Matsumura: Commutative Algebra Part 2

Daniel Murfet

October 5, 2006

This note closely follows Matsumura's book [Mat80] on commutative algebra. Proofs are the ones given there, sometimes with slightly more detail. While Matsumura's treatment is very good, another useful reference for this material is EGA IV_{1}, which treats some of the topics in greater generality.

Contents

1 Extension of a Ring by a Module 1
2 Derivations and Differentials
3 Separability 9

1 Extension of a Ring by a Module

Let C be a ring and N an ideal of C with $N^{2}=0$. If $C^{\prime}=C / N$ then the C-module N has a canonical C^{\prime}-module structure. In a sense analogous with the notion of extension for modules, the data C, N is an "extension" of the ring C^{\prime}.
Definition 1. Let C^{\prime} be a ring and N a C^{\prime}-module. An extension of C^{\prime} by N is a triple (C, ε, i) consisting of a ring C, a surjective ring morphism $\varepsilon: C \longrightarrow C^{\prime}$ and a morphism of C-modules $i: N \longrightarrow C$ such that $\operatorname{Ker}(\varepsilon)$ is an ideal whose square is zero and the following sequence of C-modules is exact

$$
0 \longrightarrow N \xrightarrow{i} C \xrightarrow{\varepsilon} C^{\prime} \longrightarrow 0
$$

Note that $\operatorname{Ker}(\varepsilon)$ has a canonical C^{\prime}-module structure, and i gives an isomorphism of C^{\prime}-modules $N \cong \operatorname{Ker}(\varepsilon)$. Two extensions $(C, \varepsilon, i),\left(C_{1}, \varepsilon_{1}, i_{1}\right)$ are said to be isomorphic if there exists a ring morphism $f: C \longrightarrow C_{1}$ such that $\varepsilon_{1} f=\varepsilon$ and $f i=i_{1}$. That is, the following diagram of abelian groups commutes

The morphism f is necessarily an isomorphism. The relation of being isomorphic is an equivalence relation on the class of extensions of C^{\prime} by N.

Given C^{\prime} and N we can always construct an extension as follows: take the abelian group $C^{\prime} \oplus N$ and define a multiplication by

$$
(a, x)(b, y)=(a b, a y+b x)
$$

This is a commutative ring with identity $(1,0)$, which we denote by $C^{\prime} * N$. The map $\varepsilon: C^{\prime} * N \longrightarrow$ C^{\prime} defined by $(a, x) \mapsto a$ is a surjective morphism of rings. There is also a ring morphism
$\varphi: C^{\prime} \longrightarrow C^{\prime} * N$ defined by $c \mapsto(c, 0)$, and clearly $\varphi \varepsilon=1$. The map $i: N \longrightarrow C^{\prime} * N$ defined by $n \mapsto(0, n)$ is a morphism of $C^{\prime} * N$-modules, whose image is the ideal $0 \oplus N$ which clearly has square zero. So $\left(C^{\prime} * N, \varepsilon, i\right)$ is an extension of C^{\prime} by N. We call this the trivial extension.

An extension (C, ε, i) of C^{\prime} by N is said to be split if there is a ring morphism $s: C^{\prime} \longrightarrow C$ such that $\varepsilon s=1_{C}$. Clearly any extension isomorphic to the trivial extension is split.

Definition 2. Let A be a ring, and (C, ε, i) be an extension of a ring C^{\prime} by a C^{\prime}-module N such that C, C^{\prime} are A-algebras and ε is a morphism of A-algebras. Then (C, ε, i) is called an extension of the A-algebra C^{\prime} by N. The extension is said to be A-trivial, or to split over A, if there exists a morphism of A-algebras $s: C^{\prime} \longrightarrow C$ with $\varepsilon s=1_{C^{\prime}}$.

Suppose we are given an extension $E=(C, \varepsilon, i)$ of C^{\prime} by M and a morphism $g: M \longrightarrow N$ of C^{\prime}-modules. We claim there exists an extension $g_{*}(E)=\left(D, \varepsilon^{\prime}, i^{\prime}\right)$ of C^{\prime} by N and a ring morphism $f: C \longrightarrow D$ making a commutative diagram of abelian groups

The ring D is obtained as follows: we view the C^{\prime}-module N as a C-module and form the trivial extension $C * N$. Then $M^{\prime}=\{(i(x),-g(x)) \mid x \in M\}$ is an ideal of $C * N$ and we put $D=(C * N) / M^{\prime}$. The map $\varepsilon^{\prime}: D \longrightarrow C^{\prime}$ defined by $(c, n)+M^{\prime} \mapsto \varepsilon(c)$ is a well-defined surjective ring morphism, and $i^{\prime}: N \longrightarrow D$ defined by $n \mapsto(0, n)+M^{\prime}$ is a morphism of D-modules. With these definitions, it is clear that the bottom row of the above diagram is exact, and the diagram commutes with $f: C \longrightarrow D$ defined by $c \mapsto(c, 0)+M^{\prime} . \operatorname{Ker}\left(\varepsilon^{\prime}\right)$ is the ideal $(\operatorname{Ker}(\varepsilon) \oplus N) / M^{\prime}$ of D, which clearly has square zero. Hence $g_{*}(E)=\left(D, \varepsilon^{\prime}, i^{\prime}\right)$ is an extension of C^{\prime} by N with the required property.

2 Derivations and Differentials

Definition 3. Let A be a ring and M an A-module. A deriviation of A into M is a morphism of abelian groups $D: A \longrightarrow M$ such that $D(a b)=a \cdot D(b)+b \cdot D(a)$. The set of all derivations of A into M is denoted by $\operatorname{Der}(A, M)$. It is an A-module in the natural way.

For any derivation $D, \operatorname{Ker}(d)$ is a subring of A (in particular $D(1)=0$). If A is a field, then $\operatorname{Ker}(d)$ is a subfield. Let k be a ring and A a k-algebra. Then derivations $A \longrightarrow M$ which vanish on k are called derivations over k. Every derivation is a derivation over \mathbb{Z}. The set of such derivations form an A-submodule of $\operatorname{Der}(A, M)$ which we denote by $\operatorname{Der}_{k}(A, M)$. We write $\operatorname{Der}_{k}(A)$ for $\operatorname{Der}_{k}(A, A)$. Notice that any derivation $A \longrightarrow M$ over k is k-linear.

