Matsumura: Commutative Algebra Part 2

Daniel Murfet

October 5, 2006

This note closely follows Matsumura's book [Mat80] on commutative algebra. Proofs are the ones given there, sometimes with slightly more detail. While Matsumura's treatment is very good, another useful reference for this material is EGA IV_1 , which treats some of the topics in greater generality.

Contents

1	Extension of a Ring by a Module	1
2	Derivations and Differentials	2
3	Separability	9

1 Extension of a Ring by a Module

Let C be a ring and N an ideal of C with $N^2 = 0$. If C' = C/N then the C-module N has a canonical C'-module structure. In a sense analogous with the notion of extension for modules, the data C, N is an "extension" of the ring C'.

Definition 1. Let C' be a ring and N a C'-module. An extension of C' by N is a triple (C, ε, i) consisting of a ring C, a surjective ring morphism $\varepsilon : C \longrightarrow C'$ and a morphism of C-modules $i : N \longrightarrow C$ such that $Ker(\varepsilon)$ is an ideal whose square is zero and the following sequence of C-modules is exact

 $0 \longrightarrow N \xrightarrow{i} C \xrightarrow{\varepsilon} C' \longrightarrow 0$

Note that $Ker(\varepsilon)$ has a canonical C'-module structure, and i gives an isomorphism of C'-modules $N \cong Ker(\varepsilon)$. Two extensions $(C, \varepsilon, i), (C_1, \varepsilon_1, i_1)$ are said to be *isomorphic* if there exists a ring morphism $f: C \longrightarrow C_1$ such that $\varepsilon_1 f = \varepsilon$ and $fi = i_1$. That is, the following diagram of abelian groups commutes

The morphism f is necessarily an isomorphism. The relation of being isomorphic is an equivalence relation on the class of extensions of C' by N.

Given C' and N we can always construct an extension as follows: take the abelian group $C' \oplus N$ and define a multiplication by

$$(a, x)(b, y) = (ab, ay + bx)$$

This is a commutative ring with identity (1,0), which we denote by C'*N. The map $\varepsilon : C'*N \longrightarrow C'$ defined by $(a,x) \mapsto a$ is a surjective morphism of rings. There is also a ring morphism

 $\varphi : C' \longrightarrow C' * N$ defined by $c \mapsto (c, 0)$, and clearly $\varphi \varepsilon = 1$. The map $i : N \longrightarrow C' * N$ defined by $n \mapsto (0, n)$ is a morphism of C' * N-modules, whose image is the ideal $0 \oplus N$ which clearly has square zero. So $(C' * N, \varepsilon, i)$ is an extension of C' by N. We call this the *trivial extension*.

An extension (C, ε, i) of C' by N is said to be *split* if there is a ring morphism $s : C' \longrightarrow C$ such that $\varepsilon s = 1_C$. Clearly any extension isomorphic to the trivial extension is split.

Definition 2. Let A be a ring, and (C, ε, i) be an extension of a ring C' by a C'-module N such that C, C' are A-algebras and ε is a morphism of A-algebras. Then (C, ε, i) is called an *extension* of the A-algebra C' by N. The extension is said to be A-trivial, or to split over A, if there exists a morphism of A-algebras $s : C' \longrightarrow C$ with $\varepsilon s = 1_{C'}$.

Suppose we are given an extension $E = (C, \varepsilon, i)$ of C' by M and a morphism $g : M \longrightarrow N$ of C'-modules. We claim there exists an extension $g_*(E) = (D, \varepsilon', i')$ of C' by N and a ring morphism $f : C \longrightarrow D$ making a commutative diagram of abelian groups

The ring D is obtained as follows: we view the C'-module N as a C-module and form the trivial extension C * N. Then $M' = \{(i(x), -g(x)) | x \in M\}$ is an ideal of C * N and we put D = (C*N)/M'. The map $\varepsilon' : D \longrightarrow C'$ defined by $(c, n) + M' \mapsto \varepsilon(c)$ is a well-defined surjective ring morphism, and $i' : N \longrightarrow D$ defined by $n \mapsto (0, n) + M'$ is a morphism of D-modules. With these definitions, it is clear that the bottom row of the above diagram is exact, and the diagram commutes with $f : C \longrightarrow D$ defined by $c \mapsto (c, 0) + M'$. $Ker(\varepsilon')$ is the ideal $(Ker(\varepsilon) \oplus N)/M'$ of D, which clearly has square zero. Hence $g_*(E) = (D, \varepsilon', i')$ is an extension of C' by N with the required property.

2 Derivations and Differentials

Definition 3. Let A be a ring and M an A-module. A *derivitation* of A into M is a morphism of abelian groups $D: A \longrightarrow M$ such that $D(ab) = a \cdot D(b) + b \cdot D(a)$. The set of all derivations of A into M is denoted by Der(A, M). It is an A-module in the natural way.

