, (A/p)p) 6= 0. Since A/p
is isomorphic to a submodule of M it follows that HomA(N,M) 6= 0, which is a contradiction,
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therefore there exists an M -regular element a1 ∈ I, which takes care of the case n = 1. If n > 1
then put M1 = M/a1M . From the exact sequence

0 // M
a1 // M // M1

// 0 (3)

we get the long exact sequence

· · · −→ ExtiA(N,M) −→ ExtiA(N,M1) −→ Exti+1
A (N,M) −→ · · ·

which shows that ExtiA(N,M1) = 0 for 0 ≤ i < n − 1. By the inductive hypothesis on n there
exists an M1-regular sequence a2, . . . , an in I. The sequence a1, . . . , an is then an M -regular
sequence in I.

(4) ⇒ (1) By induction on n with I fixed. For n = 1 we have a1 ∈ I regular on M and so (3)
gives an exact sequence of R-modules

0 // HomA(N,M)
a1 // HomA(N,M)

Where a1 denotes left multiplication by a1. Since Supp(N) = V (Ann(N)) ⊆ V (I) it fol-
lows that I ⊆ r(Ann(N)), and so ar1N = 0 for some r > 0. It follows that ar1 annihilates
HomA(N,M) as well, but since the action of ar1 on HomA(N,M) gives an injective map it follows
that HomA(N,M) = 0. Now assume n > 1 and put M1 = M/a1M . Then a2, . . . , an is an
M1-regular sequence, so by the inductive hypothesis ExtiA(N,M1) = 0 for i < n− 1. So the long
exact sequence corresponding to (3) gives an exact sequence for 0 ≤ i < n

0 // ExtiA(N,M)
a1 // ExtiA(N,M)

Here a1 denotes left multiplication by a1, which is equal to ExtiA(α,M) = Exti(N, β) where α, β
are the endomorphisms given by left multiplication by a1 on N,M respectively. Assume that ar1
annihilates N with r > 0. Then αr is the zero map, so ExtiA(α,M)r = 0 and so ar1 also annihilates
ExtiA(N,M). Since the a1 is regular on this module, it follows that ExtiA(N,M) = 0 for i < n,
as required.

Corollary 68. Let A be a noetherian ring, M a finitely generated A-module, and I an ideal of
A with IM 6= M . If a1, . . . , an a maximal M -regular sequence in I, then ExtiA(A/I,M) = 0 for
i < n and ExtnA(A/I,M) 6= 0.

Proof. We already know that ExtiA(A/I,M) = 0 for i < n, so with I fixed we prove by induction
on n that ExtnA(A/I,M) 6= 0 for any finitely generated module M with IM 6= M admitting a
maximal M -regular sequence of length n. For n = 1 we have a1 ∈ I regular on M and an exact
sequence (3) where M1 = M/a1M . Part of the corresponding long exact sequence is

Ext0A(A/I,M) −→ Ext0A(A/I,M1) −→ Ext1A(A/I,M)

We know from the Theorem 67 that Ext0A(A/I,M) = 0, so it suffices to show that we have
HomA(A/I,M1) 6= 0. But if HomA(A/I,M1) = 0 then it follows from the proof of (3) ⇒ (4)
above that there would be b ∈ I regular on M1, so a1, b is an M -regular sequence. This is a
contradiction since the sequence a1 was maximal, so we conclude that Ext1A(A/I,M) 6= 0.

Now assume n > 1 and let a1, . . . , an be a maximal M -regular sequence in I. Then a2, . . . , an
is a maximal M1-regular sequence in I, so by the inductive hypothesis Extn−1

A (A/I,M1) 6= 0. So
from the long exact sequence for (3) we conclude that ExtnA(A/I,M) 6= 0 also.

It follows that under the conditions of the Corollary every maximal M -regular sequence in I
has a common length, and you can find this length by looking at the sequence of abelian groups

HomA(A/I,M), Ext1A(A/I,M), Ext2A(A/I,M), . . . , ExtnA(A/I,M), . . .

If there are M -regular sequences in I, then this sequence will start off with n − 1 zero groups,
where n ≥ 1 is the common length of every maximal M -regular sequence. The nth group will
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be nonzero, and we can’t necessarily say anything about the rest of the sequence. Notice that
since any M -regular sequence can be extended to a maximal one, any M -regular sequence has
length ≤ n. There are no M -regular sequences in I if and only if the first term of this sequence
is nonzero.

Definition 13. Let A be a noetherian ring, M a finitely generated A-module, and I an ideal of
A. If IM 6= M then we define the I-depth of M to be

depthI(M) = inf{i |ExtiA(A/I,M) 6= 0}

So depthI(M) = 0 if and only if there are no M -regular sequences in I, and otherwise it is the
common length of all maximal M -regular sequences in I, or equivalently the supremum of the
lengths of M -regular sequences in I. We define depthI(M) = ∞ if IM = M . In particular
depthI(0) = ∞. Isomorphic modules have the same I-depth. When (A,m) is a local ring we write
depth(M) or depthAM for depthm(M) and call it simply the depth of M . Thus depth(M) = ∞
iff. M = 0 and depth(M) = 0 iff. m ∈ Ass(M).

Lemma 69. Let φ : A −→ B be a surjective local morphism of local noetherian rings, and let M
be a finitely generated B-module. Then depthA(M) = depthB(M).

Proof. It is clear that depthA(M) = ∞ iff. depthB(M) = ∞, so we may as well assume both
depths are finite. Given a sequence of elements a1, . . . , an ∈ mA it is clear that they are an
M -regular sequence iff. the images φ(a1), . . . , φ(an) ∈ mB are an M -regular sequence. Given an
M -regular sequence b1, . . . , bn in mB you can choose inverse images a1, . . . , an ∈ mA and these
form an M -regular sequence. This makes it clear that depthA(M) = depthB(M).

Lemma 70. Let A be a noetherian ring and M a finitely generated A-module. Then for any ideal
I and integer n ≥ 1 we have depthI(M) = depthI(Mn).

Proof. We have IMn = (IM)n so depthI(M) = ∞ if and only if depthI(Mn) = ∞. In the finite
case the result follows immediately from Lemma 59.

Lemma 71. Let A be a noetherian ring, M a finitely generated A-module and p a prime ideal.
Then depthAp(Mp) = 0 if and only if p ∈ AssA(M).

Proof. We have depthAp(Mp) = 0 iff. pAp ∈ AssAp(Mp) which by [Ash] Chapter 1, Lemma 1.4.2
is iff. p ∈ AssA(M). So the associated primes are precisely those with depthAp(Mp) = 0.

Lemma 72. Let A be a noetherian ring, and M a finitely generated A-module. For any prime p
we have depthAp(Mp) ≥ depthp(M).

Proof. If depthp(M) = ∞ then pM = M , and this implies that (pAp)Mp = Mp so depthAp(M) =
∞. If depthAp(Mp) = 0 then pAp ∈ Ass(Mp) which can only occur if p ∈ Ass(M), and this implies
that HomA(A/p,M) 6= 0, so depthp(M) = 0 (since we have already excluded the possibility of
pM = M). So we can reduce to the case where depthAp(Mp) = n with 0 < n <∞ and pM 6= M .
We have seen earlier in notes that there is an isomorphism of groups for i ≥ 0

ExtiAp
((A/p)p,Mp) ∼= ExtiA(A/p,M)p

As an Ap-module (A/p)p
∼= Ap/pAp and by assumption ExtnAp

(Ap/pAp,Mp) 6= 0, so it follows
that ExtnA(A/p,M) 6= 0 and hence depthp(M) ≤ n.

Definition 14. Let A be a noetherian ring and M a finitely generated A-module. Then we
define the grade of M , denoted grade(M), to be depthI(A) where I is the ideal Ann(M). So
grade(M) = ∞ if and only if M = 0. Isomorphic modules have the same grade.

If I is an ideal of A then we call grade(A/I) = depthI(A) the grade of I and denote it by G(I).
So the grade of A is ∞ and the grade of any proper ideal I is the common length of the maximal
A-regular sequences in I (zero if none exist).
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Lemma 73. Let A be a noetherian ring and M a nonzero finitely generated A-module. Then

grade(M) = inf{i |Exti(M,A) 6= 0}

Proof. Put I = Ann(M). Since M and A/I are both finitely generated A-modules whose supports
are equal to V (I) it follows from Theorem 67 that for any n > 0 we have Exti(A/I,A) = 0 for
all i < n if and only if Exti(M,A) = 0 for all i < n. In particular Ext0(M,A) 6= 0 if and only if
Ext0(A/I,A) 6= 0. By definition

grade(M) = depthI(A) = inf{i |Exti(A/I,M) 6= 0}

so the claim is straightforward to check.

The following result is a generalisation of Krull’s Principal Ideal Theorem.

Lemma 74. Let A be a noetherian ring and a1, . . . , ar an A-regular sequence. Then every minimal
prime over (a1, . . . , ar) has height r, and in particular ht.(a1, . . . , ar) = r.

Proof. By assumption I = (a1, . . . , ar) is a proper ideal. If r = 1 then this is precisely Krull’s
PID Theorem. For r > 1 we proceed by induction. If a1, . . . , ar is an A-regular sequence then
set J = (a1, . . . , ar−1). Clearly ar + J is a regular element of R/J which is not a unit, so every
minimal prime over (ar+J) in R/J has height 1. But these are precisely the primes in R minimal
over I. So if p is any prime ideal minimal over I there is a prime J ⊆ q ⊂ p with q minimal over
J . By the inductive hypothesis ht.q = r − 1 so ht.p ≥ r. We know the height is ≤ r by another
result of Krull.

For any nonzero ring A the sequence x1, . . . , xn in A[x1, . . . , xn] is clearly a maximal A-regular
sequence. So in some sense regular sequences in a ring generalise the notion of independent
variables.

Lemma 75. Let A be a noetherian ring, M a nonzero finitely generated A-module and I a proper
ideal. Then grade(M) ≤ proj.dim.M and G(I) ≤ ht.I.

Proof. For a nonzero module M the projective dimension is the largest i ≥ 0 for which there
exists a module N with Exti(M,N) 6= 0. So clearly grade(M) ≤ proj.dim.M . The second claim
is trivial if G(I) = 0 and otherwise G(I) is the length r of a maximal A-regular sequence a1, . . . , ar
in I. But then r = ht.(a1, . . . , ar) ≤ ht.I, so the proof is complete.

Proposition 76. Let A be a noetherian ring, M,N finitely generated A-modules with M nonzero,
and suppose that grade(M) = k and proj.dim.N = ` < k. Then

ExtiA(M,N) = 0 (0 ≤ i < k − `)

Proof. Induction on `. If ` = −1 then this is trivial. If ` = 0 then is a direct summand of a free
module. Since our assertion holds for A by definition, it holds for N also. If ` > 0 take an exact
sequence 0 −→ N ′ −→ L −→ N −→ 0 with L free. Then proj.dim.N ′ = ` − 1 and our assertion
is proved by induction.

Lemma 77 (Ischebeck). Let (A,m) be a noetherian local ring and let M,N be nonzero finitely
generated A-modules. Suppose that depth(M) = k, dim(N) = r. Then

ExtiA(N,M) = 0 (0 ≤ i < k − r)

Proof. By induction on integers r with r < k (we assume k > 0). If r = 0 then Supp(N) = {m}
so the assertion follows from Theorem 67. Let r > 0. First we prove the result in the case where
N = A/p for a prime ideal p. We can pick x ∈ m \ p and then the following sequence is exact

0 // N
x // N // N ′ // 0
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where N ′ = A/(p + Ax) has dimension < r. Then using the induction hypothesis we get exact
sequences of A-modules

0 = Exti(N ′,M) // ExtiA(N,M) x // ExtiA(N,M) // Exti+1
A (N ′,M) = 0

for 0 ≤ i < k− r, and so ExtiA(N,M) = 0 by Nakayama, since the module ExtiA(N,M) is finitely
generated (see our Ext notes). This proves the result for modules of the form N = A/p.

For general N we use know from [Ash] Chapter 1, Theorem 1.5.10 that there is a chain of
modules 0 = N0 ⊂ · · · ⊂ Ns = N such that for 1 ≤ j ≤ s we have an isomorphism of A-modules
Nj/Nj−1

∼= A/pj where the pj are prime ideals of A. Lemma 53 shows that dimN1 ≤ dimN2 ≤
· · · ≤ dimN = r, so since N1

∼= A/p1 we have already shown the result holds for N1. Consider
the exact sequence

0 −→ N1 −→ N2 −→ A/p2 −→ 0

By Lemma 53 we know that r ≥ dimA/p2, so the result holds for A/p2 and the following piece of
the long exact Ext sequence shows that the result is true for N2 as well

ExtiA(A/p2,M) −→ ExtiA(N2,M) −→ ExtiA(N1,M)

Proceeding in this way proves the result for all Nj and hence for N , completing the proof.

Theorem 78. Let (A,m) be a noetherian local ring and let M be a nonzero finitely generated
A-module. Then depth(M) ≤ dim(A/p) for every p ∈ Ass(M).

Proof. If p ∈ Ass(M) then HomA(A/p,m) 6= 0, hence depth(M) ≤ dim(A/p) by Lemma 77.

Lemma 79. Let A be a ring and let E,F be finitely generated A-modules. Then Supp(E⊗AF ) =
Supp(E) ∩ Supp(F ).

Proof. See [AM69] Chapter 3, Exercise 19.

The Dimension Theorem for modules (see [AM69] Chapter 11) shows that for a nonzero finitely
generated module M over a noetherian local ring A, the dimension of M is zero iff. M is of finite
length, and otherwise dim(M) is the smallest r ≥ 1 for which there exists elements a1, . . . , ar ∈ m
with M/(a1, . . . , an)M of finite length.

Proposition 80. Let A be a noetherian local ring and M a finitely generated A-module. Let
a1, . . . , ar be an M -regular sequence. Then

dimM/(a1, . . . , ar)M = dimM − r

In particular if a1, . . . , ar is an A-regular sequence, then the dimension of the ring A/(a1, . . . , ar)
is dimA− r.

Proof. Let N = M/(a1, . . . , ar)M . Then N is a nonzero finitely generated A-module, so if
k = dim(N) then 0 ≤ k < ∞. If k = 0 then it is clear from the preceding comments that
dimM/(a1, . . . , ar)M ≥ dimM −r. If k ≥ 1 and b1, . . . , bk ∈ m are elements such that the module

N/(b1, . . . , bk)N ∼= M/(a1, . . . , ar, b1, . . . , bk)M

is of finite length, then since the ai all belong to m we conclude that dim(M) ≤ r+k. Hence we at
least have the inequality dimM/(a1, . . . , an)M ≥ dim(M)− r. On the other hand, suppose f ∈ m
is an M -regular element. We have Supp(M/fM) = Supp(M) ∩ Supp(A/fA) = Supp(M) ∩ V (f)
by Lemma 79, and f is not in any minimal element of Supp(M) since these coincide with the
minimal elements of Ass(M), and f is regular on M . Since

dimM = sup{coht.p | p ∈ Supp(M)}

it follows easily that dim(M/fM) < dimM . Proceeding by induction on r we see that

dimM/(a1, . . . , ar)M ≤ dimM − r

as required.
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Corollary 81. Let (A,m) be a noetherian local ring and M a nonzero finitely generated A-module.
Then depthM ≤ dimM .