If $\phi: M \longrightarrow N$ is a morphism of A-modules then composing with ϕ defines a morphism of A-modules $\operatorname{Der}_{k}(A, M) \longrightarrow \operatorname{Der}_{k}(A, N)$, so we have an additive covariant functor $\operatorname{Der}_{k}(A,-)$: A Mod $\longrightarrow A$ Mod. If $\psi: A \longrightarrow A^{\prime}$ is a morphism of k-algebras and M an A^{\prime}-module then composing with ψ defines a morphism of A-modules $\operatorname{Der}_{k}\left(A^{\prime}, M\right) \longrightarrow \operatorname{Der}_{k}(A, M)$.

If $\alpha: k \longrightarrow k^{\prime}$ is a morphism of rings and A a k^{\prime}-algebra then for any A-module M there is a trivial morphism of A-modules $\operatorname{Der}_{k^{\prime}}(A, M) \longrightarrow \operatorname{Der}_{k}(A, M)$.

Remark 1. Let A be a ring, M an A-module and $D: A \longrightarrow M$ a derivation. We make some simple observations

- For $n>1$ and $a \in A$ we have $D\left(a^{n}\right)=n a^{n-1} \cdot D(a)$.
- Suppose A has prime characteristic p and let A^{p} denote the subring $\left\{a^{p} \mid a \in A\right\}$. Then D vanishes on A^{p}, since $D\left(a^{p}\right)=p a^{p-1} D(a)=0$.
- If $u \in A$ is a unit then $D\left(u^{-1}\right)=-u^{-2} \cdot D(u)$.

Lemma 1. Let A be a ring, M an A-module and $D: A \longrightarrow M$ a derivation. Then for $n \geq 2$ and $a_{1}, \ldots, a_{n} \in A$ we have

$$
D\left(a_{1} \cdots a_{n}\right)=\sum_{i=1}^{n}\left(\prod_{j \neq i} a_{j}\right) \cdot D\left(a_{i}\right)
$$

Proof. The case $n=2$ is trivial and the other cases follow by induction.
Proposition 2. Let k be a ring, A a k-algebra and M an A-module. Then there is a bijection between $\operatorname{Der}_{k}(A, M)$ and morphisms of S-algebras $\varphi: A \longrightarrow A \oplus M$ with $\varepsilon \varphi=1$.

Proof. We make $A \oplus M$ into a ring as in Section 1, so $(a, m)(b, n)=(a b, a \cdot n+b \cdot m)$. There are canonical ring morphisms $A \longrightarrow A \oplus M, a \mapsto(a, 0)$ and $\varepsilon: A \oplus M \longrightarrow A,(a, m) \mapsto a$ and we make $A \oplus M$ a k-algebra using the former. Given a derivation $D: A \longrightarrow M$ over k we define $1+D: A \longrightarrow A \oplus M, a \mapsto(a, D(a))$. It is easy to check this is a morphism of S-algebras with $\varepsilon(1+D)=1$. Conversely if φ is such a morphism of S-algebras, given $a \in A$ let $D(a) \in M$ be such that $\varphi(a)=(a, D(a))$. Then $D: A \longrightarrow M$ is a derivation over k. This defines the required bijection.

Definition 4. Let k be a ring, A a k-algebra and set $B=A \otimes_{k} A$. Consider the morphisms of k-algebras $\varepsilon: B \longrightarrow A$ and $\lambda_{1}, \lambda_{2}: A \longrightarrow B$ defined by $\varepsilon\left(a \otimes a^{\prime}\right)=a a^{\prime}$ and $\lambda_{1}(a)=a \otimes 1, \lambda_{2}(a)=$ $1 \otimes a$. Once and for all, we make B into an A-algebra via λ_{1}. We denote the kernel of ε by $I_{A / k}$ or simply by I, and we put $\Omega_{A / k}=I / I^{2}$. The B-modules I, I^{2} and $\Omega_{A / k}$ are also viewed as A-modules via $\lambda_{1}: A \longrightarrow B$. The A-module $\Omega_{A / k}$ is called the module of differentials (or of Kähler differentials) of A over k.

We have $\varepsilon \lambda_{1}=\varepsilon \lambda_{2}=1$ so if we denote the natural morphism $B \longrightarrow B / I^{2}$ by ν and if we put $d^{*}=\lambda_{2}-\lambda_{1}$ then $d=\nu d^{*}$ is a derivation over k

$$
\begin{gathered}
d: A \longrightarrow \Omega_{A / k} \\
b \mapsto 1 \otimes b-b \otimes 1+I^{2}
\end{gathered}
$$

To see this is a derivation, note that since $(1 \otimes b-b \otimes 1)(1 \otimes a-a \otimes 1) \in I^{2}$ we have $1 \otimes a b+a b \otimes 1=$ $b \otimes a+a \otimes b\left(\bmod I^{2}\right)$ for any $a, b \in A$. This is called the canonical derivation and is denoted by $d_{A / k}$ if necessary. Any ring is canonically a \mathbb{Z}-algebra and we denote the A-module $\Omega_{A / \mathbb{Z}}$ by Ω_{A}.

Lemma 3. Let k be a ring and A a k-algebra. Then there is a canonical isomorphism of A-modules $\left(A \otimes_{k} A\right) / I^{2} \cong A \oplus \Omega_{A / k}$.

Proof. Let B be the A-algebra $A \otimes_{k} A$. Then B is the internal direct sum of $\lambda_{1}(A)$ and I (it is clear that these A-submodules intersect trivially, and their sum is B since $x \otimes y=x y \otimes 1+x(1 \otimes y-y \otimes 1)$). It follows that B / I^{2} is the coproduct of the monomorphisms $A \longrightarrow B / I^{2}$ and $\Omega_{A / k} \longrightarrow B / I^{2}$.

Definition 5. Let k be a ring and $\phi: A \longrightarrow A^{\prime}$ a morphism of k-algebras. Then there is a canonical morphism of A-modules

$$
\begin{align*}
\Omega_{\phi / k}: \Omega_{A / k} & \longrightarrow \Omega_{A^{\prime} / k} \\
a \otimes b+I^{2} & \mapsto \phi(a) \otimes \phi(b)+I^{\prime 2} \tag{1}\\
d a & \mapsto d \phi(a)
\end{align*}
$$

If $\psi: A^{\prime} \longrightarrow A^{\prime \prime}$ is another morphism of k-algebras then $\Omega_{\psi / k} \Omega_{\phi / k}=\Omega_{\psi \phi / k}$ and $\Omega_{1 / k}=1$. In particular if $A \cong A^{\prime}$ as k-algebras then $\Omega_{A / k} \cong \Omega_{A^{\prime} / k}$.