For any derivation D, Ker(d) is a subring of A (in particular D(1) = 0). If A is a field, then Ker(d) is a subfield. Let k be a ring and A a k-algebra. Then derivations $A \longrightarrow M$ which vanish on k are called *derivations over* k. Every derivation is a derivation over \mathbb{Z} . The set of such derivations form an A-submodule of Der(A, M) which we denote by $Der_k(A, M)$. We write $Der_k(A)$ for $Der_k(A, A)$. Notice that any derivation $A \longrightarrow M$ over k is k-linear.

If $\phi : M \longrightarrow N$ is a morphism of A-modules then composing with ϕ defines a morphism of A-modules $Der_k(A, M) \longrightarrow Der_k(A, N)$, so we have an additive covariant functor $Der_k(A, -) : A\mathbf{Mod} \longrightarrow A\mathbf{Mod}$. If $\psi : A \longrightarrow A'$ is a morphism of k-algebras and M an A'-module then composing with ψ defines a morphism of A-modules $Der_k(A', M) \longrightarrow Der_k(A, M)$.

If $\alpha : k \longrightarrow k'$ is a morphism of rings and A a k'-algebra then for any A-module M there is a trivial morphism of A-modules $Der_{k'}(A, M) \longrightarrow Der_k(A, M)$.

Remark 1. Let A be a ring, M an A-module and $D: A \longrightarrow M$ a derivation. We make some simple observations

- For n > 1 and $a \in A$ we have $D(a^n) = na^{n-1} \cdot D(a)$.
- Suppose A has prime characteristic p and let A^p denote the subring $\{a^p \mid a \in A\}$. Then D vanishes on A^p , since $D(a^p) = pa^{p-1}D(a) = 0$.
- If $u \in A$ is a unit then $D(u^{-1}) = -u^{-2} \cdot D(u)$.

Lemma 1. Let A be a ring, M an A-module and $D: A \longrightarrow M$ a derivation. Then for $n \ge 2$ and $a_1, \ldots, a_n \in A$ we have

$$D(a_1 \cdots a_n) = \sum_{i=1}^n \left(\prod_{j \neq i} a_j\right) \cdot D(a_i)$$

Proof. The case n = 2 is trivial and the other cases follow by induction.

Proposition 2. Let k be a ring, A a k-algebra and M an A-module. Then there is a bijection between $Der_k(A, M)$ and morphisms of S-algebras $\varphi : A \longrightarrow A \oplus M$ with $\varepsilon \varphi = 1$.

Proof. We make $A \oplus M$ into a ring as in Section 1, so $(a, m)(b, n) = (ab, a \cdot n + b \cdot m)$. There are canonical ring morphisms $A \longrightarrow A \oplus M, a \mapsto (a, 0)$ and $\varepsilon : A \oplus M \longrightarrow A, (a, m) \mapsto a$ and we make $A \oplus M$ a k-algebra using the former. Given a derivation $D : A \longrightarrow M$ over k we define $1 + D : A \longrightarrow A \oplus M, a \mapsto (a, D(a))$. It is easy to check this is a morphism of S-algebras with $\varepsilon(1 + D) = 1$. Conversely if φ is such a morphism of S-algebras, given $a \in A$ let $D(a) \in M$ be such that $\varphi(a) = (a, D(a))$. Then $D : A \longrightarrow M$ is a derivation over k. This defines the required bijection.

Definition 4. Let k be a ring, A a k-algebra and set $B = A \otimes_k A$. Consider the morphisms of k-algebras $\varepsilon : B \longrightarrow A$ and $\lambda_1, \lambda_2 : A \longrightarrow B$ defined by $\varepsilon(a \otimes a') = aa'$ and $\lambda_1(a) = a \otimes 1, \lambda_2(a) = 1 \otimes a$. Once and for all, we make B into an A-algebra via λ_1 . We denote the kernel of ε by $I_{A/k}$ or simply by I, and we put $\Omega_{A/k} = I/I^2$. The B-modules I, I^2 and $\Omega_{A/k}$ are also viewed as A-modules via $\lambda_1 : A \longrightarrow B$. The A-module $\Omega_{A/k}$ is called the module of differentials (or of Kähler differentials) of A over k.

We have $\varepsilon \lambda_1 = \varepsilon \lambda_2 = 1$ so if we denote the natural morphism $B \longrightarrow B/I^2$ by ν and if we put $d^* = \lambda_2 - \lambda_1$ then $d = \nu d^*$ is a derivation over k

$$d: A \longrightarrow \Omega_{A/k}$$
$$b \mapsto 1 \otimes b - b \otimes 1 + I^2$$

To see this is a derivation, note that since $(1 \otimes b - b \otimes 1)(1 \otimes a - a \otimes 1) \in I^2$ we have $1 \otimes ab + ab \otimes 1 = b \otimes a + a \otimes b \pmod{I^2}$ for any $a, b \in A$. This is called the *canonical derivation* and is denoted by $d_{A/k}$ if necessary. Any ring is canonically a \mathbb{Z} -algebra and we denote the A-module $\Omega_{A/\mathbb{Z}}$ by Ω_A .