Proof. This is trivial if depthM = 0. Otherwise let a1, . . . , ar be a maximal M -regular sequence
in m, so depthM = r. Then we know from Proposition 80 that r = dimM−dimM/(a1, . . . , ar)M ,
so of course r ≤ dimM .

Lemma 82. Let A be a noetherian ring, M a finitely generated A-module and I an ideal. Let
a1, . . . , ar be an M -regular sequence in I and assume IM 6= M . Then

depthI(M/(a1, . . . , ar)M) = depthI(M)− r

Proof. Let N = M/(a1, . . . , ar)M . It is clear that IM = M iff. IN = N so both depths are
finite. If depthI(N) = 0 then the sequence a1, . . . , ar must be a maximal M -regular sequence in
I, so depthI(M) = r and we are done. Otherwise let b1, . . . , bs be a maximal N -regular sequence
in I. Then a1, . . . , ar, b1, . . . , bs is a maximal M -regular sequence in I, so depthI(M) = r + s =
r + depthI(N), as required.

Lemma 83. Let A be a noetherian local ring, a1, . . . , ar an A-regular sequence. If I = (a1, . . . , ar)
then

depthA/I(A/I) = depthA(A)− r

Proof. A sequence b1, . . . , bs ∈ m is A/I-regular iff. b1 + I, . . . , bs + I ∈ m/I is A/I-regular, so
it is clear that depthA/I(A/I) = depthA(A/I). By Lemma 82, depthA(A/I) = depthA(A)− r, as
required.

Proposition 84. Let A be a noetherian ring, M a finitely generated A-module and I a proper
ideal. Then

depthI(M) = inf{depthMp | p ∈ V (I)}

Proof. Let n denote the value of the right hand side. If n = 0 then depthMp = 0 for some p ⊇ I
and then I ⊆ p ∈ Ass(M), since pAp ∈ Ass(Mp) implies p ∈ Ass(M). Thus depthI(M) = 0,
since there can be no M -regular sequences in p. If 0 < n < ∞ then I is not contained in any
associated prime of M , and so it is not contained in their union, which is the set of elements not
regular on M . Hence there exists a ∈ I regular on M . Moreover IM 6= M since otherwise we
would have (pAp)Mp = Mp and hence depthMp = ∞ for any p ⊇ I, which would contradict the
fact that n <∞. Put M ′ = M/aM . Then for any p ⊇ I with Mp 6= 0 the element a/1 ∈ Ap is an
Mp-regular sequence in pAp, so

depthM ′
p = depthMp/aMp = depthMp − 1

and depthI(M ′) = depthI(M)−1 by the Lemma 82. Therefore our assertion is proved by induction
on n.

If n = ∞ then Mp = 0 for all p ⊇ I. If IM 6= M then Supp(M/IM) is nonempty, since
Ass(M/IM) ⊆ Supp(M/IM) and Ass(M/IM) = ∅ iff. M/IM = 0. If p ∈ Supp(M/IM) =
Supp(M) ∩ V (I) then (M/IM)p 6= 0 and so Mp/IMp 6= 0, which is a contradiction. Hence
IM = M and therefore depthI(M) = ∞.

5.1 Cohen-Macaulay Rings

Definition 15. Let (A,m) be a noetherian local ring and M a finitely generated A-module. We
know that depthM ≤ dimM provided M is nonzero. We say that M is Cohen-Macaulay if M = 0
or if depthM = dimM . If the noetherian local ring A is Cohen-Macaulay as an A-module then
we call A a Cohen-Macaulay ring. So a noetherian local ring is Cohen-Macaulay if its dimension
is equal to the common length of the maximal A-regular sequences in m. The Cohen-Macaulay
property is stable under isomorphisms of modules and rings.
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Example 4. Let A be a noetherian local ring. If dim(A) = 0 then A is Cohen-Macaulay, since
m is an associated prime of A and therefore no element of m is regular. If dim(A) = d ≥ 1 then
A is Cohen-Macaulay if and only if there is an A-regular sequence in m of length d.

Recall that for a module M over a noetherian ring A, the elements of Ass(M) which are
not minimal are called the embedded primes of M . Since a noetherian ring has descending chain
condition on prime ideals, every associated prime of M contains a minimal associated prime.

Theorem 85. Let (A,m) be a noetherian local ring and M a finitely generated A-module. Then

(i) If M is a Cohen-Macaulay module and p ∈ Ass(M), then we have depthM = dim(A/p).
Consequently M has no embedded primes.

(ii) If a1, . . . , ar is an M -regular sequence in m and M ′ = M/(a1, . . . , ar)M then M is Cohen-
Macaulay ⇔ M ′ is Cohen-Macaulay.

(iii) If M is Cohen-Macaulay, then for every p ∈ Spec(A) the Ap-module Mp is Cohen-Macaulay
and if Mp 6= 0 we have depthp(M) = depthAp(Mp).

Proof. (i) Since Ass(M) 6= ∅, M is nonzero and so depthM = dimM . Since p ∈ Supp(M) we
have p ⊇ Ann(M) and therefore dimM ≥ dim(A/p) and dim(A/p) ≥ depthM by Theorem 78. If
p ∈ Ass(M) were an embedded prime, there would be a minimal prime q ∈ Ass(M) with q ⊂ p.
But since coht.p = coht.q are both finite this is impossible.

(ii) By Nakayama we have M = 0 iff. M ′ = 0. Suppose M 6= 0. Then dimM ′ = dimM − r by
Proposition 80 and depthM ′ = depthM − r by Lemma 82.

(iii) We may assume thatMp 6= 0. Hence p ⊇ Ann(M). We know that dimMp ≥ depthApMp ≥
depthp(M). So we will prove depthp(M) = dimMp by induction on depthp(M). If depthp(M) = 0
then no element of p is regular onM , so by the usual argument p is contained in some p′ ∈ Ass(M).
But Ann(M) ⊆ p ⊆ p′ and the associated primes of M are the minimal primes over the ideal
Ann(M) by (i). Hence p = p′, and so p is a minimal element of Supp(M). The dimension of Mp

is the length of the longest chain in Supp(Mp). If p0Ap ⊂ · · · ⊂ psAp = pAp is a chain of length
s = dimMp then p0Ap is minimal and therefore p0 ∈ Ass(M). It follows that p0 = p and so s = 0,
as required.

Now suppose depthp(M) > 0, take an M -regular element a ∈ p and set M1 = M/aM . The
element a/1 ∈ Ap is then Mp-regular. Therefore we have

dim(M1)p = dimMp/aMp = dimMp − 1

and depthp(M1) = depthp(M)−1. Since M1 is Cohen-Macaulay by (ii), by the inductive hypoth-
esis we have dim(M1)p = depthp(M1), which completes the proof.

Corollary 86. Let (A,m) be a noetherian local ring and a1, . . . , ar an A-regular sequence in
m. Let A′ be the ring A/(a1, . . . , ar). Then A is a Cohen-Macaulay ring if and only if A′ is a
Cohen-Macaulay ring.

Proof. Let I = (a1, . . . , ar). It suffices to show that A′ is a Cohen-Macaulay ring if and only if it
is a Cohen-Macaulay module over A. The dimension of A′ as an A-module, the Krull dimension
of A′ and the dimension of A′ as a module over itself are all equal. So it suffices to observe that
a sequence b1, . . . , bs ∈ m is an A′-regular sequence iff. b1 + I, . . . , bs + I ∈ m/I is an A′-regular
sequence, so depthAA′ = depthA′A

′.

Corollary 87. Let A be a Cohen-Macaulay local ring and p a prime ideal. Then Ap is a Cohen-
Macaulay local ring and ht.p = dimAp = depthp(A).

Proof. This all follows immediately from Theorem 85. In the statement, by dimAp we mean the
Krull dimension of the ring.

Lemma 88. Let A be a noetherian ring, I a proper ideal and a ∈ I a regular element. Then
ht.I/(a) = ht.I − 1.
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Proof. The minimal primes over the ideal I/(a) of A/(a) correspond to the minimal primes over I,
and we know from [Ash] Chapter 5, Corollary 5.4.8 that for any prime p containing a, ht.p/(a) =
ht.p− 1, so the proof is straightforward.

Lemma 89. Let A be a Cohen-Macaulay local ring and I a proper ideal with ht.I = r ≥ 1. Then
we can choose a1, . . . , ar ∈ I in such a way that ht.(a1, . . . , ai) = i for 1 ≤ i ≤ r.

Proof. We claim that there exists a regular element a ∈ I. Otherwise, if every element of I was a
zero divisor on A, then I would be contained in the union of the finite number of primes in Ass(A),
and hence contained in some p ∈ Ass(M). By Theorem 85 (i) these primes are all minimal, so
I ⊆ p implies ht.I = 0, a contradiction.

Now we proceed by induction on r. For r = 1 let a ∈ I be regular. It follows from Krull’s
PID Theorem that ht.(a) = 1. Now assume r > 1 and let a ∈ I be regular. Then by Corollary 86
the ring A′ = A/(a) is Cohen-Macaulay, and by Lemma 88, ht.I/(a) = r − 1, so by the inductive
hypothesis there are a1, . . . , ar−1 ∈ I with ht.(a, a1, . . . , ai)/(a) = i for 1 ≤ i ≤ r − 1. Hence

ht.(a, a1, . . . , ai) = i+ 1

for 1 ≤ i ≤ r − 1, as required.

Theorem 90. Let (A,m) be a Cohen-Macaulay local ring. Then

(i) For every proper ideal I of A we have

ht.I = depthI(A) = G(I)
ht.I + dim(A/I) = dimA

(ii) A is catenary.

(iii) For every sequence a1, . . . , ar ∈ m the following conditions are equivalent

(1) The sequence a1, . . . , ar is A-regular.

(2) ht.(a1, . . . , ar) = i for 1 ≤ i ≤ r.

(3) ht.(a1, . . . , ar) = r.

(4) There is a system of parameters of A containing {a1, . . . , ar}.

Proof. (iii) (1) ⇒ (2) is immediate by Lemma 74. (2) ⇒ (3) is trivial. (3) ⇒ (4) If dimA = r ≥ 1
then (a1, . . . , ar) must be m-primary, so this is trivial. If dimA > r then m is not minimal over
(a1, . . . , ar), so we can take ar+1 ∈ m which is not in any minimal prime ideal of (a1, . . . , ar).
Then by construction ht.(a1, . . . , ar+1) ≥ r+ 1, and therefore ht.(a1, . . . , ar+1) = r+ 1 by Krull’s
Theorem. Continuing in this way we produce the desired system of parameters. Note that these
implications are true for any noetherian local ring. (4) ⇒ (1) It suffices to show that every system
of parameters x1, . . . , xn of a Cohen-Macaulay ring A is an A-regular sequence, which we do by
induction on n. Let I = (x1, . . . , xn) and put A′ = A/(x1). If n = 1 and (x1) is m-primary then
it suffices to show that x1 is regular. If not, then x1 ∈ p for some p ∈ Ass(A), which implies
that m = p is a minimal prime over 0 (since by Theorem 85 every prime of Ass(M) is minimal),
contradicting the fact that dimA = 1. Now assume n > 1. Since A is Cohen-Macaulay the
dimensions dim(A/p) for p ∈ Ass(A) all agree, and hence they are all equal to n = dimA. For
any p ∈ Ass(A) the ideal p + I is m-primary since

r(I + p) = r(r(I) + r(p)) = r(m + p) = m

Thus p + I/p is an m/p-primary ideal in the ring A/p, which has dimension n, so p + I/p cannot
be generated by fewer than n elements. This shows that x1 /∈ p for any p ∈ Ass(A), and therefore
x1 is A-regular. Put A′ = A/(x1). By Corollary 86, A′ is a Cohen-Macaulay ring, and it has
dimension n−1 by Proposition 80. The images of x2, . . . , xn in A′ form a system of parameters for
A′. Thus the residues x2+(x1), . . . , xn+(x1) form an A′-regular sequence (A′ as an A′-module) by
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the inductive hypothesis, and therefore x2, . . . , xn is an A′-regular sequence (A′ as an A-module).
Hence x1, . . . , xn is an A-regular sequence, and we are done.

(i) Let I be a proper ideal of A. If ht.I = 0 then there is a prime p minimal over I with
ht.p = 0. Since p is minimal over 0, we have p ∈ Ass(A) and every element of I annihilates
some nonzero element of A. Therefore no A-regular sequence can exist in I, and G(I) = 0. Now
assume ht.I = r with r ≥ 1. Using Lemma 89 we produce a1, . . . , ar ∈ I with ht.(a1, . . . , ai) = i
for 1 ≤ i ≤ r. Then the sequence a1, . . . , ar is A-regular by (iii). Hence r ≤ G(I). Conversely,
if b1, . . . , bs is an A-regular sequence in I then ht.(b1, . . . , bs) = s ≤ ht.I by Lemma 74. Hence
ht.I = G(I).

We first prove the second formula for prime ideals p. Put dimA = depthA = n and ht.p = r.
If r = 0 then dim(A/p) = depthA = n by Theorem 85 (i). If r ≥ 1 then since Ap is a Cohen-
Macaulay local ring and ht.p = dimAp = depthp(A) we can find an A-regular sequence a1, . . . , ar
in p. Then A/(a1, . . . , ar) is a Cohen-Macaulay ring of dimension n− r, and p is a minimal prime
of (a1, . . . , ar). Therefore dim(A/p) = n− r by Theorem 85 (i), so the result is proved for prime
ideals. Now let I be an arbitrary proper ideal with ht.I = r. We have

dim(A/I) = sup{dim(A/p) | p ∈ V (I)}
= sup{dimA− ht.p | p ∈ V (I)}

There exists a prime ideal p minimal over I with ht.p = r, so it is clear that dim(A/I) = dimA−r,
as required.

(ii) If q ⊂ p are prime ideals of A, then since Ap is Cohen-Macaulay we have dimAp =
ht.qAp + dimAp/qAp, i.e. ht.p− ht.q = ht.(p/q). Therefore A is catenary.

Definition 16. We say a noetherian ring A is Cohen-Macaulay if Ap is a Cohen-Macaulay local
ring for every prime ideal of A. A local noetherian ring is Cohen-Macaulay in this new sense iff.
it is Cohen-Macaulay in the original sense. The Cohen-Macaulay property is stable under ring
isomorphism.

Lemma 91. Let A ⊆ B be nonzero noetherian rings with B integral over A and suppose that B
is a flat A-module. If A is Cohen-Macaulay then so is B.