Now let $\alpha: k \longrightarrow k^{\prime}$ be a morphism of rings and A a k^{\prime}-algebra. Then there is a canonical morphism of A-modules

$$
\begin{align*}
\Omega_{A / \alpha}: \Omega_{A / k} & \longrightarrow \Omega_{A / k^{\prime}} \\
a \otimes b+I^{2} & \mapsto a \otimes b+I^{\prime 2} \tag{2}\\
d_{A / k}(a) & \mapsto d_{A / k^{\prime}}(a)
\end{align*}
$$

Lemma 4. Let k be a ring and A a k-algebra. Then $\Omega_{A / k}$ is generated as an A-module by the set $\{d(a) \mid a \in A\}$. In particular $\Omega_{k / k}=0$.
Proof. It suffices to show that I is generated as an A-module by the set $\left\{d^{*}(a) \mid a \in A\right\}$. For any $x, y \in A$ we have $x \otimes y=x y \otimes 1+x \cdot d^{*}(y)$ in B and therefore

$$
\sum_{i} x_{i} \otimes y_{i}=\left(\sum_{i} x_{i} y_{i}\right) \otimes 1+\sum_{i} x_{i} \cdot d^{*}\left(y_{i}\right)
$$

If $\sum_{i} x_{i} \otimes y_{i} \in I$ then $\sum_{i} x_{i} y_{i}=0$ and therefore any element of I can be written in the form $\sum_{i} x_{i} \cdot d^{*}\left(y_{i}\right)$ for $x_{i}, y_{i} \in A$, which is what we wanted to show.
Proposition 5. Let k be a ring and A a k-algebra. Then the pair $\left(\Omega_{A / k}, d\right)$ has the following universal property: if D is a derivation of A over k into an A-module M, then there is a unique morphism of A-modules $f: \Omega_{A / k} \longrightarrow M$ making the following diagram commute

Proof. It follows from Lemma 4 that if f exists it is unique. For the existence, set $B=A \otimes_{k} A$, take the trivial extension $A * M$ and define a morphism of A-algebras $\phi: B \longrightarrow A * M$ by $\phi(x \otimes y)=$ $(x y, x \cdot D(y))$. Since $I^{2} \subseteq \operatorname{Ker} \phi$ there is an induced morphism of A-algebras $\phi^{\prime}: B / I^{2} \longrightarrow A * M$ which maps $1 \otimes y-y \otimes 1+I^{2}$ to $(0, D(y))$. Therefore the restriction to $\Omega_{A / k}$ induces a morphism of A-modules with the required property.

Corollary 6. Let k be a ring and A a k-algebra. Then for an A-module M there is a canonical isomorphism of A-modules natural in M, A and k

$$
\operatorname{Der}_{k}(A, M) \longrightarrow \operatorname{Hom}_{A}\left(\Omega_{A / k}, M\right)
$$

Proof. The bijection given by Proposition 5 is clearly natural in M, A and k.
Definition 6. Let k be a ring and A a k-algebra. For $r \geq 1$ we denote by $\Omega_{A / k}^{r}$ the r-th exterior product $\Lambda^{r} \Omega_{A / k}$ (TES,Section 3). There is a canonical isomorphism of A-modules $\Omega_{A / k} \cong \Omega_{A / k}^{1}$ and we freely identify these modules.

Lemma 7. Let k be a ring and A a k-algebra. If A is generated by a nonempty set $\left\{x_{i}\right\}_{i \in I}$ as a k-algebra then $\Omega_{A / k}$ is generated by $\left\{d x_{i}\right\}_{i \in I}$ as an A-module.

Example 1. Let k be a ring and set $A=k\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq 1$. For $1 \leq i \leq n$ we define a k-derivation $\partial / \partial x_{i}: A \longrightarrow A$ in the usual way

$$
\begin{aligned}
\partial / \partial x_{i}(f)(\alpha) & =\left(\alpha_{i}+1\right) f\left(\alpha+e_{i}\right) \\
\partial / \partial x_{i}\left(\sum_{\alpha} f(\alpha) x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right) & =\sum_{\alpha, \alpha_{i} \geq 1} \alpha_{i} f(\alpha) x_{1}^{\alpha} \cdots x_{i}^{\alpha_{i}-1} \cdots x_{n}^{\alpha_{n}}
\end{aligned}
$$

Since $\partial / \partial x_{i} \in \operatorname{Der}_{k}(A)$ there exists a morphism of A-modules $f_{i}: \Omega_{A / k} \longrightarrow A$ with $f_{i}\left(d x_{j}\right)=\delta_{i j}$. If k is a ring and K a k-algebra then for $a \in K$ we have $d(f(a))=f^{\prime}(a) \cdot d a$ in $\Omega_{K / k}$ where $d: K \longrightarrow \Omega_{K / k}$ is canonical.
Lemma 8. Let k be a ring and $A=k\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq 1$. The differential $d: A \longrightarrow \Omega_{A / k}$ is defined by $d f=\sum_{i=1}^{n} \partial f / \partial x_{i} \cdot d x_{i}$.

Proof. One reduces easily to the case $f=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ for nonzero α, which is Lemma 1 .
Lemma 9. Let k be a ring and $A=k\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq 1$. Then $\Omega_{A / k}$ is a free A-module with basis $d x_{1}, \ldots, d x_{n}$.

Proof. We already know that the $d x_{i}$ generate $\Omega_{A / k}$ as an A-module. Suppose that $\sum_{i} a_{i} \cdot d x_{i}=0$ with $a_{i} \in A$. Applying the morphism f_{i} of Example 1 we see that $a_{i}=0$ for each i, as required.

Lemma 10. Let k be a field and K a separable algebraic extension field of k. Then $\Omega_{K / k}=0$.
Proof. In fact, for any $\alpha \in K$ there is a polynomial $f(x) \in k[x]$ such that $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$. Since $d: K \longrightarrow \Omega_{K / k}$ is a derivation we have $0=d(f(\alpha))=f^{\prime}(\alpha) \cdot d \alpha$, whence $d \alpha=0$. Since $\Omega_{K / k}$ is generated by the $d \alpha$, this shows that $\Omega_{K / k}=0$.