Lemma 3. Let k be a ring and A a k-algebra. Then there is a canonical isomorphism of A-modules $(A \otimes_k A)/I^2 \cong A \oplus \Omega_{A/k}$.

Proof. Let B be the A-algebra $A \otimes_k A$. Then B is the internal direct sum of $\lambda_1(A)$ and I (it is clear that these A-submodules intersect trivially, and their sum is B since $x \otimes y = xy \otimes 1 + x(1 \otimes y - y \otimes 1)$). It follows that B/I^2 is the coproduct of the monomorphisms $A \longrightarrow B/I^2$ and $\Omega_{A/k} \longrightarrow B/I^2$. \Box

Definition 5. Let k be a ring and $\phi : A \longrightarrow A'$ a morphism of k-algebras. Then there is a canonical morphism of A-modules

$$\Omega_{\phi/k} : \Omega_{A/k} \longrightarrow \Omega_{A'/k}$$

$$a \otimes b + I^2 \mapsto \phi(a) \otimes \phi(b) + I'^2$$

$$da \mapsto d\phi(a)$$
(1)

If $\psi : A' \longrightarrow A''$ is another morphism of k-algebras then $\Omega_{\psi/k}\Omega_{\phi/k} = \Omega_{\psi\phi/k}$ and $\Omega_{1/k} = 1$. In particular if $A \cong A'$ as k-algebras then $\Omega_{A/k} \cong \Omega_{A'/k}$.

Now let $\alpha : k \longrightarrow k'$ be a morphism of rings and A a k'-algebra. Then there is a canonical morphism of A-modules

$$\Omega_{A/\alpha} : \Omega_{A/k} \longrightarrow \Omega_{A/k'}$$

$$a \otimes b + I^2 \mapsto a \otimes b + I'^2$$

$$d_{A/k}(a) \mapsto d_{A/k'}(a)$$
(2)

Lemma 4. Let k be a ring and A a k-algebra. Then $\Omega_{A/k}$ is generated as an A-module by the set $\{d(a) \mid a \in A\}$. In particular $\Omega_{k/k} = 0$.

Proof. It suffices to show that I is generated as an A-module by the set $\{d^*(a) \mid a \in A\}$. For any $x, y \in A$ we have $x \otimes y = xy \otimes 1 + x \cdot d^*(y)$ in B and therefore

$$\sum_{i} x_i \otimes y_i = (\sum_{i} x_i y_i) \otimes 1 + \sum_{i} x_i \cdot d^*(y_i)$$

If $\sum_i x_i \otimes y_i \in I$ then $\sum_i x_i y_i = 0$ and therefore any element of I can be written in the form $\sum_i x_i \cdot d^*(y_i)$ for $x_i, y_i \in A$, which is what we wanted to show.

Proposition 5. Let k be a ring and A a k-algebra. Then the pair $(\Omega_{A/k}, d)$ has the following universal property: if D is a derivation of A over k into an A-module M, then there is a unique morphism of A-modules $f : \Omega_{A/k} \longrightarrow M$ making the following diagram commute

Proof. It follows from Lemma 4 that if f exists it is unique. For the existence, set $B = A \otimes_k A$, take the trivial extension A * M and define a morphism of A-algebras $\phi : B \longrightarrow A * M$ by $\phi(x \otimes y) = (xy, x \cdot D(y))$. Since $I^2 \subseteq Ker\phi$ there is an induced morphism of A-algebras $\phi' : B/I^2 \longrightarrow A * M$ which maps $1 \otimes y - y \otimes 1 + I^2$ to (0, D(y)). Therefore the restriction to $\Omega_{A/k}$ induces a morphism of A-modules with the required property.

Corollary 6. Let k be a ring and A a k-algebra. Then for an A-module M there is a canonical isomorphism of A-modules natural in M, A and k

$$Der_k(A, M) \longrightarrow Hom_A(\Omega_{A/k}, M)$$

Proof. The bijection given by Proposition 5 is clearly natural in M, A and k.

Definition 6. Let k be a ring and A a k-algebra. For $r \ge 1$ we denote by $\Omega_{A/k}^r$ the r-th exterior product $\bigwedge^r \Omega_{A/k}$ (TES,Section 3). There is a canonical isomorphism of A-modules $\Omega_{A/k} \cong \Omega_{A/k}^1$ and we freely identify these modules.

Lemma 7. Let k be a ring and A a k-algebra. If A is generated by a nonempty set $\{x_i\}_{i \in I}$ as a k-algebra then $\Omega_{A/k}$ is generated by $\{dx_i\}_{i \in I}$ as an A-module.