Proof. Let q be a prime ideal of B and let p = q ∩ A. By Lemma 33, Bq is flat over Ap and
so using Lemma 58 it follows that depthBq(Bq) ≥ depthAp(Ap) = dim(Ap). By Theorem 56 we
have dim(Bq) ≤ dim(Ap), and hence depthBq(Bq) ≥ dim(Bq), which shows that Bq is Cohen-
Macaulay.

Definition 17. Let A be a noetherian ring and I a proper ideal, and let AssA(A/I) = {p1, . . . , ps}
be the associated primes of I. We say that I is unmixed if ht.pi = ht.I for all i. In that case all the
pi are minimal, and A/I has no embedded primes. We say that the unmixedness theorem holds in
A if the following is true: for r ≥ 0 if I is a proper ideal of height r generated by r elements, then
I is unmixed. Note that such an ideal is unmixed if and only if A/I has no embedded primes, and
for r = 0 the condition means that A has no embedded primes.

Lemma 92. Let A be a noetherian ring. If the unmixedness theorem holds in Am for every
maximal ideal m, then the unmixedness theorem holds in A.

Proof. Let I be a proper ideal of height r generated by r elements with r ≥ 0, and let I = q1∩· · · qn
be a minimal primary decomposition with qi being pi-primary for 1 ≤ i ≤ n. Assume that one of
these associated primes, say p1, is an embedded prime of I, and let m be a maximal ideal containing
p1. Arrange the qi so that the primes p1, . . . , ps are contained in m whereas ps+1, · · · , pn are not.
Then by [AM69] Proposition 4.9 the following is a minimal primary decomposition of the ideal
IAm

IAm = q1Am ∩ · · · ∩ qsAm

So {p1Am, . . . , psAm} are the associated primes of IAm. Since p1 is embedded, there is some
1 ≤ i ≤ s with pi ⊂ p1, and therefore piAm ⊂ p1Am. But this is a contradiction, since IAm

has height r, is generated by r elements, and the unmixedness theorem holds in Am. So the
unmixedness theorem must hold in A.
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Lemma 93. Let A be a noetherian ring and assume that the unmixedness theorem holds in A. If
a ∈ A is regular then the unmixedness theorem holds in A/(a).

Proof. Let I be a proper ideal of A containing a, and supppose the ideal I/(a) has height r and
is generated by r elements in A/(a). By Lemma 88 the ideal I has height r + 1 and is clearly
generated by r+1 elements in A. Therefore I is unmixed. If {p1, . . . , pn} are the associated primes
of I then the associated primes of I/(a) are {p1/(a), . . . , pn/(a)}. Since ht.p/(a) = ht.p − 1 =
ht.I − 1 = ht.I/(a) it follows that I/(a) is unmixed, as required.

Lemma 94. Let A be a noetherian ring and assume that the unmixedness theorem holds in
A. Then if I is a proper ideal with ht.I = r ≥ 1 we can choose a1, . . . , ar ∈ I such that
ht.(a1, . . . , ai) = i for 1 ≤ i ≤ r.

Proof. The proof is the same as Lemma 89 except we use the fact that 0 has no embedded primes
to show I contains a regular element, and we use Lemma 93.

Theorem 95. Let A be a noetherian ring. Then A is Cohen-Macaulay if and only if the unmixed-
ness theorem holds in A.

Proof. Suppose the unmixedness theorem holds in A and let p be a prime ideal of height r ≥ 0.
We know that r = dimAp ≥ depth(Ap) ≥ depthpA by Lemma 72. If r = 0 then no regular
element can exist in p, so depthpA = 0 and consequently dimAp = 0 = depth(Ap) so Ap is Cohen-
Macaulay. If r ≥ 1 then by Lemma 94 we can find a1, . . . , ar ∈ p such that ht.(a1, . . . , ai) = i for
1 ≤ i ≤ r. The ideal (a1, . . . , ai) is unmixed by assumption, so ai+1 lies in no associated primes
of A/(a1, . . . , ai). Thus a1, . . . , ar is an A-regular sequence in p, so depthpA ≥ r and consequently
dimAp = r = depth(Ap), so again Ap is Cohen-Macaulay. Hence A is a Cohen-Macaulay ring.

Conversely, suppose A is Cohen-Macaulay. It suffices to show that the unmixedness theorem
holds in Am for all maximal m, so we can reduce to the case where A is a Cohen-Macaulay local
ring. We know from Theorem 85 that 0 is unmixed. Let (a1, . . . , ar) be an ideal of height r > 0.
Then a1, . . . , ar is an A-regular sequence by Theorem 90, hence A/(a1, . . . , ar) is Cohen-Macaulay
and so (a1, . . . , ar) is unmixed.

Corollary 96. A noetherian ring A is Cohen-Macaualy if and only if Am is a Cohen-Macaulay
local ring for every maximal ideal m.

Proof. This follows immediately from Theorem 95 and Lemma 92.

Corollary 97. Let A be a Cohen-Macaulay ring. If a1, . . . , ar ∈ A are such that ht.(a1, . . . , ai) = i
for 1 ≤ i ≤ r then a1, . . . , ar is an A-regular sequence.

Theorem 98. Let A be a Cohen-Macaulay ring. Then the polynomial ring A[x1, . . . , xn] is also
Cohen-Macaulay. Hence any Cohen-Macaulay ring is universally catenary.

Proof. It is enough to consider the case n = 1. Let q be a prime ideal of B = A[x] and put
p = q ∩ A. We have to show that Bq is Cohen-Macaulay. It follows from Lemma 10 that Bq is
isomorphic to Ap[x]qAp[x] where qAp[x] is a prime ideal of Ap[x] contracting to pAp. Since Ap

is Cohen-Macaulay we can reduce to showing Bq is Cohen-Macaulay in the case where A is a
Cohen-Macaulay local ring and p = q ∩ A is the maximal ideal. Then B/pB ∼= k[x] where k is a
field. Therefore we have either q = pB or q = pB+fB where f ∈ B = A[x] is a monic polynomial
of positive degree. By Theorem 55 we have (Krull dimensions)

dim(Bq) = dim(A) + ht.(q/pB)

If q = pB then this implies that dim(Bq) = dim(A). So to show Bq is Cohen-Macaulay it suffices
to show that depthBq(Bq) ≥ dimA. If dimA = 0 this is trivial, so assume dimA = r ≥ 1 and let
a1, . . . , ar be an A-regular sequence. As B is flat over A, so is Bq, and therefore a1, . . . , ar is also
a Bq-regular sequence by Lemma 58. It is then not difficult to check that the images of the ai in
Bq form a Bq-regular sequence, so depthBq(Bq) ≥ r, as required.
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If q = pB + fB then dim(Bq) = dim(A) + 1 (since every nonzero prime in k[x] has height
1), and so it suffices to show that depthBq(Bq) ≥ dim(A) + 1. If dimA = 0 then since f is
monic it is clearly regular in B and therefore also in Bq, which shows that depthBq(Bq) ≥ 1. If
dimA = r ≥ 1 let a1, . . . , ar be an A-regular sequence. Since f is monic it follows that f is regular
on B/(a1, . . . , ar)B. Therefore a1, . . . , ar, f is a B-regular sequence. Applying Lemma 58 we see
that this sequence is also Bq-regular, and therefore the images in Bq form a Bq-regular sequence.
This shows that depthBq(Bq) ≥ r + 1, as required.

It follows from Lemma 8 and Theorem 90 that any Cohen-Macaulay ring is catenary. Therefore
if A is Cohen-Macaulay, A[x1, . . . , xn] is catenary for n ≥ 1, and so any Cohen-Macaulay ring is
universally catenary.

Corollary 99. If k is a field then k[x1, . . . , xn] is Cohen-Macaulay and therefore universally
catenary for n ≥ 1.

6 Normal and Regular Rings

6.1 Classical Theory

Definition 18. We say that an integral domain A is normal if it is integrally closed in its quotient
field. The property of being normal is stable under ring isomorphism. If an integral domain A is
normal, then so is S−1A for any multiplicatively closed subset S of A not containing zero.

Proposition 100. Let A be an integral domain. Then the following are equivalent:

(i) A is normal;

(ii) Ap is normal for every prime ideal p;

(iii) Am is normal for every maximal ideal m.

Proof. See [AM69] Proposition 5.13.

Definition 19. Let A be an integral domain with quotient field K. An element u ∈ K is almost
integral over A if there exists a nonzero element a ∈ A such that aun ∈ A for all n > 0.

Lemma 101. If u ∈ K is integral over A then it is almost integral over A. The elements of K
almost integral over A form a subring of K containing the integral closure of A. If A is noetherian
then u ∈ K is integral if and only if it is almost integral.

Proof. It is clear that any element of A is almost integral over A. Let u = b/t ∈ K with b, t ∈ A
nonzero be integral over A, and let

un + a1u
n−1 + · · ·+ a1u+ a0 = 0

be an equation of integral dependence. We claim that tnum ∈ A for any m > 0. If m ≤ n this is
trivial, and if m > n then we can write um as an A-linear combination of strictly smaller powers
of u, so tnum ∈ A in this case as well. It is easy to check that the almost integral elements form
a subring of K.

Now assume that A is noetherian, and let u be almost integral over A. If a is nonzero and
aun ∈ A for n ≥ 1 then A[u] is a submodule of the finitely generated A-module a−1A, whence
A[u] itself is finitely generated over A and so u is integral over A.

Definition 20. We say that an integral domain A is completely normal if every element u ∈ K
which is almost integral over A belongs to A. Clearly a completely normal domain is normal, and
for a noetherian ring domain normality and complete normality coincide. The property of being
completely normal is stable under ring isomorphism.

Example 5. Any field is completely normal, and if k is a field then the domain k[x1, . . . , xn] is
completely normal, since it is noetherian and normal.

32



Definition 21. We say that a ring A is normal if Ap is a normal domain for every prime ideal p.
An integral domain is normal in this new sense iff. it is normal in the original sense. The property
of being normal is stable under ring isomorphism.

Lemma 102. Let A be a ring and suppose that Ap is a domain for every prime ideal p. Then A
is reduced. In particular a normal ring is reduced.

Proof. Let a ∈ A be nilpotent. For any prime ideal p we have a/1 = 0 in Ap so ta = 0 for some
t /∈ p. Hence Ann(a) cannot be a proper ideal, and so a = 0.

Lemma 103. Let A1, . . . , An be normal domains. Then A1 × · · · ×An is a normal ring.

Proof. Let A = A1 × · · · × An. A prime ideal p of A is A1 × · · · × pi × · · ·An for some 1 ≤ i ≤ n
and prime ideal pi of Ai. Moreover Ap

∼= (Ai)pi
, which by assumption is a normal domain. Hence

A is a normal ring.

Proposition 104. Let A be a completely normal domain. Then a polynomial ring A[x1, . . . , xn]
is also completely normal. In particular k[x1, . . . , xn] is completely normal for any field k.

Proof. It is enough to treat the case n = 1. Let K denote the quotient field of A. Then the
canonical injective ring morphism A[x] −→ K[x] induces an isomorphism between the quotient
field of A[x] and K(x), the quotient field of K[x], so we consider all our rings as subrings of K(x).
Let 0 6= u ∈ K(x) be almost integral over A[x]. Since A[x] ⊆ K[x] and K[x] is completely normal,
the element u must belong to K[x]. Write

u = αrx
r + αr+1x

r+1 + · · ·+ αdx
d

for some r ≥ 0 and αr 6= 0. Let f(x) = bsx
s+bs+1x

s+1+ · · ·+btxt ∈ A[x] with bs 6= 0 be such that
fun ∈ A[x] for all n > 0. Then bsαnr ∈ A for all n so that αr ∈ A. Then u−αrxr = αr+1x

r+1+ · · ·
is almost integral over A[x], so we get αr+1 ∈ A as before, and so on. Therefore u ∈ A[x].

Proposition 105. Let A be a normal ring. Then A[x1, . . . , xn] is normal.

Proof. It suffices to consider the case n = 1. Let q be a prime ideal of A[x] and let p = q ∩ A.
Then A[x]q is a localisation of Ap[x] at a prime ideal, and Ap is a normal domain. So we reduce
to the case where A is a normal domain with quotient field K. As before we identify the quotient
field of A[x] with K(x), the quotient field of K[x]. We have to prove that A[x] is integrally closed
in K(x). Let u = p(x)/q(x) with p, q ∈ A[x] be a nonzero element of K(x) which is integral over
A[x]. Let

ud + f1(x)ud−1 + · · ·+ fd(x) = 0 fi ∈ A[x]

be an equation of integral dependence. In order to prove that u ∈ A[x], consider the subring A0

of A generated by 1 and the coefficients of p, q and all the fi. Identify A0, A0[x] and the quotient
field of A0[x] with subrings of K(x). Then u is integral over A0[x]. The proof of Proposition 104
shows that u belongs to K[x], and moreover

u = αrx
r + · · ·+ αdx

d

where each coefficient αi ∈ K is almost integral over A0. As A0 is noetherian, αi is integral over
A0 and therefore integral over A. Therefore αi ∈ A, which is what we wanted.

Let A be a ring and I an ideal with
⋂∞
n=1 I

n = 0. Then for each nonzero a ∈ A there is
an integer n ≥ 0 such that a ∈ In and a /∈ In+1. We then write n = ord(a) (or ordI(a))
and call it the order of a with respect to I. We have ord(a + b) ≥ min{ord(a), ord(b)} and
ord(ab) ≥ ord(a) + ord(b). Put A′ = grI(A) =

⊕
n≥0 I

n/In+1. For an element a of A with
ord(a) = n, we call the sequence in A′ with a single a in In/In+1 the leading form of a and
denote it by a∗. Clearly a∗ 6= 0. We define 0∗ = 0. The map a 7→ a∗ is in general not additive
or multiplicative, but for nonzero a, b if a∗b∗ 6= 0 (i.e. if ord(ab) = ord(a) + ord(b)) then we have
(ab)∗ = a∗b∗ and if ord(a) = ord(b) and a∗ + b∗ 6= 0 then we have (a+ b)∗ = a∗ + b∗.
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Theorem 106 (Krull). Let A be a nonzero ring, I an ideal and grI(A) the associated graded
ring. Then

(1) If
⋂∞
n=1 I

n = 0 and grI(A) is a domain, so is A.

(2) Suppose that A is noetherian and that I is contained in the Jacobson radical of A. Then if
grI(A) is a normal domain, so is A.

Proof. We denote the ring grI(A) by A′ for convenience. (1) Let a, b be nonzero elements of A.
Then a∗ 6= 0 and b∗ 6= 0, hence a∗b∗ 6= 0 and therefore ab 6= 0.

(2) Since I is contained in the Jacobson radical it is immediate that
⋂∞
n=1 I

n = 0 (see [AM69]
Corollary 10.19) and so by (1) the ring A is a domain. Let K be the quotient field of A and
suppose we are given nonzero a, b ∈ A with a/b integral over A. We have to prove that a ∈ bA.
The A-module A/bA is separated in the I-adic topology by Corollary 10.19 of A & M. In other
words

bA =
∞⋂
n=1

(bA+ In)

Therefore it suffices to prove the following for every n ≥ 1:

(∗) For nonzero a, b ∈ A with a/b integral over A, if a ∈ bA+ In−1 then a ∈ bA+ In.