Definition 7. Suppose we have a commutative diagram of rings

Then there is a canonical morphism of A-modules

$$
\begin{align*}
u_{A / k, A^{\prime} / k^{\prime}}: \Omega_{A / k} & \longrightarrow \Omega_{A^{\prime} / k^{\prime}} \\
a \otimes b+I^{2} & \mapsto \phi(a) \otimes \phi(b)+I^{\prime 2} \tag{4}\\
d_{A / k}(a) & \mapsto d_{A^{\prime} / k^{\prime}}(\phi(a))
\end{align*}
$$

and a canonical morphism of A^{\prime}-modules

$$
\begin{align*}
& v_{A / k, A^{\prime} / k^{\prime}}: \Omega_{A / k} \otimes_{A} A^{\prime} \longrightarrow \Omega_{A^{\prime} / k^{\prime}} \\
&\left(a \otimes b+I^{2}\right) \otimes c \mapsto c \phi(a) \otimes \phi(b)+I^{\prime 2} \tag{5}\\
& d_{A / k}(a) \otimes c \mapsto c \cdot d_{A^{\prime} / k^{\prime}}(\phi(a))
\end{align*}
$$

Proposition 11. Let A, k^{\prime} be k-algebras and let A^{\prime} be the k-algebra $A \otimes_{k} k^{\prime}$. Then the canonical morphism of A^{\prime}-modules (5) $\Omega_{A / k} \otimes_{A} A^{\prime} \longrightarrow \Omega_{A^{\prime} / k^{\prime}}$ is an isomorphism. More generally this is true whenever the diagram of rings (3) is a pushout.
Proof. Set $B=A \otimes_{k} A, B^{\prime}=A^{\prime} \otimes_{k^{\prime}} A^{\prime}$, let I be the kernel of the canonical morphism of k-algebras $\varepsilon: A \otimes_{k} A \longrightarrow A$ and let I^{\prime} be the kernel of $\varepsilon^{\prime}: A^{\prime} \otimes_{k^{\prime}} A^{\prime} \longrightarrow A^{\prime}$. We have an isomorphism of abelian groups

$$
\begin{equation*}
\Omega_{A / k} \otimes_{A} A^{\prime}=\Omega_{A / k} \otimes_{A}\left(A \otimes_{k} k^{\prime}\right) \cong\left(\Omega_{A / k} \otimes_{A} A\right) \otimes_{k} k^{\prime} \cong \Omega_{A / k} \otimes_{k} k^{\prime} \tag{6}
\end{equation*}
$$

and an isomorphism of k-algebras

$$
\begin{equation*}
B^{\prime}=\left(A \otimes_{k} k^{\prime}\right) \otimes_{k^{\prime}}\left(A \otimes_{k} k^{\prime}\right) \cong A \otimes_{k}\left(k^{\prime} \otimes_{k^{\prime}}\left(A \otimes_{k} k^{\prime}\right)\right) \cong B \otimes_{k} k^{\prime} \tag{7}
\end{equation*}
$$

Since ε is surjective, the kernel of the morphism of k-algebras $\varepsilon \otimes 1: B \otimes_{k} k^{\prime} \longrightarrow A \otimes_{k} k^{\prime}$ is $I \otimes_{k} k^{\prime}$ (this denotes the image of $I \otimes_{k} k^{\prime} \longrightarrow B \otimes_{k} k^{\prime}$). We have a commutative diagram

Therefore (7) identifies the ideals $I \otimes_{k} A$ and I^{\prime} and therefore also the ideals $I^{2} \otimes_{k} A$ and $I^{\prime 2}$. Taking quotients we have an isomorphism of k-algebras $B / I^{2} \otimes_{k} k^{\prime} \cong B^{\prime} / I^{\prime 2}$. But using Lemma 3 we have an isomorphism of abelian groups

$$
B / I^{2} \otimes_{k} k^{\prime} \cong\left(A \oplus \Omega_{A / k}\right) \otimes_{k} k^{\prime} \cong A^{\prime} \oplus\left(\Omega_{A / k} \otimes_{k} k^{\prime}\right)
$$

together with $B^{\prime} / I^{2} \cong A^{\prime} \oplus \Omega_{A^{\prime} / k^{\prime}}$ this yields an isomorphism of abelian groups

$$
\begin{gathered}
\Omega_{A^{\prime} / k^{\prime}} \longrightarrow \Omega_{A / k} \otimes_{k} k^{\prime} \\
(a \otimes l) \otimes(b \otimes k)+I^{\prime 2} \mapsto\left(a \otimes b-a b \otimes 1+I^{2}\right) \otimes k l
\end{gathered}
$$

composed with (6) this shows that (5) is an isomorphism.

Lemma 12. Let k be a ring, A a k-algebra and S a multiplicatively closed subset of A. Let T denote the multiplicatively closed subset $\{s \otimes t \mid s, t \in S\}$ of $A \otimes_{k} A$. Then there is a canonical isomorphism of k-algebras

$$
\begin{gathered}
\tau: S^{-1} A \otimes_{k} S^{-1} A \longrightarrow T^{-1}\left(A \otimes_{k} A\right) \\
a / s \otimes b / t \mapsto(a \otimes b) /(s \otimes t)
\end{gathered}
$$

Proof. We begin by defining a k-bilinear map

$$
\begin{gathered}
S^{-1} A \times S^{-1} A \longrightarrow T^{-1}\left(A \otimes_{k} A\right) \\
(a / s, b / t) \mapsto(a \otimes b) /(s \otimes t)
\end{gathered}
$$

This induces the morphism of k-algebras τ. To define the inverse to τ, consider the morphism of k-algebras $A \otimes_{k} A \longrightarrow S^{-1} A \otimes_{k} S^{-1} A$ induced by the morphism of k-algebras $A \longrightarrow S^{-1} A$. This clearly maps T to units, and it is straightforward to check the induced morphism $T^{-1}\left(A \otimes_{k} A\right) \longrightarrow$ $S^{-1} A \otimes_{k} S^{-1} A$ is inverse to τ.