Example 1. Let k be a ring and set $A = k[x_1, \ldots, x_n]$ for $n \ge 1$. For $1 \le i \le n$ we define a k-derivation $\partial/\partial x_i : A \longrightarrow A$ in the usual way

$$\frac{\partial}{\partial x_i(f)(\alpha)} = (\alpha_i + 1)f(\alpha + e_i)$$
$$\frac{\partial}{\partial x_i(\sum_{\alpha} f(\alpha)x_1^{\alpha_1} \cdots x_n^{\alpha_n})} = \sum_{\alpha, \alpha_i \ge 1} \alpha_i f(\alpha)x_1^{\alpha} \cdots x_i^{\alpha_i - 1} \cdots x_n^{\alpha_n}$$

Since $\partial/\partial x_i \in Der_k(A)$ there exists a morphism of A-modules $f_i : \Omega_{A/k} \longrightarrow A$ with $f_i(dx_j) = \delta_{ij}$. If k is a ring and K a k-algebra then for $a \in K$ we have $d(f(a)) = f'(a) \cdot da$ in $\Omega_{K/k}$ where $d: K \longrightarrow \Omega_{K/k}$ is canonical.

Lemma 8. Let k be a ring and $A = k[x_1, \ldots, x_n]$ for $n \ge 1$. The differential $d: A \longrightarrow \Omega_{A/k}$ is defined by $df = \sum_{i=1}^n \partial f / \partial x_i \cdot dx_i$.

Proof. One reduces easily to the case $f = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for nonzero α , which is Lemma 1.

Lemma 9. Let k be a ring and $A = k[x_1, \ldots, x_n]$ for $n \ge 1$. Then $\Omega_{A/k}$ is a free A-module with basis dx_1, \ldots, dx_n .

Proof. We already know that the dx_i generate $\Omega_{A/k}$ as an A-module. Suppose that $\sum_i a_i \cdot dx_i = 0$ with $a_i \in A$. Applying the morphism f_i of Example 1 we see that $a_i = 0$ for each i, as required. \Box

Lemma 10. Let k be a field and K a separable algebraic extension field of k. Then $\Omega_{K/k} = 0$.

Proof. In fact, for any $\alpha \in K$ there is a polynomial $f(x) \in k[x]$ such that $f(\alpha) = 0$ and $f'(\alpha) \neq 0$. Since $d: K \longrightarrow \Omega_{K/k}$ is a derivation we have $0 = d(f(\alpha)) = f'(\alpha) \cdot d\alpha$, whence $d\alpha = 0$. Since $\Omega_{K/k}$ is generated by the $d\alpha$, this shows that $\Omega_{K/k} = 0$.

Definition 7. Suppose we have a commutative diagram of rings

$$\begin{array}{c} A \xrightarrow{\phi} A' \\ \uparrow \\ k \xrightarrow{\alpha} k' \end{array} \tag{3}$$

Then there is a canonical morphism of A-modules

$$u_{A/k,A'/k'} : \Omega_{A/k} \longrightarrow \Omega_{A'/k'}$$

$$a \otimes b + I^2 \mapsto \phi(a) \otimes \phi(b) + I'^2$$

$$d_{A/k}(a) \mapsto d_{A'/k'}(\phi(a))$$
(4)

and a canonical morphism of A'-modules

$$v_{A/k,A'/k'}: \Omega_{A/k} \otimes_A A' \longrightarrow \Omega_{A'/k'}$$

$$(a \otimes b + I^2) \otimes c \mapsto c\phi(a) \otimes \phi(b) + I'^2$$

$$d_{A/k}(a) \otimes c \mapsto c \cdot d_{A'/k'}(\phi(a))$$
(5)

Proposition 11. Let A, k' be k-algebras and let A' be the k-algebra $A \otimes_k k'$. Then the canonical morphism of A'-modules (5) $\Omega_{A/k} \otimes_A A' \longrightarrow \Omega_{A'/k'}$ is an isomorphism. More generally this is true whenever the diagram of rings (3) is a pushout.

Proof. Set $B = A \otimes_k A$, $B' = A' \otimes_{k'} A'$, let I be the kernel of the canonical morphism of k-algebras $\varepsilon : A \otimes_k A \longrightarrow A$ and let I' be the kernel of $\varepsilon' : A' \otimes_{k'} A' \longrightarrow A'$. We have an isomorphism of abelian groups

$$\Omega_{A/k} \otimes_A A' = \Omega_{A/k} \otimes_A (A \otimes_k k') \cong (\Omega_{A/k} \otimes_A A) \otimes_k k' \cong \Omega_{A/k} \otimes_k k'$$
(6)

and an isomorphism of k-algebras

$$B' = (A \otimes_k k') \otimes_{k'} (A \otimes_k k') \cong A \otimes_k (k' \otimes_{k'} (A \otimes_k k')) \cong B \otimes_k k'$$

$$\tag{7}$$

Since ε is surjective, the kernel of the morphism of k-algebras $\varepsilon \otimes 1 : B \otimes_k k' \longrightarrow A \otimes_k k'$ is $I \otimes_k k'$ (this denotes the image of $I \otimes_k k' \longrightarrow B \otimes_k k'$). We have a commutative diagram

Therefore (7) identifies the ideals $I \otimes_k A$ and I' and therefore also the ideals $I^2 \otimes_k A$ and I'^2 . Taking quotients we have an isomorphism of k-algebras $B/I^2 \otimes_k k' \cong B'/I'^2$. But using Lemma 3 we have an isomorphism of abelian groups

$$B/I^2 \otimes_k k' \cong (A \oplus \Omega_{A/k}) \otimes_k k' \cong A' \oplus (\Omega_{A/k} \otimes_k k')$$

together with $B'/I^2 \cong A' \oplus \Omega_{A'/k'}$ this yields an isomorphism of abelian groups

$$\Omega_{A'/k'} \longrightarrow \Omega_{A/k} \otimes_k k'$$
$$(a \otimes l) \otimes (b \otimes k) + I'^2 \mapsto (a \otimes b - ab \otimes 1 + I^2) \otimes kl$$

composed with (6) this shows that (5) is an isomorphism.