Suppose that a ∈ bA + In−1 for some n ≥ 1. Then a = br + a′ with r ∈ A and a′ ∈ In−1, and
a′/b = a/b− r is integral over A. If a′ = 0 then a = br and we are done. Otherwise we can reduce
to proving (∗) in the case where a ∈ In−1.

So we are given an integer n ≥ 1, nonzero a, b with a ∈ In−1 and a/b integral over A, and we
have to show that a ∈ bA + In. Since a/b is almost integral over A there exists nonzero c ∈ A
such that cam ∈ bmA for all m > 0. Since A′ is a domain the map a 7→ a∗ is multiplicative, hence
we have c∗(a∗)m ∈ (b∗)mA′ for all m, and since A′ is noetherian (see Proposition 10.22 of A &
M) and normal we have a∗ ∈ b∗A′. Therefore we can find d ∈ A with a∗ = b∗d∗. If a ∈ In then
we would be done, so suppose a /∈ In and therefore ord(a) = n − 1. Since a∗ = b∗d∗ the residue
of a− bd in In−1/In is zero, and therefore a− bd ∈ In. Hence a ∈ bA+ In, as required.

Definition 22. Let (A,m, k) be a noetherian local ring of dimension d. Recall that the ring A
is said to be regular if m can be generated by d elements, or equivalently if rankkm/m2 = d.
Regularity is stable under ring isomorphism.

Recall that if k is a field, a graded k-algebra is a k-algebra R which is also a graded ring in
such a way that the graded pieces Rd are k-submodules for every d ≥ 0. A morphism of graded
k-algebras is a morphism of graded rings which is also a morphism of k-modules.

Theorem 107. Let (A,m, k) be a noetherian local ring of dimension d. Then A is regular if
and only if the graded ring grm(A) =

⊕
mn/mn+1 is isomorphic as a graded k-algebra to the

polynomial ring k[x1, . . . , xd].

Proof. The first summand in grm(A) is the field k = A/m, so this ring becomes a graded k-algebra
in a canonical way. For d = 0 we interpret the statement as saying A is regular iff. grm(A) is
isomorphic as a graded k-algebra to k itself. See the section in [AM69] on regular local rings for
the proof.

Theorem 108. Let A be a regular local ring of dimension d. Then

(1) A is a normal domain.

(2) A is a Cohen-Macaulay local ring.

If d ≥ 1 and {a1, . . . , ad} is a regular system of parameters, then

(3) a1, . . . , ad is an A-regular sequence.
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(4) pi = (a1, . . . , ai) is a prime ideal of height i for each 1 ≤ i ≤ d and A/pi is a regular local
ring of dimension d− i.

(5) Conversely, if I is a proper ideal of A such that A/I is regular and has dimension d − i
for some 1 ≤ i ≤ d, then there exists a regular system of parameters {y1, . . . , yd} such that
I = (y1, . . . , yi). In particular I is prime.

Proof. (1) Follows from Theorems 106 and 107.
(2) If d = 0 this is trivial, and if d ≥ 1 this follows from (3) below.
(3) From the proof of [AM69] Theorem 11.22 we know that there is an isomorphism of graded k-

algebras ϕ : k[x1, . . . , xd] −→ grm(A) defined by xi 7→ ai ∈ m/m2. If f(x1, . . . , xd) is homogenous
of degree m ≥ 0 then ϕ(f) is the element

∑
α a

α1
1 · · · aαn

n f(α) of mm/mm+1. So ϕ agrees with the
morphism of abelian groups defined in Proposition 63 (c). Thus a1, . . . , ad is an A-quasiregular
sequence. It then follows from Corollary 65 that a1, . . . , ad is an A-regular seqence.

(4) We have dim(A/pi) = d − i for 1 ≤ i ≤ d by Proposition 51, and hence ht.pi = i by (2)
and Theorem 90 (i). The ring A/pd is a field, and therefore trivially a regular local ring of the
correct dimension. If i < d then the maximal ideal m/pi of A/pi is generated by d − i elements
xi+1, . . . , xd. Therefore A/pi is regular, and hence pi is prime by (1).

(5) Let A = A/I and put m = m/I. Then we can identify k with A/m and there is clearly an
isomorphism of k-modules

m2/(m2 + I) ∼= m/m2

So we have
d− i = rankkm/m

2 = rankkm/(m2 + I)

Since I ⊆ m the A-module (m2 + I)/m2 is canonically a k-module, and we have a short exact
sequence of k-modules

0 −→ (m2 + I)/m2 −→ m/m2 −→ m/(m2 + I) −→ 0

Consequently d − i = rankkm/m
2 − rankk(m2 + I)/m2, and therefore rankk(m2 + I)/m2 = i.

Thus we can choose i elements y1, . . . , yi of I which span m2 + I mod m2 over k, and d − i
elements yi+1, . . . , yd of m which, together with y1, . . . , yi, span m mod m2 over k (if i = d then
the original y1, . . . , yi will do). Then {y1, . . . , yd} is a regular system of parameters of A, so that
(y1, . . . , yi) = p is a prime ideal of height i by (4). Since p ⊆ I and dim(A/I) = dim(A/p) = d− i,
we must have I = p.

Let A be an integral domain with quotient field K. A fractional ideal is an A-submodule of K.
If M,N are two fractional ideals then so is M ·N = {

∑
mini |mi ∈M,ni ∈ N}. This product is

associative, commutative and M ·A = M for any fractional ideal M . For any nonzero ideal a of A
we put a−1 = {x ∈ K |xa ⊆ A}. Then a−1 is a fractional ideal and we have A ⊆ a−1. Moreover
a · a−1 ⊆ A is an ideal of A.

Lemma 109. Let A be a noetherian domain with quotient field K. Let a be a nonzero element
of A and p ∈ AssA(A/(a)). Then p−1 6= A.

Proof. By definition of associated primes there is b /∈ (a) with p = ((a) : b). Then (b/a)p ⊆ A and
b/a /∈ A.

Lemma 110. Let (A,m) be a noetherian local domain such that m 6= 0 and mm−1 = A. Then m
is a principal ideal, and so A is regular of dimension 1.

Proof. By assumption we have dimA ≥ 1. By [AM69] Proposition 8.6 it follows that m 6= m2.
Take a ∈ m−m2. Then am−1 ⊆ A, and if am−1 ⊆ m then (a) = am−1m ⊆ m2, contradicting the
choice of a. Since am−1 is an ideal we must have am−1 = A, that is, (a) = am−1m = m. Using
the dimension theory of noetherian local rings we see that dimA ≤ 1 and therefore A is regular
of dimension 1.

Theorem 111. Let (A,m) be a noetherian local ring of dimension 1. Then A is regular iff. it is
normal.
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Proof. If A is regular then it is a normal domain by Theorem 108. Now suppose that A is normal
(hence a domain since A ∼= Am). By Lemma 110 to show A is regular it suffices to show that
mm−1 = A. Assume the contrary. Then mm−1 is a proper ideal, and since 1 ∈ m−1 we have
m ⊆ mm−1, hence mm−1 = m. Let a1, . . . , an be generators for m (since dimA ≥ 1 we can assume
all ai 6= 0) and let a ∈ m−1. Since aai ∈ m for all i, we have coefficients rij ∈ A, 1 ≤ i, j ≤ n and
equations aai = ri1a1 + · · ·+ rinan. Collecting terms we have:

0 = (r11 − a)a1 + · · ·+ r1nan

0 = r21a1 + (r21 − a)a2 + · · ·+ r2nan

...
0 = rn1a1 + · · ·+ (rnn − a)an

The determinant of the coefficient matrix B = (rij − δij · a) must satisfy detB · ai = 0 and thus
detB = 0 since A is a domain. This gives an equation of integral dependence of a over A, whence
m−1 = A since A is integrally closed. But since dimA = 1 we have m ∈ Ass(A/(b)) for any
nonzero b ∈ m so that m−1 6= A by Lemma 109. Thus mm−1 = A cannot occur.

Theorem 112. Let A be a noetherian normal domain. Then as subrings of the quotient field K
of A we have

A =
⋂

htp=1

Ap

Moreover any nonzero proper principal ideal in A is unmixed, and if dim(A) ≤ 2 then A is
Cohen-Macaulay.

Proof. Suppose 0 6= a is a nonunit of A and p ∈ Ass(A/(a)). We claim that htp = 1. Replacing
A by Ap we may assume that A is local with maximal ideal p (since pAp = ((a/1) : (b/1)). Then
we have p−1 6= A by Lemma 109. If htp > 1 then pp−1 = A, since otherwise we can run the proof
of Theorem 111 and obtain a contradiction (in that proof we only use dimA = 1 to show that
m 6= 0 and that m ∈ Ass(A/(b)) for some nonzero b ∈ m). But then Lemma 110 implies that A is
regular of dimension 1, contradicting the fact that htp > 1. Hence htp = 1, which shows that the
ideal (a) is unmixed.

Now suppose x ∈ Ap for all primes of height 1 and write x = a/b. We need to show that x ∈ A,
so we can assume that b is not a unit and a /∈ (b). The ideal ((b) : a) is the annihilator of the
nonzero element a+ (b) of A/(b). The set of annihilators of nonzero elements of A/(b) containing
((b) : a) has a maximal element since A is noetherian, and by Lemma 47 this maximal element
is a prime ideal p = ((b) : h) for some h /∈ (b). By definition p ∈ Ass(A/(b)) and thus htp = 1.
Since a/b ∈ Ap we have a/b = c/s for some s /∈ p. Then sa = bc ∈ (b) so s ∈ ((b) : a) ⊆ p, which
is a contradiction. Hence we must have had a ∈ (b) and thus x ∈ A to begin with.

Now suppose that A is a noetherian normal domain with dim(A) ≤ 2. By Theorem 95 it
is enough to show that the unmixedness theorem holds in A. Since A is a domain it is clear
that 0 has no embedded primes, and we have just shown that every proper principal ideal of
height 1 is unmixed. If I = (a1, a2) is a proper ideal of height 2, then every associated prime
p of I has ht.p ≥ 2, but also ht.p ≤ 2 since dim(A) = 2. Therefore I is unmixed and A is
Cohen-Macaulay.

Definition 23. Let A be a nonzero noetherian ring. Consider the following conditions about A
for k ≥ 0:

(Sk) For every prime p of A we have depth(Ap) ≥ inf{k, ht.p}.

(Rk) For every prime p of A, if ht.p ≤ k then Ap is regular.

The condition (S0) is trivial, and for every k ≥ 1 we have (Sk) ⇒ (Sk−1) and (Rk) ⇒ (Rk−1).

For a nonzero noetherian ring A we can express (Sk) differently as follows: for every prime
p, if ht.p ≤ k then depth(Ap) ≥ ht.p and otherwise depth(Ap) ≥ k. We introduce the following
auxiliary condition for k ≥ 1
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(Tk) For every prime p of A, if ht.p ≥ k then depth(Ap) ≥ k.

It is not hard to see that for k ≥ 1, the condition (Sk) is equivalent to (Ti) being satisfied for all
1 ≤ i ≤ k.

Proposition 113. Let A be a nonzero noetherian ring. Then

(S1) ⇔ Ass(A) has no embedded primes ⇔ every prime p with ht.p ≥ 1 contains a
regular element.

(S2) ⇔ (S1) and Ass(A/fA) has no embedded primes for any regular nonunit f ∈ A.

The ring A is Cohen-Macaulay iff it satisfies (Sk) for all k ≥ 0.

Proof. For a noetherian ring A with prime ideal p, we have depth(Ap) = 0 iff. pAp ∈ Ass(Ap)
which by [Ash] Chapter 1, Lemma 1.4.2 is iff. p ∈ Ass(A). So the associated primes are precisely
those with depth(Ap) = 0. A prime p ∈ Ass(A) is embedded iff. ht.p ≥ 1, so saying that
Ass(A) has no embedded primes is equivalent to saying that if p ∈ Spec(A) and ht.p ≥ 1 then
depth(Ap) ≥ 1. Hence the first two statements are equivalent. If Ass(A) has no embedded primes
and ht.p ≥ 1 then p must contain a regular element, since otherwise by [Ash] Chapter 1, Theorem
1.3.6, p is contained in an associated prime of A, and these all have height zero. Conversely, if
every prime of height ≥ 1 contains a regular element, then certainly no prime of height ≥ 1 can
be an associated prime of A, so Ass(A) has no embedded primes.

To prove the second statement, we assume A is a nonzero noetherian ring satisfying (S1), and
show that (S2) is equivalent to Ass(A/fA) having no embedded primes. Suppose A satisfies (S2)
and let a regular nonunit f be given. If p ∈ Ass(A/fA) then the following Lemma implies that
ht.p ≥ depth(Ap) = 1, and p is a minimal prime iff. ht.p = 1. So the condition (T2) shows that
Ass(A/fA) can have no embedded primes. Conversely, suppose p is a prime ideal with ht.p ≥ 2
not satisfying (T2). Since A has no embedded primes, this can only happen if depth(Ap) = 1. But
then by the following Lemma, p ∈ Ass(A/fA) for some regular f ∈ A. Since ht.p ≥ 2, this is an
embedded prime, which is impossible.

If A is Cohen-Macaulay then ht.p = depth(Ap) for every prime p, so clearly (Sk) is satisfied
for k ≥ 0. Conversely if A satisfies every (Sk) then by choosing k large enough we see that
depth(Ap) ≥ ht.p for every prime p, and hence A is Cohen-Macaulay.

Lemma 114. Let A be a nonzero noetherian ring satisfying (S1). Then for a prime p the following
are equivalent

(i) depth(Ap) = 1;

(ii) There exists a regular element f ∈ p with p ∈ Ass(A/fA).

If f ∈ p is regular and p ∈ Ass(A/fA) then p is a minimal prime of Ass(A/fA) if and only if
ht.p = 1.

Proof. Let f ∈ p be a regular element. Then f/1 ∈ Ap is regular, and it is not hard to see there
is an isomorphism of Ap-modules Ap/fAp

∼= (A/fA)p. Note also that

depth(Ap/fAp) = depth(Ap)− 1 (4)

(i) ⇒ (ii) Since ht.p = dim(Ap) ≥ depth(Ap) we have ht.p ≥ 1, and therefore since A satisfies (S1)
there is a regular element f ∈ p. The above shows that depth(Ap/fAp) = depth((A/fA)p) = 0
and therefore by Lemma 71, p ∈ Ass(A/fA), as required. (ii) ⇒ (i) follows from Lemma 71 and
(4). If (i) is satisfied, then the above proof shows that p is an associated prime of A/fA for any
regular f ∈ p.

Suppose p is a minimal prime of Ass(A/fA). Then by (i), depth(Ap) = 1, and since p is
a minimal prime over fA it follows from Krull’s PID Theorem that ht.p = 1. Conversely if
depth(Ap) = ht.p = 1 then clearly p is minimal over fA.
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Proposition 115. Let A be a nonzero noetherian ring. Then A is reduced iff it satisfies (R0)
and (S1).