Theorem 13. Suppose we have ring morphisms $\phi: k \longrightarrow A, \psi: A \longrightarrow B$. Then there is a canonical exact sequence of B-modules

$$
\begin{equation*}
\Omega_{A / k} \otimes_{A} B \xrightarrow{v} \Omega_{B / k} \xrightarrow{u} \Omega_{B / A} \longrightarrow 0 \tag{8}
\end{equation*}
$$

The morphism v is a coretraction if and only if the canonical map $\operatorname{Der}_{k}(B, T) \longrightarrow \operatorname{Der}_{k}(A, T)$ is surjective for every B-module T. In that case we have a split exact sequence of B-modules

$$
0 \longrightarrow \Omega_{A / k} \otimes_{A} B \xrightarrow{v} \Omega_{B / k} \xrightarrow{u} \Omega_{B / A} \longrightarrow 0
$$

Proof. Let v be the morphism of (5) and u the morphism of (2). Therefore

$$
\begin{aligned}
v\left(d_{A / k}(a) \otimes b\right) & =b \cdot d_{B / k}(\psi(a)) \\
u\left(b \cdot d_{B / k}\left(b^{\prime}\right)\right) & =b \cdot d_{B / A}\left(b^{\prime}\right)
\end{aligned}
$$

It is clear that u is surjective. Since $d_{B / A}(\psi(a))=0$ we have $u v=0$. Now showing that u is the cokernel of v is equivalent to checking that the following sequence of abelian groups is exact for any B-module T

$$
\operatorname{Hom}_{B}\left(\Omega_{B / A}, T\right) \longrightarrow \operatorname{Hom}_{B}\left(\Omega_{B / k}, T\right) \longrightarrow \operatorname{Hom}_{B}\left(\Omega_{A / k} \otimes_{A} B, T\right)
$$

Using the canonical isomorphism $\operatorname{Hom}_{B}\left(\Omega_{A / k} \otimes_{A} B, T\right) \cong \operatorname{Hom}_{A}\left(\Omega_{A / k}, T\right)$ and Corollary 6 we reduce to checking that the following sequence of abelian groups is exact

$$
\begin{equation*}
\operatorname{Der}_{A}(B, T) \longrightarrow \operatorname{Der}_{k}(B, T) \longrightarrow \operatorname{Der}_{k}(A, T) \tag{9}
\end{equation*}
$$

where the second map is $D \mapsto D \circ \psi$ (observe that the first map is trivially injective). This is clearly exact, so we have proved that (8) is an exact sequence of B-modules. A morphism of B-modules $M^{\prime} \longrightarrow M$ has a left inverse if and only if the induced map $\operatorname{Hom}_{B}(M, T) \longrightarrow \operatorname{Hom}_{B}\left(M^{\prime}, T\right)$ is surjective for any B-module T. Thus, v has a left inverse if and only if the natural map $\operatorname{Der}_{k}(B, T) \longrightarrow \operatorname{Der}_{k}(A, T)$ is surjective for any B-module T.
Corollary 14. Suppose we have ring morphisms $\phi: k \longrightarrow A, \psi: A \longrightarrow B$. Then the canonical morphism of B-modules $v: \Omega_{A / k} \otimes_{A} B \longrightarrow \Omega_{B / k}$ is an isomorphism if and only if every derivation of A over k into any B-module T can be extended uniquely to a k-derivation $B \longrightarrow T$.

Proof. The morphism v is an isomorphism if and only if it is a coretraction and an epimorphism, so if and only if $\Omega_{B / A}=0$ and $\operatorname{Der}_{k}(B, T) \longrightarrow \operatorname{Der}_{k}(A, T)$ is surjective for every B-module T. Since $\operatorname{Der}_{A}(B, T)$ is isomorphic to the kernel of this morphism and $\Omega_{B / A}=0$ if and only if $\operatorname{Der}_{A}(B, T) \cong \operatorname{Hom}_{B}\left(\Omega_{B / A}, T\right)=0$ for every B-module T, we see that v is an isomorphism if and only if $\operatorname{Der}_{k}(B, T) \longrightarrow \operatorname{Der}_{k}(A, T)$ is an isomorphism for every B-module T, which is what we wanted to show.

Corollary 15. Let k be a ring and A a k-algebra. If S is a multiplicatively closed subset of A, then there is a canonical isomorphism of $S^{-1} A$-modules

$$
\begin{gathered}
\xi: S^{-1} \Omega_{A / k} \longrightarrow \Omega_{S^{-1} A / k} \\
\left(a \otimes b+I^{2}\right) / s \mapsto a / s \otimes b / 1+I^{\prime 2} \\
d_{A / k}(a) / s \mapsto 1 / s \cdot d_{S^{-1} A / k}(a)
\end{gathered}
$$

The inverse $\Omega_{S^{-1} A / k} \longrightarrow S^{-1} \Omega_{A / k}$ maps $d(1 / s)$ to $-1 / s^{2} \cdot d s$ for any $s \in S$.
Proof. Set $B=S^{-1} A$ and let $\psi: A \longrightarrow B$ be the canonical ring morphism. By Corollary 14 it suffices to show that $\operatorname{Der}_{k}(B, T) \longrightarrow \operatorname{Der}_{k}(A, T)$ is bijective for any B-module T. Let $D: A \longrightarrow T$ be a derivation of A over k into a B-module T and define $E: B \longrightarrow T$ by $E(a / s)=1 / s \cdot D(a)-a / s^{2} \cdot D(s)$. It is not hard to check that this is a well-defined derivation of B over k which extends D, and is unique with this property. Therefore ξ is an isomorphism of $S^{-1} A$-modules, as required.

Corollary 16. Let k be a ring and B any localisation of a finitely generated k-algebra. Then $\Omega_{B / k}$ is a finitely generated B-module.

Proof. Suppose that A is a finitely generated k-algebra and $B=S^{-1} A$ for some multiplicatively closed set S of A. By Lemma $7, \Omega_{A / k}$ is a finitely generated A-module and therefore $\Omega_{S^{-1} A / k} \cong$ $S^{-1} \Omega_{A / k}$ is a finitely generated $S^{-1} A$-module, as required.

Let k be a ring, A a k-algebra and \mathfrak{a} an ideal of A. Set $B=A / \mathfrak{a}$ and define a map $\mathfrak{a} \longrightarrow$ $\Omega_{A / k} \otimes_{A} B$ by $x \mapsto d_{A / k}(x) \otimes 1$. It sends \mathfrak{a}^{2} to zero, hence induces a morphism of B-modules

$$
\begin{array}{r}
\delta: \mathfrak{a} / \mathfrak{a}^{2} \longrightarrow \Omega_{A / k} \otimes_{A} B \tag{10}\\
x+\mathfrak{a}^{2} \mapsto d_{A / k}(x) \otimes 1
\end{array}
$$

Theorem 17. Let k be a ring, A a k-algebra and \mathfrak{a} an ideal of A. If $B=A / \mathfrak{a}$ then there is a canonical exact sequence of B-modules

$$
\begin{equation*}
\mathfrak{a} / \mathfrak{a}^{2} \xrightarrow{\delta} \Omega_{A / k} \otimes_{A} B \xrightarrow{v} \Omega_{B / k} \longrightarrow 0 \tag{11}
\end{equation*}
$$

Moreover

(i) Put $A_{1}=A / \mathfrak{a}^{2}$. Then $\Omega_{A / k} \otimes_{A} B \cong \Omega_{A_{1} / k} \otimes_{A_{1}} B$ as B-modules.
(ii) The morphism δ is a coretraction if and only if the extension $0 \longrightarrow \mathfrak{a} / \mathfrak{a}^{2} \longrightarrow A / \mathfrak{a}^{2} \longrightarrow$ $B \longrightarrow 0$ of the k-algebra B by $\mathfrak{a} / \mathfrak{a}^{2}$ is trivial over k. That is, δ is a coretraction if and only if $A / \mathfrak{a}^{2} \longrightarrow B$ is a retraction of k-algebras.