Lemma 12. Let k be a ring, A a k-algebra and S a multiplicatively closed subset of A. Let T denote the multiplicatively closed subset $\{s \otimes t \mid s, t \in S\}$ of $A \otimes_k A$. Then there is a canonical isomorphism of k-algebras

$$\tau: S^{-1}A \otimes_k S^{-1}A \longrightarrow T^{-1}(A \otimes_k A)$$
$$a/s \otimes b/t \mapsto (a \otimes b)/(s \otimes t)$$

Proof. We begin by defining a k-bilinear map

$$S^{-1}A \times S^{-1}A \longrightarrow T^{-1}(A \otimes_k A)$$
$$(a/s, b/t) \mapsto (a \otimes b)/(s \otimes t)$$

This induces the morphism of k-algebras τ . To define the inverse to τ , consider the morphism of k-algebras $A \otimes_k A \longrightarrow S^{-1}A \otimes_k S^{-1}A$ induced by the morphism of k-algebras $A \longrightarrow S^{-1}A$. This clearly maps T to units, and it is straightforward to check the induced morphism $T^{-1}(A \otimes_k A) \longrightarrow S^{-1}A \otimes_k S^{-1}A$ is inverse to τ .

Theorem 13. Suppose we have ring morphisms $\phi : k \longrightarrow A, \psi : A \longrightarrow B$. Then there is a canonical exact sequence of *B*-modules

$$\Omega_{A/k} \otimes_A B \xrightarrow{v} \Omega_{B/k} \xrightarrow{u} \Omega_{B/A} \longrightarrow 0 \tag{8}$$

The morphism v is a coretraction if and only if the canonical map $Der_k(B,T) \longrightarrow Der_k(A,T)$ is surjective for every B-module T. In that case we have a split exact sequence of B-modules

$$0 \longrightarrow \Omega_{A/k} \otimes_A B \xrightarrow{v} \Omega_{B/k} \xrightarrow{u} \Omega_{B/A} \longrightarrow 0$$

Proof. Let v be the morphism of (5) and u the morphism of (2). Therefore

$$v(d_{A/k}(a) \otimes b) = b \cdot d_{B/k}(\psi(a))$$
$$u(b \cdot d_{B/k}(b')) = b \cdot d_{B/k}(b')$$

It is clear that u is surjective. Since $d_{B/A}(\psi(a)) = 0$ we have uv = 0. Now showing that u is the cokernel of v is equivalent to checking that the following sequence of abelian groups is exact for any B-module T

$$Hom_B(\Omega_{B/A}, T) \longrightarrow Hom_B(\Omega_{B/k}, T) \longrightarrow Hom_B(\Omega_{A/k} \otimes_A B, T)$$

Using the canonical isomorphism $Hom_B(\Omega_{A/k} \otimes_A B, T) \cong Hom_A(\Omega_{A/k}, T)$ and Corollary 6 we reduce to checking that the following sequence of abelian groups is exact

$$Der_A(B,T) \longrightarrow Der_k(B,T) \longrightarrow Der_k(A,T)$$
 (9)

where the second map is $D \mapsto D \circ \psi$ (observe that the first map is trivially injective). This is clearly exact, so we have proved that (8) is an exact sequence of *B*-modules. A morphism of *B*-modules $M' \longrightarrow M$ has a left inverse if and only if the induced map $Hom_B(M,T) \longrightarrow Hom_B(M',T)$ is surjective for any *B*-module *T*. Thus, *v* has a left inverse if and only if the natural map $Der_k(B,T) \longrightarrow Der_k(A,T)$ is surjective for any *B*-module *T*. \Box

Corollary 14. Suppose we have ring morphisms $\phi : k \longrightarrow A, \psi : A \longrightarrow B$. Then the canonical morphism of B-modules $v : \Omega_{A/k} \otimes_A B \longrightarrow \Omega_{B/k}$ is an isomorphism if and only if every derivation of A over k into any B-module T can be extended uniquely to a k-derivation $B \longrightarrow T$.