Proof. Suppose that A is reduced. Then Lemma 13 shows that A satisfies (R0). Suppose that A
does not satisfy (S1). Let p be an associated prime of A which is not minimal: so ht.p ≥ 1 and
p = Ann(b) for some nonzero b ∈ A. Then Ap is a reduced noetherian ring in which every element
is either a unit or a zero-divisor, so by Lemma 12 we must have dim(A) = 0, which contradicts
the fact that ht.p ≥ 1. Therefore A must satisfy (S1).

Now suppose that A satisfies (R0) and (S1). Let a ∈ A be nonzero and nilpotent. By Lemma
47 there is an associated prime p ∈ Ass(A) with Ann(a) ⊆ p. By (S1) we have ht.p = 0 and
therefore Ap is a field by (R0). Since a/1 ∈ Ap is nilpotent we have ta = 0 for some t /∈ p, which
is a contradiction. Hence A is reduced.

If A is a nonzero ring, the set S of all regular elements is a multiplicatively closed subset. Let
ΦA denote the localisation S−1A, which we call the total quotient ring of A. If A is a domain,
this is clearly the quotient field.

Theorem 116 (Criterion of Normality). A nonzero noetherian ring A is normal if and only
if it satisfies (S2) and (R1).

Proof. Let A be a nonzero noetherian ring. Suppose first that A is normal, and let p be a prime
ideal. Then Ap is a field for ht.p = 0 and regular for ht.p = 1 by Theorem 111, hence the condition
(R1) is satisfied. Since A is normal it is reduced, so it satisfies (S1) by Proposition 115. To show
A satisfies (S2) it suffices by Proposition 113 to show that Ass(A/fA) has no embedded primes
for any regular nonunit f . Let f be a regular nonunit with associated primes

Ass(A/fA) = {p1, . . . , pn}

Suppose wlog that p = p1 is an embedded prime, and that p1, . . . , pi are the associated primes
contained in p1. Since Ap/fAp

∼= (A/fA)p we have

AssAp(Ap/fAp) = {pAp, p2Ap, . . . , piAp}

by [Ash] Chapter 1, Lemma 1.4.2. At least one of the pi is properly contained in p, so pAp is an
embedded prime of Ass(Ap/fAp). But since Ap is a noetherian normal domain, this contradicts
Theorem 112. Hence A satisfies (S2).

Next, suppose that A satisfies (S2) and (R1). Then it also satisfies (R0) and (S1), so it is
reduced. Let p1, . . . , pr be the minimal prime ideals of A. Then we have 0 = p1 ∩ · · · ∩ pr. Let
S be the set of all regular elements in A. Then by Proposition 113 the pi are precisely the prime
ideals of A avoiding S. Therefore ΦA = S−1A is an artinian ring, and since (S−1A)S−1pi

∼= Api
,

Proposition 14 gives an isomorphism of rings

θ : ΦA −→
s∏
j=1

Aqj
, a/s 7→ (a/s, . . . , a/s)

where for each i, qi ∈ {pi, . . . , pr} (some of the pi may more than once or not at all among the
qj). Also note that by Lemma 13 for each j the ring Kj = Aqj

is a field. For each j let Tj
be image of the ring morphism A −→ Kj . Then taking the product gives a subring

∏
j Tj of∏

j Kj which contains the image of A under θ. Let e1, . . . , es be the preimage in ΦA of the tuples
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1). These clearly form a family of orthogonal idempotents in ΦA.

Suppose that we could show that A was integrally closed in ΦA. For each j the element ej
satisfies e2j−ej = 0, so ej ∈ A. We claim that θ identifies the subrings A and

∏
j Tj . It is enough to

show that θ maps the former subring onto the latter. If a1, . . . , as ∈ A give a tuple (a1/1, . . . , as/1)
of
∏
j Tj , then since ej ∈ A we have e1a1 + · · · + esas ∈ A, and since θ(e1) = (1, 0, . . . , 0) and

similarly for the other ej , it is clear that

θ(e1a1 + · · ·+ esas) = (a1/1, . . . , as/1)
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as required. Since A is integrally closed in ΦA it is straightforward to check that each Tj is
integrally closed in Kj , and is therefore a normal domain. Hence A is isomorphic to a direct
product of normal domains, so A is a normal ring by Lemma 103.

So it only remains to show that A is integrally closed in ΦA. Suppose we have an equation of
integral dependence in ΦA

(a/b)n + c1(a/b)n−1 + · · ·+ cn = 0

where a, b and the ci are elements of A and b is A-regular. Then an +
∑n
i=1 cia

n−ibi = 0. We
want to prove that a ∈ bA, so we may assume b is a regular nonunit of A. To show that a ∈ bA
it suffices to show that ap ∈ bpAp for every associated prime p of bA (here ap denotes a/1 ∈ Ap).
Since bA is unmixed of height 1 by (S2), it suffices to prove this for primes p with ht.p = 1. By
(R1) if ht.p = 1 then Ap is regular and therefore by Theorem 108 a normal domain. But in the
quotient field of Ap we have

anp +
n∑
i=1

(ci)pa
n−i
p bip = 0

If bp = 0 then clearly ap = 0. Otherwise ap/bp is integral over Ap, and so ap ∈ bpAp, as
required.

Corollary 117. A nonzero normal noetherian ring A is isomorphic to a finite direct product of
normal domains.

Theorem 118. Let A be a ring such that for every prime ideal p the localisation Ap is regular.
Then the polynomial ring A[x1, . . . , xn] over A has the same property.

Proof. As in the proof of Theorem 98 we reduce to the case where (A, p) is a regular local ring,
n = 1 and q is a prime ideal of B = A[x] lying over p. And we have to prove that Bq is regular.
We have q ⊇ pB and B/pB ∼= k[x] where k is a field. Therefore either q = pB or q = pB + fB
where f ∈ B = A[x] is a monic polynomial of positive degree. Put dim(A) = d ≥ 0. Then p is
generated by d elements, so if q = pB then q is generated by d elements, and by d + 1 elements
if q = pB + fB. From [Ash] Chapter 5 we know that ht.pB = ht.p = d (use Propositions 5.6.3
and 5.4.3). On the other hand if q = pB + fB then by Krull’s Theorem ht.q ≤ d+ 1, and since q
contains p properly, we must have ht.q = d+ 1. This shows that Bq is regular.

Corollary 119. If k is a field then k[x1, . . . , xn]p is a regular local ring for every prime ideal p
of k[x1, . . . , xn].

6.2 Homological Theory

The following results are proved in our Dimension notes.

Proposition 120. Let A be a ring, M an A-module. Then

(i) M is projective iff. Ext1A(M,N) = 0 for all A-modules N .

(ii) M is injective iff. Ext1A(N,M) = 0 for all A-modules N .

(iii) M is injective iff. Ext1A(A/I,M) = 0 for all ideals I of A.

(iv) M is flat iff. TorA1 (A/I,M) = 0 for all finitely generated ideals I.

(v) M is flat iff. TorA1 (N,M) = 0 for all finitely generated A-modules N .

So injectivity is characterised by vanishing of Ext1A(−,M), and we can restrict consideration
to ideal quotients in the first variable. Flatness is characterised by vanishing of Tor1A(−,M) (or
equivalently, Tor1A(M,−)) and we can restrict consideration to ideal quotients or finitely generated
modules. The next result shows that the projectivity condition can also be restricted to a special
class of modules:
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Lemma 121. Let A be a noetherian ring and M a finitely generated A-module. Then M is
projective if and only if Ext1A(M,N) = 0 for all finitely generated A-modules N .

Proof. Take an exact sequence 0 −→ R −→ F −→ M −→ 0 with F finitely generated and
free. Then R is finitely generated, so by assumption Ext1A(M,R) = 0. Thus the sequence
Hom(F,R) −→ Hom(R,R) −→ 0 is exact. It follows that R −→ F is a coretraction, so that M
is a direct summand of a free module.

If A is a nonzero ring, then the global dimension of A, denoted gl.dim(A), is the largest
integer n ≥ 0 for which there exists modules M,N with ExtnA(M,N) 6= 0. The Tor dimension
of A, denoted tor.dim(A), is the largest integer n ≥ 0 for which there exists modules M,N with
TorAn (M,N) 6= 0. We know from our Dimension notes that

gl.dim(A) = sup{proj.dim.M |M ∈ AMod}
= sup{inj.dim.M |M ∈ AMod}
= sup{proj.dim.A/I | I a left ideal of A}

and

tor.dim(A) = sup{flat.dim.M |M ∈ AMod}
= sup{flat.dim.A/I | I is a left ideal of A}

Proposition 122. Let A be a noetherian ring. Then tor.dim(A) = gl.dim(A) and for every
finitely generated A-module M , flat.dim.M = proj.dim.M .

Proof. See our Dimension notes.

Lemma 123. Let (A,m, k) be a noetherian local ring, and let M be a finitely generated A-module.
Then for n ≥ 0

proj.dim.M ≤ n ⇐⇒ TorAn+1(M,k) = 0

In particular, if M is nonzero then proj.dim.M is the largest n ≥ 0 such that TorAn (M,k) 6= 0.

Proof. This is trivial if M = 0, so assume M is nonzero. Since flat.dim.M ≤ proj.dim.M the
implication ⇒ is clear. We prove the converse by induction on n. Let m = rankk(M/mM). Then
m ≥ 1 since M is nonzero, and by Nakayama we can find elements {u1, . . . , um} which generate M
as an A-module and map to a k-basis in M/mM . Let ε : Am −→ M be induced by the elements
ui, and let K be the kernel of ε, which is finitely generated since A is noetherian. So we have an
exact sequence

0 −→ K −→ Am −→M −→ 0

It follows that proj.dim.M ≤ proj.dim.K + 1. If n > 0 then using the long exact Tor sequence
we see that TorAn+1(M,k) ∼= TorAn (K, k), which proves the inductive step. So it only remains to
consider the case n = 0. Then by assumption TorA1 (M,k) = 0 so the top row in the following
commutative diagram of A-modules is exact

0 // K ⊗A k

��

// Am ⊗A k
ε⊗1 //

��

// M ⊗A k //

��

0

0 // K/mK // km // M/mM // 0

By construction km −→M/mM is the morphism of k-modules corresponding to the basis defined
by the ui, so it is an isomorphism. Hence K/mK = 0, so K = 0 by Nakayama’s Lemma. Hence
M ∼= Am and so proj.dim.M = 0.

40



Remark 2. Let A be a ring and M an A-module. By localising any finite projective resolution
of M , we deduce that proj.dimApMp ≤ proj.dimAM for any prime ideal p. Given an Ap-module
N we have N ∼= Np as Ap-modules and it follows that gl.dim(Ap) ≤ gl.dim(A).

Lemma 124. Let A be a nonzero noetherian ring and M a finitely generated A-module. Then

(i) proj.dim.M = sup{proj.dimAmMm |m a maximal ideal of A}

(ii) For n ≥ 0, proj.dim.M ≤ n if and only if TorAn+1(M,A/m) = 0 for every maximal ideal m.

(iii) For every maximal ideal m, gl.dim(Am) ≤ gl.dim(A). Moreover

gl.dim(A) = sup{gl.dim(Am) |m a maximal ideal of A}

Proof. (i) This is trivial if M = 0, so assume M is nonzero. For any module N and maximal ideal
m we know from Lemma 22 that there is an isomorphism of Am-modules for n ≥ 0

ExtnA(M,N)m
∼= ExtnAm

(Mm, Nm)

The module ExtnA(M,N) is nonzero if and only if some ExtnAm
(Mm, Nm) is nonzero, and proj.dim.M

is the largest integer n ≥ 0 for which there exists a module N with ExtnA(M,N) 6= 0, so the claim
is easily checked.

(ii) Let n ≥ 0. Then by (i), proj.dim.M ≤ n if and only if proj.dimAmMm ≤ n for every
maximal ideal m. Since Am/mAm

∼= (A/m)m as Am-modules, we can use Lemma 22 and Lemma
123 to see that this if and only if for every maximal ideal m

0 = TorAm
n+1(Mm, Am/mAm) ∼= TorAn+1(M,A/m)m

If m, n are distinct maximal ideals, then (A/m)n = 0, so TorAn+1(M,A/m) = 0 if and only if
TorAn+1(M,A/m)m = 0, which completes the proof.

(iii) For any maximal ideal m and Am-module N , there is an isomorphism of Am-modules
N ∼= Nm, so using (i) and the fact that gl.dim(A) = sup{proj.dim.M} the various claims are easy
to check.

Theorem 125. Let (A,m, k) be a noetherian local ring. Then for n ≥ 0

gl.dim(A) ≤ n ⇐⇒ TorAn+1(k, k) = 0

Consequently, we have gl.dim(A) = proj.dimA(k).

Proof. Since tor.dim(A) = gl.dim(A) the implication ⇒ is immediate. If TorAn+1(k, k) = 0 then
proj.dimA(k) ≤ n by Lemma 123. Hence TorAn+1(M,k) = 0 for all modules M , so by Lemma 123,
proj.dim.M ≤ n for every finitely generated module M . Hence gl.dim(A) ≤ n. Using Lemma 123
again we see that gl.dim(A) = proj.dimA(k).

Proposition 126. Let (A,m, k) be a noetherian local ring and M a nonzero finitely generated
A-module. If proj.dim.M = r <∞ and if x ∈ m is M -regular, then proj.dim(M/xM) = r + 1.

Proof. By assumption the following sequence of A-modules is exact

0 // M
x // M // M/xM // 0

Therefore the sequence 0 −→ TorAi (M/xM, k) −→ 0 is exact and so TorAi (M/xM, k) = 0 for
i > r + 1. The following sequence of A-modules is also exact

0 = TorAr+1(M,k) // TorAr+1(M/xM, k) // TorAr (M,k) x // TorAr (M,k)

where x denotes left multiplication by x, which is equal to TorAr (x, k) and also TorAr (M,x) (see our
Tor notes). Since k = A/m is annihilated by x, so is TorAr (M,k). Therefore TorAr+1(M/xM, k) ∼=
TorAr (M,k) 6= 0 and hence proj.dim(M/xM) = r + 1 by Lemma 123.
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Corollary 127. Let (A,m, k) be a noetherian local ring, M a nonzero finitely generated A-module
and a1, . . . , as an M -regular sequence. If proj.dim.M = r <∞ then proj.dim(M/(a1, . . . , as)) =
r + s.

Proof. Since A is local and (a1, . . . , as)M 6= M we have ai ∈ m for each i. We proceed by induction
on s. The case s = 1 was handled by Proposition 126. If s > 1 then set N = M/(a1, . . . , as−1)M .
Then as ∈ m is N -regular, and by the inductive hypothesis proj.dim.N = r + s − 1 < ∞. So by
the case s = 1, proj.dim(N/asN) = r + s, and N/asN ∼= M/(a1, . . . , as)M , so we are done.