Proof. The surjecitivity of v follows from that of $A \longrightarrow B$. Clearly $v \delta=0$, so as in the proof of Theorem 13 to show that (11) is exact it suffices to show that for any B-module T the following sequence is exact

$$
\operatorname{Der}_{k}(A / \mathfrak{m}, T) \longrightarrow \operatorname{Der}_{k}(A, T) \longrightarrow \operatorname{Hom}_{A}(\mathfrak{a}, T)
$$

where we have used the canonical isomorphism of abelian groups $\operatorname{Hom}_{B}\left(\mathfrak{a} / \mathfrak{a}^{2}, T\right) \cong \operatorname{Hom}_{A}(\mathfrak{a}, T)$ and the second map is restriction to \mathfrak{a}. Exactness of this sequence is obvious, so we have shown that (11) is an exact sequence of B-modules.
(i) The canonical morphism of k-algebras $A \longrightarrow A_{1}$ induces a morphism of A-modules $\Omega_{A / k} \longrightarrow$ $\Omega_{A_{1} / k}$, which induces a morphism of B-modules $\Omega_{A / k} \otimes_{A} B \longrightarrow \Omega_{A_{1} / k} \otimes_{A_{1}} B$. To show that this is an isomorphism, it suffices to show that the induced map $\operatorname{Hom}_{B}\left(\Omega_{A_{1} / k} \otimes_{A_{1}} B, T\right) \longrightarrow$ $\operatorname{Hom}_{B}\left(\Omega_{A / k} \otimes_{A} B, T\right)$ is an isomorphism of abelian groups for every B-module T, so we have to show that the natural map $\operatorname{Der}_{k}\left(A / \mathfrak{a}^{2}, T\right) \longrightarrow \operatorname{Der}_{k}(A, T)$ is bijective for every A / \mathfrak{a}-module T, which is obvious.
(ii) By (i) we may replace A by A_{1} in (11), so we assume $\mathfrak{a}^{2}=0$. Suppose that δ has a left inverse $w: \Omega_{A / k} \otimes_{A} B \longrightarrow \mathfrak{a}$. Putting $D(a)=w\left(d_{A / k}(a) \otimes 1\right)$ for $a \in A$ we obtain a derivation
$D: A \longrightarrow \mathfrak{a}$ over k such that $D(x)=x$ for $x \in \mathfrak{a}$. Then the map $f: A \longrightarrow A$ given by $f(a)=a-D(a)$ is a morphism of k-algebras (use $\mathfrak{a}^{2}=0$) which satisfies $f(\mathfrak{a})=0$, and therefore induces a morphism of k-algebras $f^{\prime}: B \longrightarrow A$, which is clearly a right inverse to $A \longrightarrow B$.

For the converse, suppose that $f^{\prime}: B \longrightarrow A$ is a k-algebra morphism right inverse to $A \longrightarrow B$, and define $D(a)=a-f^{\prime}(a+\mathfrak{a})$. This is a derivation $D: A \longrightarrow \mathfrak{a}$ over k, which induces a morphism of A-modules $h: \Omega_{A / k} \longrightarrow \mathfrak{a}$. Pairing this with the canonical B-action on \mathfrak{a} gives the desired left inverse to δ.

Example 2. Let k be a ring, $A=k\left[x_{1}, \ldots, x_{n}\right]$ for $n \geq 1$ and let $B=A / \mathfrak{a}$ where \mathfrak{a} is an ideal of A. Then $\Omega_{A / k} \otimes_{A} B$ is a free B-module with basis $z_{i}=d_{A / k}\left(x_{i}\right) \otimes 1$ and by Theorem 17 we have an exact sequence of B-modules

$$
\begin{gathered}
\mathfrak{a} / \mathfrak{a}^{2} \xrightarrow{\delta} \Omega_{A / k} \otimes_{A} B \xrightarrow{v} \Omega_{B / k} \longrightarrow 0 \\
\delta\left(f+\mathfrak{a}^{2}\right)=\sum_{i=1}^{n} \partial f / \partial x_{i} \cdot z_{i}
\end{gathered}
$$

where $f \in \mathfrak{a}$ and we use Lemma 8. For example if k is a field of characteristic zero and \mathfrak{a} is the principal ideal $\left(y^{2}-x^{3}\right)$ in the polynomial ring $A=k[x, y]$ then $B=k[x, y] /\left(y^{2}-x^{3}\right)$ is the affine coordinate ring of the plane curve $y^{2}=x^{3}$, which has a cusp at the origin. Im δ is the B-submodule generated by $-3 x^{2}(d x \otimes 1)+2 y(d y \otimes 1)$. Therefore $\Omega_{B / k}$ is isomorphic as a B-module to the quotient of $B \oplus B$ by the submodule generated by $\left(-3 x^{2}+\mathfrak{a}, 2 y+\mathfrak{a}\right)$. Therefore $-3 x y \cdot d x+2 x^{2} \cdot d y$ is a nonzero torsion element of $\Omega_{B / k}$ (apply x).