Proof. The morphism v is an isomorphism if and only if it is a coretraction and an epimorphism, so if and only if $\Omega_{B/A} = 0$ and $Der_k(B,T) \longrightarrow Der_k(A,T)$ is surjective for every *B*-module T. Since $Der_A(B,T)$ is isomorphic to the kernel of this morphism and $\Omega_{B/A} = 0$ if and only if $Der_A(B,T) \cong Hom_B(\Omega_{B/A},T) = 0$ for every *B*-module T, we see that v is an isomorphism if and only if $Der_k(B,T) \longrightarrow Der_k(A,T)$ is an isomorphism for every *B*-module T, which is what we wanted to show. \Box **Corollary 15.** Let k be a ring and A a k-algebra. If S is a multiplicatively closed subset of A, then there is a canonical isomorphism of $S^{-1}A$ -modules

$$\xi: S^{-1}\Omega_{A/k} \longrightarrow \Omega_{S^{-1}A/k}$$
$$(a \otimes b + I^2)/s \mapsto a/s \otimes b/1 + I'^2$$
$$d_{A/k}(a)/s \mapsto 1/s \cdot d_{S^{-1}A/k}(a)$$

The inverse $\Omega_{S^{-1}A/k} \longrightarrow S^{-1}\Omega_{A/k}$ maps d(1/s) to $-1/s^2 \cdot ds$ for any $s \in S$.

Proof. Set $B = S^{-1}A$ and let $\psi : A \longrightarrow B$ be the canonical ring morphism. By Corollary 14 it suffices to show that $Der_k(B,T) \longrightarrow Der_k(A,T)$ is bijective for any *B*-module *T*. Let $D : A \longrightarrow T$ be a derivation of *A* over *k* into a *B*-module *T* and define $E : B \longrightarrow T$ by $E(a/s) = 1/s \cdot D(a) - a/s^2 \cdot D(s)$. It is not hard to check that this is a well-defined derivation of *B* over *k* which extends *D*, and is unique with this property. Therefore ξ is an isomorphism of $S^{-1}A$ -modules, as required. \Box

Corollary 16. Let k be a ring and B any localisation of a finitely generated k-algebra. Then $\Omega_{B/k}$ is a finitely generated B-module.

Proof. Suppose that A is a finitely generated k-algebra and $B = S^{-1}A$ for some multiplicatively closed set S of A. By Lemma 7, $\Omega_{A/k}$ is a finitely generated A-module and therefore $\Omega_{S^{-1}A/k} \cong S^{-1}\Omega_{A/k}$ is a finitely generated $S^{-1}A$ -module, as required.

Let k be a ring, A a k-algebra and \mathfrak{a} an ideal of A. Set $B = A/\mathfrak{a}$ and define a map $\mathfrak{a} \longrightarrow \Omega_{A/k} \otimes_A B$ by $x \mapsto d_{A/k}(x) \otimes 1$. It sends \mathfrak{a}^2 to zero, hence induces a morphism of B-modules

$$\begin{aligned} \delta : \mathfrak{a}/\mathfrak{a}^2 &\longrightarrow \Omega_{A/k} \otimes_A B \\ x + \mathfrak{a}^2 &\mapsto d_{A/k}(x) \otimes 1 \end{aligned}$$
 (10)

Theorem 17. Let k be a ring, A a k-algebra and \mathfrak{a} an ideal of A. If $B = A/\mathfrak{a}$ then there is a canonical exact sequence of B-modules

$$\mathfrak{a}/\mathfrak{a}^2 \xrightarrow{\delta} \Omega_{A/k} \otimes_A B \xrightarrow{v} \Omega_{B/k} \longrightarrow 0 \tag{11}$$

Moreover

- (i) Put $A_1 = A/\mathfrak{a}^2$. Then $\Omega_{A/k} \otimes_A B \cong \Omega_{A_1/k} \otimes_{A_1} B$ as B-modules.
- (ii) The morphism δ is a coretraction if and only if the extension $0 \longrightarrow \mathfrak{a}/\mathfrak{a}^2 \longrightarrow A/\mathfrak{a}^2 \longrightarrow B \longrightarrow 0$ of the k-algebra B by $\mathfrak{a}/\mathfrak{a}^2$ is trivial over k. That is, δ is a coretraction if and only if $A/\mathfrak{a}^2 \longrightarrow B$ is a retraction of k-algebras.

Proof. The surjectivity of v follows from that of $A \longrightarrow B$. Clearly $v\delta = 0$, so as in the proof of Theorem 13 to show that (11) is exact it suffices to show that for any *B*-module *T* the following sequence is exact

$$Der_k(A/\mathfrak{m},T) \longrightarrow Der_k(A,T) \longrightarrow Hom_A(\mathfrak{a},T)$$

where we have used the canonical isomorphism of abelian groups $Hom_B(\mathfrak{a}/\mathfrak{a}^2, T) \cong Hom_A(\mathfrak{a}, T)$ and the second map is restriction to \mathfrak{a} . Exactness of this sequence is obvious, so we have shown that (11) is an exact sequence of *B*-modules.