Theorem 128. Let (A,m, k) be a regular local ring of dimension d. Then gl.dim(A) = d.

Proof. If d = 0 then A is a field, and trivially gl.dim(A) = 0. Otherwise let {a1, . . . , ad} be a
regular system of parameters. Then the sequence a1, . . . , ad is A-regular by Theorem 108 and k =
A/(a1, . . . , ad) so proj.dim.k = d by Corollary 127. Theorem 125 implies that gl.dim(A) = d.

Among many other things, Theorem 128 allows us to give a much stronger version of Lemma
121 for regular local rings.

Corollary 129. Let (A,m, k) be a regular local ring of dimension d and M a finitely generated
A-module. Then

(i) M is projective if and only if Exti(M,A) = 0 for i > 0.

(ii) For n ≥ 0 we have proj.dim.M ≤ n if and only if Exti(M,A) = 0 for i > n.

Proof. If M = 0 the result is trivial, so assume otherwise. (i) Suppose that Exti(M,A) = 0 for all
i > 0. Since Exti(M,−) is additive, it follows that Exti(M,−) vanishes on finite free A-modules
for i > 0. We show for 1 ≤ j ≤ d+ 1 that Extj(M,N) = 0 for every finitely generated A-module
N (we may assume d ≥ 1 since otherwise M is trivially projective).

Theorem 128 implies that proj.dim.M ≤ d and therefore Extd+1(M,−) = 0, so this is at
least true for j = d + 1. Suppose that Extj(M,−) vanishes on finitely generated modules, and
let N be a finitely generated A-module. We can find a short exact sequence of finitely generated
A-modules 0 −→ R −→ F −→ N −→ 0 with F a finite free A-module. Since Extj−1(M,F ) = 0
and Extj(M,R) = 0 by the inductive hypothesis, it follows from the long exact sequence that
Extj−1(M,N) = 0, as required. The case j = 1 implies that M is projective, using Lemma 121.

(ii) The case n = 0 is (i), so assume n ≥ 1. If proj.dim.M ≤ n then by definition Exti(M,−) =
0 for i > n, so this direction is trivial. For the converse, suppose that Exti(M,A) = 0 for i > n.
We can construct an exact sequence

0 −→ K −→ Pn−1 −→ · · · −→ P0 −→M −→ 0

with K finitely generated and the Pi finitely generated projectives. It suffices to show that K
is projective. But by dimension shifting we have Exti(K,A) ∼= Exti+n(M,A) = 0 for i > 0.
Therefore by (i), K is projective and the proof is complete.

Corollary 130 (Hilbert’s Syzygy Theorem). Let A = k[x1, . . . , xn] be a polynomial ring over
a field k. Then gl.dim(A) = n.

Proof. See our Dimension notes for another proof. By Theorem 118 every local ring of A is regular.
So if m is a maximal ideal then Am is regular of global dimension ht.m by Theorem 128. So by
Lemma 124 (iii), gl.dim(A) is the supremum of the heights of the maximal ideals in A, which is
clearly dim(A) = n.

Theorem 131. Let (A,m, k) be a noetherian local ring, and M a nonzero finitely generated A-
module. If proj.dim(M) <∞ then

proj.dim(M) + depth(M) = depth(A)
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Proof. By induction on depth(A). Let proj.dim(M) = n ≥ 0. If depth(A) = 0 then m ∈ Ass(A).
This implies that there is a short exact sequence of A-modules

0 −→ k −→ A −→ C −→ 0

Thus we have an exact sequence

0 −→ TorAn+1(M,C) −→ TorAn (M,k) −→ TorAn (M,A)

By Proposition 122, flat.dim(M) = n, so TorAn+1(M,C) = 0. But if n ≥ 1 then TorAn (M,A) =
0 and Lemma 123 yields TorAn+1(M,C) ∼= TorAn (M,k) 6= 0, which is a contradiction. Hence
proj.dim(M) = 0. This means that M is projective and hence free by Proposition 24. Thus also
depth(M) = 0 by Lemma 70, which completes the proof in the case depth(A) = 0.

Now we fix a ring A with depth(A) > 0 and proceed by induction on depth(M). First suppose
that depth(M) = 0. Then m ∈ Ass(M), say m = Ann(y) with 0 6= y ∈ M . Since depth(A) > 0
we can find a regular element x ∈ m. Find an exact sequence

0 // K // Am
ε // M // 0

It follows from Lemma 70 that M cannot be free, and hence by Proposition 24 cannot be projective
either. Thus proj.dim(M) = proj.dim(K)+1. Choose u ∈ Am with ε(u) = y. Clearly m ⊆ (K : u)
and therefore xu ∈ K. Since x is regular on Am and u /∈ K it follows that xu /∈ xK. But
m ⊆ (xK : xu), so m ∈ Ass(K/xK) and consequently depth(K/xK) = 0. Since K is a submodule
of a free module, x is regular on K. By the third Change of Rings theorem for projective dimension
(see our Dimension notes)

proj.dimA/x(K/xK) = proj.dimA(K) = proj.dimA(M)− 1

By Lemma 83, depthA/x(A/x) = depthA(A)− 1, so using the inductive hypothesis (on A)

depthA(A) = 1 + depthA/x(A/x)
= 1 + depthA/x(K/xK) + proj.dimA/x(K/xK)
= proj.dimA(M)

Finally, we consider the case depth(M) > 0. Let x ∈ m be regular on M . By Lemma 82 we have
depth(M/xM) = depth(M) − 1 and by Proposition 126, proj.dim(M/xM) = proj.dim(M) + 1.
Using the inductive hypothesis (for M) we have

depth(A) = depth(M/xM) + proj.dim(M/xM)
= depth(M)− 1 + proj.dim(M) + 1
= depth(M) + proj.dim(M)

which completes the proof.

Remark 3. If A is a regular local ring of dimension d, then by Theorem 128 the global dimension
of A is d, and for any A-module M we have proj.dim.M ≤ d. We can now answer the question:
how big is the difference d− proj.dim.M?

Corollary 132. Let A be a regular local ring of dimension d, and M a nonzero finitely generated
A-module. Then proj.dim(M) + depth(M) = d.

Remark 4. With the notation of Corollary 132 the integer proj.dim(M) measures “how projec-
tive” the module M is. To be precise, the closer proj.dim(M) is to zero the more projective M is.
Using the Corollary, we can rephrase this by saying that the projectivity of M is measured by the
largest number of “independent variables” in M . The module M admits d independent variables
if and only if it is projective.
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6.3 Koszul Complexes

Throughout this section let A be a nonzero ring. In this section a complex will mean a positive
chain complex in AMod (notation of our Derived Functor notes). This is a sequence of A-modules
and module morphisms {Mn, dn : Mn −→Mn−1}n∈Z with Mn = 0 for n < 0 and dn−1dn = 0 for
all n. Visually

· · · // Mn
dn // Mn−1

dn−1 // · · · d1 // M0
d0 // 0 // · · ·

We denote the complex by M and differentials dn by d where no confusion is likely. Let C denote
the abelian category of all positive chain complexes in AMod (this is an abelian subcategory
of the category ChAMod of all chain complexes). If L is a complex then for k ≥ 0 let L[−1]
denote the complex obtained by shifting the objects and differentials one position left. That is,
L[−1]n = Ln−1. Clearly if ϕ :−→ L′ is a morphism of complexes then ϕ[−1]n = ϕn−1 defines a
morphism of complexes ϕ[−1] : L[−1] −→ L′[−1]. This defines an exact functor T : C −→ C, and
clearly T k shifts k positions left for k ≥ 1. If M is an A-module, then we consider it as a complex
concentrated in degree 0 and denote this complex also by M .

If L and M are two complexes, we define a chain complex L⊗M by

(L⊗M)n =
⊕
p+q=n

Lp ⊗AMq

= (L0 ⊗AMn)⊕ (L1 ⊗AMn−1)⊕ · · · ⊕ (Ln ⊗AM0)

If x ⊗ y is an element of one of these summands, then by abuse of notation we also use x ⊗ y
to denote the image in (L ⊗M)n. For n ≥ 1 and integers p, q ≥ 0 with p + q = n we induce a
morphism κp,q : Lp ⊗A Mq −→ (L ⊗M)n−1 of A-modules out of the tensor product using the
following formula

κp,q(x⊗ y) =


dL(x)⊗ y + (−1)px⊗ dM (y) p > 0, q > 0
dL(x)⊗ y q = 0
(−1)px⊗ dM (y) p = 0

Together these define a morphism of A-modules d : (L ⊗M)n −→ (L ⊗M)n−1. It is easy to
check that this makes L ⊗ M into a complex of A-modules. Given morphisms of complexes
ϕ : L −→ L′ and ψ : M −→ M ′ we obtain for each pair of integers p, q ≥ 0 a morphism of
A-modules ϕp ⊗ ψq : Lp ⊗AMq −→ L′p ⊗AM ′

q, and these give rise to a morphism of complexes

ϕ⊗ ψ : L⊗M −→ L′ ⊗M ′

(ϕ⊗ ψ)n = (ϕ0 ⊗ ψ0)⊕ (ϕ1 ⊗ ψ1)⊕ · · · ⊕ (ϕn ⊗ ψn)

So the tensor product defines a covariant functor − ⊗ − : C × C −→ C which is additive in each
variable. That is, for any complex L the partial functors L⊗− and −⊗ L are additive.

Proposition 133. For complexes L,M,N there is a canonical isomorphism

λL,M,N : (L⊗M)⊗N −→ L⊗ (M ⊗N)

which is natural in all three variables.
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Proof. For n ≥ 0 we have an isomorphism of A-modules

((L⊗M)⊗N)n =
⊕
p+q=n

(L⊗M)p ⊗A Nq

=
⊕
p+q=n

( ⊕
r+s=p

Lr ⊗AMs

)
⊗A Nq

∼=
⊕

r+s+q=n

(Lr ⊗AMs)⊗A Nq

∼=
⊕

r+s+q=n

Lr ⊗A (Ms ⊗A Nq)

∼=
⊕
p+q=n

Lp ⊗A

( ⊕
r+s=q

Mr ⊗A Ns

)
= (L⊗ (M ⊗N))n

Given integers with r+ s+ q = n and elements x ∈ Lr, y ∈Ms, z ∈ Nq we have x⊗ y ∈ (L⊗M)p
and this isomorphism sends (x⊗ y)⊗ z ∈ ((L⊗M)⊗N)n to x⊗ (y⊗ z) in (L⊗ (M ⊗N))n. It is
straightforward to check that this is an isomorphism of complexes natural in all three variables.

Proposition 134. For any complex L the functors L ⊗ − and − ⊗ L are naturally equivalent
and both are right exact. The functor A ⊗ − is naturally equivalent to the identity functor, and
A[−1]⊗− is naturally equivalent to T .

Proof. To show that L ⊗ − and − ⊗ L are naturally equivalent, the only subtle point is that for
p, q ≥ 0 if ϕ : Lp ⊗Mq

∼= Mq ⊗ Lp is the canonical isomorphism, then we use the isomorphism
(−1)pqϕ in defining (L⊗M)n ∼= (M ⊗L)n. Suppose we have a short exact sequence 0 −→ A −→
B −→ C −→ 0 in C. Then for every j ≥ 0 the sequence of A-modules 0 −→ Aj −→ Bj −→
Cj −→ 0 is exact, and therefore

Li ⊗Aj −→ Li ⊗Bj −→ Li ⊗ Cj −→ 0

is also exact for any i ≥ 0. Coproducts are exact in AMod so for any n ≥ 0 the following sequence
is also exact ⊕

i+j=n

Li ⊗Aj −→
⊕
i+j=n

Li ⊗Bj −→
⊕
i+j=n

Li ⊗ Cj −→ 0

But this is (L ⊗ A)n −→ (L ⊗ B)n −→ (L ⊗ C)n −→ 0, so the sequence L ⊗ A −→ L ⊗ B −→
L ⊗ C −→ 0 is pointwise exact and therefore exact. Consider A as a complex concentrated in
degree 0. For a complex M the natural isomorphism M ∼= A ⊗ M is given pointwise by the
isomorphism Mn

∼= A⊗Mn. There is also a natural isomorphism A⊗M ∼= M given pointwise by
A⊗Mn

∼= Mn. It is not hard to check that this is the same as M ∼= A⊗M followed by the twist
A ⊗M ∼= M ⊗ A. The complex A[−1] ⊗M is isomorphic to M [−1] but we have to be careful,
since the signs of the differentials in A[−1]⊗M are the opposite of those in M [−1], so we use the
isomorphism M [−1]n = Mn−1

∼= A ⊗Mn−1 given by (−1)n+1ψ where ψ : Mn−1
∼= A ⊗Mn−1 is

canonical. This isomorphism is clearly natural in M .
On the other hand, there is a natural isomorphism M [−1] ∼= M ⊗ A[−1] given pointwise by

M [−1]n ∼= Mn−1 ⊗ A, with no sign problems. In fact this isomorphism is M [−1] ∼= A[−1] ⊗M
followed by the twist A[−1]⊗M ∼= M ⊗A[−1].

In our Module Theory notes we define the exterior algebra ∧M associated to any A-module
M . It is a graded A-algebra, and if M is free of rank n ≥ 1 with basis {x1, . . . , xn} then for
0 ≤ p ≤ n, ∧pM is free of rank

(
n
p

)
with basis xi1 ∧ · · · ∧ xip indexed by strictly ascending

sequences i1 < · · · < ip in the set {1, . . . , n}. For p > n we have ∧pM = 0.
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Definition 24. Fix n ≥ 1 and let F = An be the canonical free A-module of rank n, with
canonical basis x1, . . . , xn. Suppose we are given elements a1, . . . , an ∈ A. We define a complex
of A-modules called the Koszul complex, and denoted K(a1, . . . , an)

· · ·
dp+1 // ∧pF

dp // · · · d3 // ∧2F
d2 // ∧1F

d1 // ∧0F // 0

We identify ∧1F with F and ∧0F with A. These modules become zero beyond ∧nF . The map d1

is defined by d1(xi) = ai. For p ≥ 2 with ∧pF 6= 0 we define

dp(xi1 ∧ · · · ∧ xip) =
p∑
r=1

(−1)r−1air (xi1 ∧ · · · ∧ x̂ir ∧ · · · ∧ xip)

where x̂ir indicates that we have omitted xir . All other morphisms are zero. It is not hard to
check that dpdp+1 = 0 for all p ≥ 1, so this is actually a complex.

Definition 25. Let a1, . . . , an ∈ A. If C is a chain complex, then we denote by C(a1, . . . , xn)
the tensor product C ⊗K(a1, . . . , xn). If M is an A-module then we consider it is as a complex
concentrated in degree 0 and denote by K(a1, . . . , an,M) the complex M ⊗K(a1, . . . , an). This
is isomorphic to the complex

· · · // M ⊗ ∧pF // · · · // M ⊗ ∧2F // M ⊗ ∧1F // M ⊗ ∧0F // 0

Example 6. If a1 ∈ A then K(a1) is isomorphic to the complex

· · · // 0 // A
a1 // A // 0

concentrated in degrees 0 and 1, where the morphism A −→ A is left multiplication by a1. Then
H0(K(a1)) = A/a1A and H1(K(a1)) = Ann(a1) as A-modules.