Example 3. More generally let k be a ring, A a k-algebra and $B=A\left[x_{1}, \ldots, x_{n}\right]$. Let T be a B-module and let $D \in \operatorname{Der}_{k}(A, T)$. We define a derivation $E: B \longrightarrow T$ over k in the following way

$$
E(f)=\sum_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \cdot D(f(\alpha))
$$

That is, apply D to the coefficients and act with the variables. This shows that the canonical map $\operatorname{Der}_{k}(B, T) \longrightarrow \operatorname{Der}_{k}(A, T)$ is surjective. It follows from Theorem 13 that we have a split exact sequence of B-modules

$$
0 \longrightarrow \Omega_{A / k} \otimes_{A} B \xrightarrow{v} \Omega_{B / k} \xrightarrow{u} \Omega_{B / A} \longrightarrow 0
$$

The left inverse w to v is defined by $w\left(d_{B / k}(f)\right)=\sum_{\alpha} d_{A / k}(f(\alpha)) \otimes x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. The corresponding right inverse to p to u is defined by $p\left(d_{B / A}(f)\right)=d_{B / k}(f)-\sum_{\alpha} x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \cdot d_{B / k}(f(\alpha))$ and in particular $p\left(d_{B / A}\left(x_{i}\right)\right)=d_{B / k}\left(x_{i}\right)$. Therefore by Lemma 9 we have a canonical isomorphism of B-modules

$$
\begin{equation*}
\Omega_{B / k} \cong\left(\Omega_{A / k} \otimes_{A} B\right) \oplus B d_{B / k}\left(x_{1}\right) \oplus \cdots \oplus B d_{B / k}\left(x_{n}\right) \tag{12}
\end{equation*}
$$

Let \mathfrak{a} be an ideal of B and put $C=A / \mathfrak{a}$. Denote by z_{i} the element $d_{B / k}\left(x_{i}\right) \otimes 1$ of $\Omega_{B / k} \otimes_{B} C$ and let $y_{i}=x_{i}+\mathfrak{a}$. Tensoring (12) with C we have an isomorphism of C-modules

$$
\Omega_{B / k} \otimes_{B} C \cong\left(\Omega_{A / k} \otimes_{A} C\right) \oplus C z_{1} \oplus \cdots \oplus C z_{n}
$$

Finally, Theorem 17 gives an exact sequence of C-modules

$$
\begin{gathered}
\mathfrak{a} / \mathfrak{a}^{2} \xrightarrow{\delta} \Omega_{B / k} \otimes_{B} C \xrightarrow{v} \Omega_{C / k} \xrightarrow{\longrightarrow} 0 \\
\delta\left(f+\mathfrak{a}^{2}\right)=\sum_{\alpha} d_{A / k}(f(\alpha)) \otimes y_{1}^{\alpha_{1}} \cdots y_{n}^{\alpha_{n}}+\sum_{i=1}^{n} \partial f / \partial x_{i} \cdot z_{i}
\end{gathered}
$$

where $f \in \mathfrak{a}$ and we use Lemma 8 .

3 Separability

Definition 8. Let k be a field and K an extension field of k. A transcendence basis $\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}$ of K / k is called a separating transcendence basis if K is separably algebraic over the field $k\left(\left\{x_{\lambda}\right\}_{\lambda \in \Lambda}\right)$. We say that K is separably generated over k if it has a separating transcendence basis.

Proposition 18. Let $k \subseteq K \subseteq L$ be finitely generated field extensions.
(i) If L / K is pure transcendental then $\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank}_{K} \Omega_{K / k}+$ tr.deg.L/K.
(ii) If L / K is separable algebraic then $\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank}_{K} \Omega_{K / k}$.
(iii) If $L=K(t)$ where t is purely inseparable over K then $\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank}_{K} \Omega_{K / k}$ or $\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank}_{K} \Omega_{K / k}+1$.
(iv) If L / K is purely inseparable algebraic then $\operatorname{rank}_{L} \Omega_{L / k} \geq \operatorname{rank}_{K} \Omega_{K / k}$.

Proof. Notice that if K / k is a finitely generated field extension then $\operatorname{rank}_{K} \Omega_{K / k}$ is finite by Corollary 16, so the statement of the result makes sense. (i) Since L / K is a finitely generated field extension, $r=t r . d e g . L / K$ is finite. If $r=0$ then $K=L$ and the result is trivial, so assume $r \geq 1$ and let $\left\{t_{1}, \ldots, t_{r}\right\}$ be a transcendence basis for L / K with $L=K\left(t_{1}, \ldots, t_{r}\right)$. Therefore L is K-isomorphic to the quotient field of the polynomial ring $B=K\left[x_{1}, \ldots, x_{r}\right]$. By Example (3) we have an isomorphism of B-modules

$$
\Omega_{B / k} \cong\left(\Omega_{K / k} \otimes_{K} B\right) \oplus B d x_{1} \oplus \cdots \oplus B d x_{r}
$$

Localising and using Corollary 15 we get an isomorphism of L-modules

$$
\Omega_{L / k} \cong\left(\Omega_{K / k} \otimes_{K} L\right) \oplus L d t_{1} \oplus \cdots \oplus L d t_{r}
$$

Therefore $\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank}_{K} \Omega_{K / k}+r$, as required.
(ii) If $L=K$ this is trivial, so assume otherwise. Since L / K is finitely generated and algebraic, it is finite. Therefore L / K is a finite separable extension, which has a primitive element $t \in L$ by the primitive element theorem (so $t \notin K$ and $L=K(t)$). Let f be the minimum polynomial of t, and set $n=\operatorname{deg}(f) \geq 2$. Then $1, t, \ldots, t^{n-1}$ is a K-basis for L. To show that $\operatorname{rank} k_{L} \Omega_{L / k}=$ $\operatorname{rank}_{K} \Omega_{K / k}$ it suffices to show that the canonical morphism of L-modules $\Omega_{K / k} \otimes_{K} L \longrightarrow \Omega_{L / k}$ is an isomorphism. By Corollary 14 it is enough to show that the canonical map $\operatorname{Der}_{k}(L, T) \longrightarrow$ $\operatorname{Der}_{k}(K, T)$ is bijective for any L-module T. Injectivity follows from Lemma 10, so let $D: K \longrightarrow T$ be a derivation of K into T over k. We define $E: L \longrightarrow T$ by

$$
E\left(a_{0}+a_{1} t+\cdots+a_{n-1} t^{n-1}\right)=D\left(a_{0}\right)+t \cdot D\left(a_{1}\right)+\cdots+t^{n-1} \cdot D\left(a_{n-1}\right)
$$

It is not hard to check that this is a derivation of L into T over k extending D, so the proof is complete.
(iii) Suppose that $L=K(t)$ where t is algebraic and purely inseparable over K. If $t \in K$ the claim is trivial, so assume otherwise. Let $\operatorname{char}(k)=p \neq 0$ and $e \geq 1$ be minimal with $t^{p^{e}}=a \in K$. We claim that

$$
\operatorname{rank}_{L} \Omega_{L / k}= \begin{cases}\operatorname{rank}_{K} \Omega_{K / k}+1 & d_{K / k}(a)=0 \tag{13}\\ \operatorname{rank}_{K} \Omega_{K / k} & d_{K / k}(a) \neq 0\end{cases}
$$