(i) The canonical morphism of k-algebras $A \longrightarrow A_1$ induces a morphism of A-modules $\Omega_{A/k} \longrightarrow \Omega_{A_1/k}$, which induces a morphism of B-modules $\Omega_{A/k} \otimes_A B \longrightarrow \Omega_{A_1/k} \otimes_{A_1} B$. To show that this is an isomorphism, it suffices to show that the induced map $Hom_B(\Omega_{A_1/k} \otimes_{A_1} B, T) \longrightarrow Hom_B(\Omega_{A/k} \otimes_A B, T)$ is an isomorphism of abelian groups for every B-module T, so we have to show that the natural map $Der_k(A/\mathfrak{a}^2, T) \longrightarrow Der_k(A, T)$ is bijective for every A/\mathfrak{a} -module T, which is obvious.

(*ii*) By (*i*) we may replace A by A_1 in (11), so we assume $\mathfrak{a}^2 = 0$. Suppose that δ has a left inverse $w : \Omega_{A/k} \otimes_A B \longrightarrow \mathfrak{a}$. Putting $D(a) = w(d_{A/k}(a) \otimes 1)$ for $a \in A$ we obtain a derivation

 $D: A \longrightarrow \mathfrak{a}$ over k such that D(x) = x for $x \in \mathfrak{a}$. Then the map $f: A \longrightarrow A$ given by f(a) = a - D(a) is a morphism of k-algebras (use $\mathfrak{a}^2 = 0$) which satisfies $f(\mathfrak{a}) = 0$, and therefore induces a morphism of k-algebras $f': B \longrightarrow A$, which is clearly a right inverse to $A \longrightarrow B$. For the converse, suppose that $f': B \longrightarrow A$ is a k-algebra morphism right inverse to $A \longrightarrow B$,

For the converse, suppose that $f': B \longrightarrow A$ is a k-algebra morphism right inverse to $A \longrightarrow B$, and define $D(a) = a - f'(a + \mathfrak{a})$. This is a derivation $D: A \longrightarrow \mathfrak{a}$ over k, which induces a morphism of A-modules $h: \Omega_{A/k} \longrightarrow \mathfrak{a}$. Pairing this with the canonical B-action on \mathfrak{a} gives the desired left inverse to δ .

Example 2. Let k be a ring, $A = k[x_1, \ldots, x_n]$ for $n \ge 1$ and let $B = A/\mathfrak{a}$ where \mathfrak{a} is an ideal of A. Then $\Omega_{A/k} \otimes_A B$ is a free B-module with basis $z_i = d_{A/k}(x_i) \otimes 1$ and by Theorem 17 we have an exact sequence of B-modules

$$\mathfrak{a}/\mathfrak{a}^2 \xrightarrow{\delta} \Omega_{A/k} \otimes_A B \xrightarrow{v} \Omega_{B/k} \longrightarrow 0$$
$$\delta(f + \mathfrak{a}^2) = \sum_{i=1}^n \partial f / \partial x_i \cdot z_i$$

where $f \in \mathfrak{a}$ and we use Lemma 8. For example if k is a field of characteristic zero and \mathfrak{a} is the principal ideal $(y^2 - x^3)$ in the polynomial ring A = k[x, y] then $B = k[x, y]/(y^2 - x^3)$ is the affine coordinate ring of the plane curve $y^2 = x^3$, which has a cusp at the origin. $Im\delta$ is the B-submodule generated by $-3x^2(dx \otimes 1) + 2y(dy \otimes 1)$. Therefore $\Omega_{B/k}$ is isomorphic as a B-module to the quotient of $B \oplus B$ by the submodule generated by $(-3x^2 + \mathfrak{a}, 2y + \mathfrak{a})$. Therefore $-3xy \cdot dx + 2x^2 \cdot dy$ is a nonzero torsion element of $\Omega_{B/k}$ (apply x).

Example 3. More generally let k be a ring, A a k-algebra and $B = A[x_1, \ldots, x_n]$. Let T be a B-module and let $D \in Der_k(A, T)$. We define a derivation $E : B \longrightarrow T$ over k in the following way

$$E(f) = \sum_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n} \cdot D(f(\alpha))$$

That is, apply D to the coefficients and act with the variables. This shows that the canonical map $Der_k(B,T) \longrightarrow Der_k(A,T)$ is surjective. It follows from Theorem 13 that we have a split exact sequence of B-modules

$$0 \longrightarrow \Omega_{A/k} \otimes_A B \xrightarrow{v} \Omega_{B/k} \xrightarrow{u} \Omega_{B/A} \longrightarrow 0$$

The left inverse w to v is defined by $w(d_{B/k}(f)) = \sum_{\alpha} d_{A/k}(f(\alpha)) \otimes x_1^{\alpha_1} \cdots x_n^{\alpha_n}$. The corresponding right inverse to p to u is defined by $p(d_{B/A}(f)) = d_{B/k}(f) - \sum_{\alpha} x_1^{\alpha_1} \cdots x_n^{\alpha_n} \cdot d_{B/k}(f(\alpha))$ and in particular $p(d_{B/A}(x_i)) = d_{B/k}(x_i)$. Therefore by Lemma 9 we have a canonical isomorphism of B-modules

$$\Omega_{B/k} \cong (\Omega_{A/k} \otimes_A B) \oplus Bd_{B/k}(x_1) \oplus \dots \oplus Bd_{B/k}(x_n)$$
(12)