Proposition 135. Let a1, . . . , an ∈ A and a multiplicatively closed set S ⊆ A be given. Then there
is a canonical isomorphism of complexes of S−1A-modules S−1K(a1, . . . , an) ∼= K(a1/1, . . . , an/1).

Proof. There is a canonical isomorphism of S−1A-modules S−1F ∼= (S−1A)n identifying xi/1 with
the canonical ith basis element. Using (TES,Corollary 16) we have for each p ≥ 0 a canonical
isomorphism of S−1A-modules

S−1K(a1, . . . , an)p = S−1(
p∧
A

F ) ∼=
p∧

S−1A

S−1F ∼=
p∧

S−1A

Gn = K(a1/1, . . . , an/1)p

where G = (S−1A)n. Together these isomorphisms form an isomorphism of complexes of S−1A-
modules, as required.

Proposition 136. Let a1, . . . , an+1 ∈ A with n ≥ 1. Then there is a canonical isomorphism

K(a1, . . . , an)⊗K(an+1) ∼= K(a1, . . . , an+1)

Proof. Let T = K(a1, . . . , an) ⊗ K(an+1). Write F = An and let {x1, . . . , xn} be the canonical
basis. Let G = A with canonical basis {xn+1}. Then T0 = ∧0F ⊗ ∧0G ∼= A⊗A ∼= A and

T1 = (∧0F ⊗ ∧1G)⊕ (∧1F ⊗ ∧0G) ∼= ∧1G⊕ ∧1F ∼= An+1

For p ≥ 2 we have

Tp =
⊕
i+j=p

∧iF ⊗ ∧jG ∼= (∧p−1F ⊗ ∧1G)⊕ (∧pF ⊗ ∧0G) ∼= ∧p−1F ⊕ ∧pF

So for p > n + 1 we have Tp = 0, and for p ≤ n + 1 the A-module Tp is free of rank
(
n+1
p

)
.

So at least the modules Tp are free of the same rank as Kp(a1, . . . , an+1). Let H = An+1 have
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canonical basis e1, . . . , en+1. The isomorphism ∧0H ∼= T0 sends 1 to 1 ⊗ 1. The isomorphism
∧1H ∼= T1 sends e1, . . . , en to xi ⊗ 1 and en+1 to 1 ⊗ 1. For p ≥ 2 the action of isomorphism
∧pH ∼= Tp on a basis element ei1 ∧ · · · ∧ eip is described in two cases: if ip ≤ n then use the basis
element (xi1 ∧ · · · ∧ xip) ⊗ 1 of ∧pF ⊗ ∧0G, and otherwise if ip = n + 1 use the basis element
(xi1 ∧ · · · ∧ xip−1)⊗ 1 of ∧p−1F ⊗∧1G. One checks that these isomorphisms are compatible with
the differentials.

For any a ∈ A we have an exact sequence of complexes

0 −→ A −→ K(a) −→ A[−1] −→ 0

Let C be any complex. Tensoring with C and using the natural isomorphisms C ⊗ A ∼= C and
C ⊗A[−1] ∼= C[−1] we have an exact sequence

0 −→ C −→ C(a) −→ C[−1] −→ 0

For p ∈ Z we have Hp(C[−1]) = Hp−1(C), so the long exact homology sequence is

· · · // Hp+1(C) // Hp+1(C(a)) // Hp(C)
δp // Hp(C) // · · ·

· · · δ1 // H1(C) // H1(C(a)) // H0(C)
δ0 // H0(C) // H0(C(a)) // 0

It is not difficult to check that the connecting morphism δp is multiplication by (−1)pa. Therefore

Lemma 137. If C is a complex with Hp(C) = 0 for p > 0 then Hp(C(a)) = 0 for p > 1 and there
is an exact sequence

0 // H1(C(a)) // H0(C) a // H0(C) // H0(C(a)) // 0

If a is H0(C)-regular, then we have Hp(C(a)) = 0 for all p > 0 and H0(C(a)) ∼= H0(C)/aH0(C).

Theorem 138. Let A be a ring, M an A-module and a1, . . . , an an M -regular sequence in A.
Then we have

Hp(K(a1, . . . , an,M)) = 0 (p > 0)
H0(K(a1, . . . , an,M)) ∼= M/(a1, . . . , an)M

Proof. The last piece of Koszul complex K(a1, . . . , an,M) is isomorphic to

· · · −→Mn −→M −→ 0

where the last map is (m1, . . . ,mn) 7→ (a1m1, . . . , anmn). So clearly there is an isomorphism of A-
modules H0(K(a1, . . . , an,M)) ∼= M/(a1, . . . , an)M . We prove the other claim by induction on n,
having already proven the case n = 1 in Lemma 137. Let C be the complex K(a1, . . . , an−1,M).
Then H0(C) ∼= M/(a1, . . . , an−1)M so that an is H0(C)-regular. By the inductive hypothesis
Hp(C) = 0 for p > 0 and therefore by Lemma 137, Hp(C ⊗K(an)) = 0 for p > 0. But by Lemma
136 and Proposition 133 there is an isomorphism C⊗K(an) ∼= K(a1, . . . , an,M), which completes
the proof.

Remark 5. In other words, for an M -regular sequence a1, . . . , an the corresponding Koszul com-
plex K(a1, . . . , an,M) gives a canonical resolution of the A-module M/(a1, . . . , an)M . That is,
the following sequence is exact

· · · −→M ⊗ ∧2F −→M ⊗ ∧1F −→M ⊗ ∧0F −→M/(a1, . . . , an)M −→ 0

Taking M = A we see that the Koszul complex K(a1, . . . , an) gives a free resolution of the A-
module A/(a1, . . . , an). That is, the following sequence is exact

0 −→ ∧nF −→ · · · −→ ∧2F −→ ∧1F −→ ∧0F −→ A/(a1, . . . , an) −→ 0 (5)

In particular we observe that proj.dimA(A/(a1, . . . , an)) ≤ n.
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Lemma 139. Let A be a ring and a1, . . . , an an A-regular sequence. Then for any A-module M
there is a canonical isomorphism of A-modules ExtnA(A/(a1, . . . , an),M) ∼= M/(a1, . . . , an)M .

Proof. We have already observed that (5) is a projective resolution of A/(a1, . . . , an). Taking
HomA(−,M) the end of the complex we are interested in is

· · · −→ HomA(∧n−1F,M) −→ HomA(∧nF,M) −→ 0

Use the canonical bases to define isomorphisms ∧n−1F ∼= An and ∧nF ∼= A. Then we have a
commutative diagram

HomA(∧n−1F,M)

��

// HomA(∧nF,M)

��
Mn

ψ
// M

where ψ(m1, . . . ,mn) =
∑n
r=1(−1)r−1armr. It is clear that Imψ = (a1, . . . , an)M , so we have an

isomorphism of A-modules ExtnA(A/(a1, . . . , an),M) ∼= M/(a1, . . . , an)M .

Definition 26. Let (A,m, k) be a local ring and u : M −→ N a morphism of A-modules. We
say that u is minimal if u ⊗ 1 : M ⊗ k −→ N ⊗ k is an isomorphism. Clearly any isomorphism
M ∼= N is minimal.

Lemma 140. Let (A,m, k) be a local ring. Then

(i) Let u : M −→ N be a morphism of finitely generated A-modules. Then u is minimal if and
only if it is surjective and Ker(u) ⊆ mM .

(ii) If M is a finitely generated A-module then there is a minimal morphism u : F −→ M with
F finite free and rankAF = rankk(M ⊗ k).

Proof. (i) Suppose that u is minimal. Let N ′ be the image of M . Then since M/mM ∼= N/mN
we have N ′ + mN = N and therefore N ′ = N by Nakayama, so u is surjective. It is clear that
Ker(u) ⊆ mM . Conversely suppose that u is surjective and Ker(u) ⊆ mM . Since u is surjective
it follows that u(mM) = mN . Therefore the morphism of A-modules M −→ N −→ N/mN
has kernel mM and so M/mM −→ N/mN is an isomorphism, as required. (ii) If M = 0 then
this is trivial, since we can take F = 0. Otherwise let m1, . . . ,mn be a minimal basis of M and
u : An −→M the corresponding morphism. This is clearly minimal.

Let (A,m, k) be a noetherian local ring and M a finitely generated A-module. A free resolution

L : · · · // Li
di // Li−1

// · · · d1 // L0
d0 // M // 0

is called a minimal resolution if L0 −→M is minimal, and Li −→ Ker(di−1) is minimal for each
i ≥ 1. Since Li+1 −→ Li −→ Ker(di−1) = 0 for all i ≥ 1 it follows that in the complex of
A-modules L⊗ k

· · · −→ Li ⊗ k −→ Li−1 ⊗ k −→ · · · −→ L0 ⊗ k −→ 0

the differentials are all zero. Therefore we have TorAi (M,k) ∼= Li ⊗ k as k-modules for all i ≥ 0.
Since M,k are finitely generated, for i ≥ 0 the A-modules TorAi (M,k) and Li ⊗ k are finitely
generated. Hence Li ⊗ k is a finitely generated free k-module, which shows that Li is a finitely
generated A-module.

Proposition 141. Let (A,m, k) be a noetherian local ring and M a finitely generated A-module.
Then a minimal free resolution of M exists, and is unique up to a (non-canonical) isomorphism.
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Proof. By Lemma 140 (ii) we can find a minimal morphism d0 : L0 −→ M with L0 finite free of
rank rankk(M ⊗ k). Let K −→ L0 be the kernel of d0. Find a minimal morphism L1 −→ K with
L1 finite free, and so on. This defines a minimal free resolution of M . To prove the uniqueness,
let ε : L −→M and ε′ : L′ −→M be two minimal free resolutions of M . We can lift the identity
1M to a morphism of chain complexes ϕ : L −→ L′, so we have a commutative diagram

· · · // L1

ϕ1

��

// L0

ϕ0

��

ε //

��

M

��
· · · // L′1 // L′0

ε′
// M

Since ε, ε′ are minimal, the map ϕ0 ⊗ 1 : L0 ⊗ k −→ L′0 ⊗ k is an isomorphism of k-modules. In
particular we have

rankAL0 = rankk(L0 ⊗ k) = rankk(L′0 ⊗ k) = rankAL
′
0

So L0, L
′
0 are free of the same finite rank. We claim that ϕ0 is an isomorphism. This is trivial

if L0 = L′0 = 0, so assume they are both nonzero. Then ϕ0 is described by a square matrix
T ∈ Mn(A). If you take residues you get the matrix T ′ ∈ Mn(k) of ϕ0 ⊗ 1, which has nonzero
determinant since it is an isomorphism. But it is clear that det(T ) + m = det(T ′), so det(T ) /∈ m.
Therefore ϕ0 itself is an isomorphism.

Since ϕ0 is an isomorphism, so the induced morphism on the kernels Ker(ε) −→ Ker(ε′), and
we can repeat the same argument to see that ϕ1 is an isomorphism, and similarly to show that
all the ϕi are isomorphisms.

Lemma 142. Let (A,m, k) be a noetherian local ring and u : F −→ G a morphism of finitely
generated free A-modules. Then u is minimal if and only if it is an isomorphism.

Definition 27. Let (A,m, k) be a noetherian local ring and M a finitely generated A-module.
Choose a minimal free resolution of M . Then for i ≥ 0 the integer bi = rankALi ≥ 0 is
called the i-th Betti number of M . It is independent of the chosen resolution, and moreover
rankkTor

A
i (M,k) = bi.

Example 7. Let (A,m, k) be a noetherian local ring and let M be a finitely generated A-module.
Then

(i) Proposition 141 shows that b0 = rankk(M ⊗ k).

(ii) If M = 0 then the zero complex is a minimal free resolution of M , so bi = 0 for i ≥ 0.

(iii) If M is flat then TorAi (M,k) = 0 for all i ≥ 1, so bi = 0 for i ≥ 1. In particular this is true
if M is free or projective.

(iv) If M is free of finite rank s ≥ 1 then M ⊗ k is a free k-module of rank s, so b0 = s.

Lemma 143. Let (A,m, k) be a noetherian local ring and M a finitely generated A-module.
Suppose that we have two complexes L,F together with morphisms ε, ε′ such that the following
sequences are exact in the last two nonzero positions

L : · · · // Li
di // Li−1

// · · · d1 // L0
ε // M // 0

F : · · · // Fi
d′i // Fi−1

// · · ·
d′1 // F0

ε′ // M // 0

Assume the following

(i) L is a minimal free resolution of M ;

(ii) Each Fi is a finitely generated free A-module;
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(iii) ε′ ⊗ 1 : F0 ⊗ k −→M ⊗ k is injective;

(iv) For each i ≥ 0, d′i+1(Fi+1) ⊆ mFi and the induced morphism Fi+1/mFi+1 −→ mFi/m
2Fi is

an injection.

Then there exists a morphism of complexes f : F −→ L lifting the identity 1M such that for fi
maps Fi isomorphically onto a direct summand of Li. Consequently we have

rankAFi ≤ rankALi = rankkTor
A
i (M,k)

Proof. Both L,F are positive chain complexes, with F projective and L acyclic, so by our Derived
Functor notes there is a morphism f : F −→ L of chain complexes giving a commutative diagram

· · · // F0

f0

��

ε′ // M

��

// 0

· · · // L0 ε
// M // 0

We have to prove that for each i ≥ 0 the morphism fi : Fi −→ Li is a coretraction.We claim that
fi is a coretraction iff. fi ⊗ 1 : Fi ⊗ k −→ Li ⊗ k is an injective morphism of k-modules. One
implication is clear. So assume that fi ⊗ 1 is injective. The claim is trivial if either of Fi, Li are
zero, so assume they are both of nonzero finite rank. Pick bases for Fi, Li (which are obviously
minimal bases), and use the fact that fi ⊗ 1 is a coretraction to define a morphism ϕ : Li −→ Fi
such that (ϕfi) ⊗ 1 : Fi ⊗ k −→ Fi ⊗ k is the identity. By Lemma 142 it follows that ϕfi is an
isomorphism, and therefore clearly fi is a coretraction.

We prove by induction that fi ⊗ 1 is injective for all i ≥ 0. By assumptions (i), (iii) it is clear
that f0 ⊗ 1 is injective. We have the following commutative diagram

F1

β ##FF
FF

FF
FF

F

f1

��

d′1 // F0

f0

��

ε′ // M

��

Kerε′

;;xxxxxxxxx

α

��
Kerε

##FF
FF

FF
FF

F

L1

γ
;;xxxxxxxxx

d1

// L0 ε
// M

By assumption γ ⊗ 1 is an isomorphism. So to show f1 ⊗ 1 is injective, it suffices to show that
α⊗ 1, β ⊗ 1 are injective, or equivalently that α−1(mKerε) = mKerε′ and β−1(mKerε′) = mF1.
Suppose that a ∈ F1 and d′1(a) ∈ mKerε′. Since ε′ ⊗ 1 is injective, we have mKerε′ ⊆ m2F0.
Hence d′1(a) ∈ m2F0 and therefore by (iv) a ∈ mF1, as required.