The minimal polynomial of t over K is $f=x^{p^{e}}-a$ and we have a K-isomorphism $K[x] /(f) \cong L$. Set $C=K[x] /(f)$ and observe that by Example 3 we have an isomorphism of C-modules

$$
\Omega_{C / k} \cong\left(\left(\Omega_{K / k} \otimes_{K} C\right) \oplus C z\right) / C \delta f
$$

where $\delta f=-d_{K / k}(a) \otimes 1$. If $d_{K / k}(a)=0$ then $\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank}_{C} \Omega_{C / k}=\operatorname{rank}_{K} \Omega_{K / k}+1$. Otherwise δf is nonzero and therefore generates a subspace of rank 1 . Subtracting this from the rank of $\left(\Omega_{K / k} \otimes_{K} C\right) \oplus C z$, which is $\operatorname{rank}_{K} \Omega_{K / k}+1$, we see that $\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank} k_{C} \Omega_{C / k}=$ $\operatorname{rank}_{K} \Omega_{K / k}$, as required.
(iv) Now assume more generally that L / K is purely inseparable algebraic, say $L=K\left(t_{1}, \ldots, t_{n}\right)$. Then we have a chain of purely inseparable field extensions

$$
K \subseteq K\left(t_{1}\right) \subseteq K\left(t_{1}, t_{2}\right) \subseteq \cdots \subseteq K\left(t_{1}, \ldots, t_{n}\right)=L
$$

so the result follows immediately from (iii).
Theorem 19. Let $k \subseteq K \subseteq L$ be finitely generated field extensions. Then

$$
\operatorname{rank}_{L} \Omega_{L / k} \geq \operatorname{rank}_{K} \Omega_{K / k}+\text { tr.deg.L/K }
$$

with equality if L is separably generated over K.
Proof. First we establish the inequality. Since L / K is a finitely generated field extension we can write $L=K\left(t_{1}, \ldots, t_{n}\right)$ where the first r generators $\left\{t_{1}, \ldots, t_{r}\right\}$ are a transcendence basis for L over K. Let $Q=K\left(t_{1}, \ldots, t_{r}\right)$ so that Q / K is pure transcendental and L / Q is algebraic. By Proposition 18(i) we have $\operatorname{rank}_{Q} \Omega_{Q / k}=\operatorname{rank}_{K} \Omega_{K / k}+r$, so we can reduce to the case where L / K is algebraic.

If K_{s} denotes the set of elements of L separable over K, then K_{s} / K is a finite separable field extension and L / K_{s} is purely inseparable and finitely generated. By Proposition 18(ii) we have $\operatorname{rank}_{K_{s}} \Omega_{K_{s} / K}=\operatorname{rank}_{K} \Omega_{K / k}$ so we reduce to the case where L / K is purely inseparable algebraic, which is Proposition 18(iv).

If L is separably generated over K then find a separating transcendence basis $\left\{t_{1}, \ldots, t_{r}\right\}$ and set $Q=K\left(t_{1}, \ldots, t_{r}\right)$. Since Q / K is pure transcendental and L / Q is separable algebraic we have by Proposition 18(i) and (ii)

$$
\operatorname{rank}_{L} \Omega_{L / k}=\operatorname{rank}_{Q} \Omega_{Q / k}=\operatorname{rank}_{K} \Omega_{K / k}+r
$$

as required.
Corollary 20. Let L be a finitely generated extension of a field k. Then $\operatorname{rank}_{L} \Omega_{L / k} \geq \operatorname{tr}$.deg.L/k with equality if and only if L is separably generated over k. In particular $\Omega_{L / k}=0$ if and only if L is separably algebraic over k.

Proof. The inequality is a special case of Theorem 19. Let S be a transcendence basis of L / k and set $Q=k(S)$ (note that S may be empty), so that Q / k is pure transcendental and L / Q is finitely generated algebraic (therefore also finite). Let K be the set of elements of L separable over Q, so that we have L / K purely inseparable and K / Q separable. Therefore by Proposition 18 we have

$$
\begin{gathered}
k \subseteq Q \subseteq K \subseteq L \\
\operatorname{rank}_{L} \Omega_{L / k} \geq \operatorname{rank}_{K} \Omega_{K / k}=\operatorname{rank}_{Q} \Omega_{Q / k}=\operatorname{tr} . \operatorname{deg} \cdot L / k
\end{gathered}
$$

If L is separably generated over k then we can take S to be a separating transcendence basis, whence $K=L$ and we have the desired equality.

For the converse, suppose that $\operatorname{rank}_{L} \Omega_{L / k}=t r . \operatorname{deg} . L / k=r$. If $r=0$ then $\Omega_{L / k}=0$ and L / k is a finitely generated algebraic extension. Therefore $k=Q$ so K / k is separable algebraic and $\Omega_{K / k}=0$. We have to show that L / k is separable algebraic (that is, $K=L$). Suppose otherwise that $t \in L \backslash K$. Let $\operatorname{char}(k)=p \neq 0$ and $e \geq 1$ be minimal with $t^{p^{e}}=a \in K$. Since $\Omega_{K / k}=0$ we have $d_{K / k}(a)=0$ and therefore by (13), $\operatorname{rank}_{K(t) / k} \Omega_{K(t) / k}=1$. But $L / K(t)$ is purely inseparable so $\operatorname{rank}_{L} \Omega_{L / k} \geq 1$, which is a contradiction. Therefore the converse is true for $r=0$. In particular $\Omega_{L / k}=0$ if and only if L is separably algebraic over k.

Now assume that $r \geq 1$ and let $x_{1}, \ldots, x_{r} \in L$ be such that $\left\{d x_{1}, \ldots, d x_{r}\right\}$ is a basis of $\Omega_{L / k}$ over L. Then we have $\Omega_{L / k\left(x_{1}, \ldots, x_{r}\right)}=0$ by Theorem 13 so L is separably algebraic over $k\left(x_{1}, \ldots, x_{r}\right)$. Since $r=$ tr.deg. L / k the elements x_{i} must form a transcendence basis of L over k, so the proof is complete.

References

[Mat80] Hideyuki Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR MR575344 (82i:13003)