Now suppose that a ∈ Kerε′ and f0(a) ∈ mKerε. Let g be such that gf0 = 1. Then f0(a) ∈
m2L0 and therefore a = gf0(a) ∈ g(m2L0) ⊆ m2F0. Let b ∈ F1 be such that d′1(b) = a ∈ m2F0.
Then (iv) implies that b ∈ mF1 and therefore a = β(b) ∈ mKerε′, as required. This shows that
f1 ⊗ 1 is injective.

Suppose that fi ⊗ 1 is injective for some i ≥ 1. Then we show fi+1 ⊗ 1 is injective using a
similar setup. We replace Kerε′ by Imd′i+1 (in the case i = 0 they are equal) and use (iv) to
show that Kerd′i ⊆ mFi and (i) to show that Kerdi ⊆ mLi. The proof that β ⊗ 1 is injective is
straightforward. For α⊗ 1, let a ∈ Imd′i+1 be such that fi(a) ∈ mKerdi. As before we find that
fi(a) ∈ m2Li, and hence a = gfi(a) ∈ m2Fi. Let b ∈ Fi+1 be such that a = d′i+1(b). Then by (iv),
b ∈ mFi+1 and therefore a ∈ mImd′i+1, as required. This proves that fi is a coretraction for i ≥ 0,
and the rank claim follows from the fact that rankAFi = rankk(Fi ⊗ k) ≤ rankk(Li ⊗ k).
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Lemma 144. Let A be a ring with maximal ideal m. If s /∈ m and a ∈ A, then sa ∈ mk implies
a ∈ mk for any k ≥ 1.

Theorem 145. Let (A,m, k) be a noetherian local ring and let s = rankkm/m
2. Then we have

rankkTor
A
i (k, k) ≥

(
s

i

)
0 ≤ i ≤ s

Here rankkTorAi (k, k) is the i-th Betti number of the A-module k.

Proof. We have TorA0 (k, k) ∼= k as k-modules, so rankkTor
A
0 (k, k) = rankkk = 1, which takes

care of the case s = 0. So assume that s ≥ 1 and let {a1, . . . , as} be a minimal basis of m, with
associated Koszul complex F = K(a1, . . . , as). The canonical morphism ε′ : F0

∼= A −→ k gives a
complex exact in the last two nonzero places

· · · −→ Fi −→ Fi−1 −→ · · · −→ F1 −→ F0 −→ k −→ 0

We claim this complex satisfies the conditions of Lemma 143. It clearly satisfies (ii) and (iii).
It only remains to check condition (iii). By the definition of dp+1 : Fp+1 −→ Fp it is clear that
dp+1(Fp+1) ⊆ mFp for p ≥ 0. We also have to show that d−1

p+1(m
2Fp) ⊆ mFp+1. . This is trivial

if p + 1 > s, and also if p = 0 since {a1, . . . , as} is a minimal basis. So assume 0 < p ≤ s − 1.
Assume that

dp+1

 ∑
i1<···<ip+1

mi1···ip+1(xi1 ∧ · · · ∧ xip+1)


=

∑
i1<···<ip+1

p∑
r=1

(−1)r−1airmi1···ip+1(xi1 ∧ · · · ∧ x̂ir ∧ · · · ∧ xip+1) ∈ m2Fp

Then collecting terms, we obtain a number of equations of the form
∑

(−1)etatmt ∈ m2 where at
is one of the air and mt one of the mi1···ip+1 . Since the residues of the ai give a basis of m/m2

over k, it follows that mt ∈ m, which completes the proof that F satisfies all the conditions of
Lemma 143. Choosing any minimal free resolution L of M , and applying Lemma 143 we see that
for 0 ≤ i ≤ s (

s

i

)
= rankAFi ≤ rankkTor

A
i (k, k)

as required.

Theorem 146 (Serre). Let (A,m, k) be a noetherian local ring. Then A is regular if and only if
the global dimension of A is finite.

Proof. We have already proved one part in Theorem 128. So suppose that gl.dim(A) < ∞.
Then TorAs (k, k) 6= 0 by Theorem 145, hence gl.dim(A) ≥ rankkm/m

2 since by Proposition
122 we have tor.dim(A) = gl.dim(A). On the other hand, it follows from Theorem 125 that
proj.dim(k) = gl.dim(A) <∞, so by Theorem 131 we have gl.dim(A) = proj.dim(k) = depth(A).
Therefore we get

dim(A) ≤ rankkm/m
2 ≤ gl.dim(A) = depth(A) ≤ dim(A)

Whence dim(A) = rankkm/m
2, and A is regular.

Corollary 147. If A is a regular local ring then Ap is regular for any p ∈ Spec(A).

Proof. Let M be a nonzero Ap-module. Then considering M as an A-module, there is an exact
sequence of finite length n ≤ gl.dim(A) with all Pi projective

0 −→ Pn −→ · · · −→ P0 −→M −→ 0
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Since Ap is flat the following sequence is also exact

0 −→ (Pn)p −→ · · · −→ (P0)p −→Mp −→ 0

The modules (Pi)p are projective Ap-modules, and M ∼= Mp as Ap-modules, so it follows that
gl.dim(Ap) ≤ gl.dim(A) <∞.

Definition 28. A ring A is called a regular ring if Ap is a regular local ring for every prime ideal
p of A. Note that A is not required to be noetherian. Regularity is stable under ring isomorphism.
A noetherian local ring A is regular in this sense if and only if it is regular in the normal sense.

It follows from Theorem 108 that any regular ring is normal, and a noetherian regular ring is
Cohen-Macaulay. It follows from Lemma 8 and Theorem 90 that a regular ring is catenary.

Lemma 148. A ring A is regular if and only if Am is regular for all maximal ideals m.

Proof. One implication is clear. For the other, given a prime ideal p, find a maximal ideal m with
p ⊆ m. Then Ap

∼= (Am)pAm , so Ap is a regular local ring.

Lemma 149. If A is a regular ring and S ⊆ A is multiplicatively closed, then S−1A is a regular
ring.

Lemma 150. If A is a regular ring, then so is A[x1, . . . , xn]. In particular k[x1, . . . , xn] is a
regular ring for any field k.

Proof. This follows immediately from Theorem 118.

Theorem 151. Let A be a regular local ring which is a subring of a domain B, and suppose that
B is a finitely generated A-module. Then B is flat (equivalently free) over A if and only if B is
Cohen-Macaulay. In particular, if B is regular then it is a free A-module.

Proof. Since B is a finitely generated A-module it is integral over A, and so by Lemma 91 if B is
flat it is Cohen-Macaulay. Conversely, suppose that B is Cohen-Macaulay. If dim(A) = 0 then A
is a field so B is trivially flat, so throughout we may assume dim(A) ≥ 1. Since A is normal the
going-down theorem holds between A and B by Theorem 42, so by Theorem 55 (3) for any proper
ideal I of A, IB is proper and ht.I = ht.IB. We claim that depthA(A) = depthA(B). Notice that
depthA(B) is finite, since otherwise m ∈ AssA(B) and hence dim(A) = 0.

Firstly we prove the inequality ≤. Since A is regular it is Cohen-Macaulay, so depthA(A) =
dim(A). Set s = dim(A) and let {a1, . . . , as} be a regular system of parameters. Then ht.(a1, . . . , ai)A =
i and therefore ht.(a1, . . . , ai)B = i for all 1 ≤ i ≤ s by Theorem 108. It follows from Corollary
97 that a1, . . . , as is a B-regular sequence, and therefore depthA(B) ≥ s.

To prove the reverse inequality, set d = depthA(B) and let a1, . . . , ad ∈ m be a maximal B-
regular sequence. Then as elements of B the sequence a1, . . . , ad is B-regular, so by Lemma 74 we
have ht.(a1, . . . , ad) = d. But (a1, . . . , ad) ⊆ mB and ht.mB = ht.m = dim(A), so d ≤ dim(A), as
required.

Since gl.dim(A) < ∞ we have proj.dimA(B) < ∞, so we can apply Theorem 131 to see that
proj.dimA(B) + depthA(B) = depthA(A), so proj.dimA(B) = 0 and therefore B is projective.
Since A is local and B finitely generated, projective ⇔ free ⇔ flat, so the proof is complete.

6.4 Unique Factorisation

Recall that if A is a ring, two elements p, q ∈ A are said to be associates if p = uq for some unit
u ∈ A. This is an equivalence relation on the elements of A.

Definition 29. Let A be an integral domain. An element of A is irreducible if it is a nonzero
nonunit which cannot be written as the product of two nonunits. An element p ∈ A is prime if it is
a nonzero nonunit with the property that if p|ab then p|a or p|b. Equivalently p is prime iff. (p) is
a nonzero prime ideal. We say A is a unique factorisation domain if every nonzero nonunit a ∈ A
can be written essentially uniquely as a = up1 · · · pr where u is a unit and each pi is irreducible.
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Essentially uniquely means that if a = vq1 · · · qs where v is a unit and the qj irreducible, then
r = s and after reordering (if necessary) qi is an associate of pi. The property of being a UFD is
stable under ring isomorphism.

Theorem 152. A noetherian domain A is a UFD if and only if every prime ideal of height 1 is
principal.

Lemma 153. Let A be a noetherian domain and let x ∈ A be prime. Then A is a UFD if and
only if Ax is.

Proof. By assumption (x) is a prime ideal of height 1. If p is a prime ideal of height 1 then either
x ∈ p, in which case p = (x), or x /∈ p, and these primes are in bijection with the primes of Ax. So
using Theorem 152 it is clear that if A is a UFD so is Ax. Suppose that Ax is a UFD and let p be
a prime ideal of height 1 in A. We can assume that x /∈ p. Let a ∈ p be such that pAx = a/1Ax.
By [AM69] Corollary 10.18 we have ∩i(xi) = 0, so if x|a there is a largest integer n ≥ 1 with xn|a.
Write a = cxn. Since x /∈ p we have c ∈ p, so by replacing a with c we can assume pAx = a/1Ax
with a /∈ (x). Then it is clear that p = (a), as required.

Definition 30. Let R be an integral domain. If M is a torsion-free R-module then the rank of
M is the maximum number of linearly independent elements in M , rank(M) ∈ {0, 1, . . . ,∞}.

Proposition 154. Let R be an integral domain and M a torsion-free R-module. If T ⊆ R
is multiplicatively closed, then T−1M is a torsion-free T−1R-module and rankT−1R(T−1M) =
rankR(M).

Proof. If rank(M) = 0 this is trivial, so assumeM is nonzero. It is clear that T−1M is torsion-free.
If rankR(M) = r and x1, . . . , xr ∈ M are linearly independent, then x1/1, . . . , xr/1 ∈ T−1M are
linearly independent over T−1R. Similarly if x1/s1, . . . , xn/sn ∈ T−1M are linearly independent
in T−1M , then x1, . . . , xn are linearly independent in M . So the result is clear.

Corollary 155. Let R be an integral domain with quotient field K. Then

(i) If M is a torsion-free R-module, rankR(M) = dimK(M ⊗K).

(ii) If M,N are two torsion-free R-modules of finite rank, then rankR(M ⊕N) = rankR(M) +
rankR(N).

In particular if M is a free R-module then the rank just defined is equal to the normal free rank,
and we can write rank(M) without confusion.

Let R be a noetherian domain and suppose a1, . . . , an ∈ R are linearly independent elements
which do not generate R. Then a1, . . . , ar is an R-regular sequence, so by Lemma 74 the ideals
(a1, . . . , ai) have height i for 1 ≤ i ≤ n. So it follows immediately that

Lemma 156. Let R be a noetherian domain and I an ideal. Then rank(I) ≤ ht.I.

Lemma 157. Let R be a domain and M a finitely generated projective R-module of rank 1. Then
∧iM = 0 for i > 1.

Proof. By localisation. If p is a prime ideal then Mp is a finitely generated projective module over
the local ring Rp, so Mp is free of rank 1 and Mp

∼= Rp. Hence for i > 1

(∧iM)p
∼= ∧iMp

∼= ∧iRq = 0

as required.

Theorem 158 (Auslander-Buchsbaum). A regular local ring (A,m) is UFD.
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Proof. We use induction on dimA. If dimA = 0 then A is a field, and if dimA = 1 then A is a
principal ideal domain. Suppose dimA > 1 and let a1, . . . , ad be a regular system of parameters.
Then x = a1 is prime by Theorem 108, so it suffices by Lemma 153 to show that Ax is UFD.
Let q be a prime ideal of height 1 in Ax and put p = q ∩ A, so q = pAx. By Theorem 128,
gl.dim.A = dimA < ∞, so we can produce an exact sequence of A-modules with all Fi finitely
generated free

0 −→ Fn −→ Fn−1 −→ · · · −→ F0 −→ p −→ 0 (6)

Maximal ideals of Ax correspond to primes of A maximal among those not containing x. These
primes must all be properly contained in m, so if PAx is a maximal ideal then ht.P < dimA.
Therefore (Ax)PAx

∼= AP is UFD by the inductive assumption, and so q(Ax)n is either principal
or zero for every maximal n of Ax. Then by Lemma 124 we have proj.dimAx(q) = 0 and therefore
q is projective. Localising (6) with respect to S = {1, x, x2, . . .} we see that the following sequence
of Ax-modules is exact

0 −→ F ′n −→ F ′n−1 −→ · · · −→ F ′0 −→ q −→ 0 (7)

where F ′i = Fi ⊗Ax are finitely generated and free over Ax. If we decompose (7) into short exact
sequences

0 −→ K ′
0 −→F ′0 −→ q −→ 0

0 −→ K ′
1 −→F ′1 −→ K ′

0 −→ 0
...

0 −→ F ′n −→F ′n−1 −→ K ′
n−2 −→ 0

(8)

then the first sequence splits since q is projective. Hence K ′
0 must be projective, and in this way

we show that all the sequences split, and all the K ′
i are projective. It follows that⊕

i even

F ′i
∼=
⊕
i odd

F ′i ⊕ q

Thus, we have finite free Ax-modules F,G such that F ∼= G⊕ q. Since Ax is a noetherian domain
and q a nonzero ideal of height 1, it follows from Lemma 156 that rank(q) = 1. If rank(G) = r
then rank(F ) = r + 1.

So to show q is principal and complete the proof, it suffices to show that q is free. But by our
notes on Tensor, Symmetric and Exterior algebras we have

Ax ∼=
r+1∧

F ∼=
r+1∧

(G⊕ q) ∼=
⊕

i+j=r+1

(∧iG)⊗ (∧jq) ∼= (∧r+1G⊗ ∧0q)⊕ (∧rG⊗ ∧1q) ∼= q

Since ∧r+1G = 0,∧rG ∼= Ax and ∧iq = 0 for i > 1 by Lemma 157.
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