Let \mathfrak{a} be an ideal of B and put $C = A/\mathfrak{a}$. Denote by z_i the element $d_{B/k}(x_i) \otimes 1$ of $\Omega_{B/k} \otimes_B C$ and let $y_i = x_i + \mathfrak{a}$. Tensoring (12) with C we have an isomorphism of C-modules

$$\Omega_{B/k} \otimes_B C \cong (\Omega_{A/k} \otimes_A C) \oplus Cz_1 \oplus \cdots \oplus Cz_n$$

Finally, Theorem 17 gives an exact sequence of C-modules

$$\mathfrak{a}/\mathfrak{a}^2 \xrightarrow{\delta} \Omega_{B/k} \otimes_B C \xrightarrow{v} \Omega_{C/k} \longrightarrow 0$$
$$\delta(f + \mathfrak{a}^2) = \sum_{\alpha} d_{A/k}(f(\alpha)) \otimes y_1^{\alpha_1} \cdots y_n^{\alpha_n} + \sum_{i=1}^n \partial f/\partial x_i \cdot z_i$$

where $f \in \mathfrak{a}$ and we use Lemma 8.

3 Separability

Definition 8. Let k be a field and K an extension field of k. A transcendence basis $\{x_{\lambda}\}_{\lambda \in \Lambda}$ of K/k is called a *separating transcendence basis* if K is separably algebraic over the field $k(\{x_{\lambda}\}_{\lambda \in \Lambda})$. We say that K is *separably generated* over k if it has a separating transcendence basis.

Proposition 18. Let $k \subseteq K \subseteq L$ be finitely generated field extensions.

- (i) If L/K is pure transcendental then $rank_L\Omega_{L/k} = rank_K\Omega_{K/k} + tr.deg.L/K$.
- (ii) If L/K is separable algebraic then $rank_L\Omega_{L/k} = rank_K\Omega_{K/k}$.
- (iii) If L = K(t) where t is purely inseparable over K then $rank_L\Omega_{L/k} = rank_K\Omega_{K/k}$ or $rank_L\Omega_{L/k} = rank_K\Omega_{K/k} + 1$.
- (iv) If L/K is purely inseparable algebraic then $rank_L\Omega_{L/k} \ge rank_K\Omega_{K/k}$.

Proof. Notice that if K/k is a finitely generated field extension then $rank_K \Omega_{K/k}$ is finite by Corollary 16, so the statement of the result makes sense. (i) Since L/K is a finitely generated field extension, r = tr.deg.L/K is finite. If r = 0 then K = L and the result is trivial, so assume $r \ge 1$ and let $\{t_1, \ldots, t_r\}$ be a transcendence basis for L/K with $L = K(t_1, \ldots, t_r)$. Therefore Lis K-isomorphic to the quotient field of the polynomial ring $B = K[x_1, \ldots, x_r]$. By Example (3) we have an isomorphism of B-modules

$$\Omega_{B/k} \cong (\Omega_{K/k} \otimes_K B) \oplus Bdx_1 \oplus \cdots \oplus Bdx_r$$

Localising and using Corollary 15 we get an isomorphism of L-modules

$$\Omega_{L/k} \cong (\Omega_{K/k} \otimes_K L) \oplus Ldt_1 \oplus \cdots \oplus Ldt_r$$

Therefore $rank_L\Omega_{L/k} = rank_K\Omega_{K/k} + r$, as required.

(ii) If L = K this is trivial, so assume otherwise. Since L/K is finitely generated and algebraic, it is finite. Therefore L/K is a finite separable extension, which has a primitive element $t \in L$ by the primitive element theorem (so $t \notin K$ and L = K(t)). Let f be the minimum polynomial of t, and set $n = deg(f) \ge 2$. Then $1, t, \ldots, t^{n-1}$ is a K-basis for L. To show that $rank_L\Omega_{L/k} =$ $rank_K\Omega_{K/k}$ it suffices to show that the canonical morphism of L-modules $\Omega_{K/k} \otimes_K L \longrightarrow \Omega_{L/k}$ is an isomorphism. By Corollary 14 it is enough to show that the canonical map $Der_k(L, T) \longrightarrow$ $Der_k(K, T)$ is bijective for any L-module T. Injectivity follows from Lemma 10, so let $D: K \longrightarrow T$ be a derivation of K into T over k. We define $E: L \longrightarrow T$ by

$$E(a_0 + a_1t + \dots + a_{n-1}t^{n-1}) = D(a_0) + t \cdot D(a_1) + \dots + t^{n-1} \cdot D(a_{n-1})$$

It is not hard to check that this is a derivation of L into T over k extending D, so the proof is complete.

(*iii*) Suppose that L = K(t) where t is algebraic and purely inseparable over K. If $t \in K$ the claim is trivial, so assume otherwise. Let $char(k) = p \neq 0$ and $e \geq 1$ be minimal with $t^{p^e} = a \in K$. We claim that

$$rank_L \Omega_{L/k} = \begin{cases} rank_K \Omega_{K/k} + 1 & d_{K/k}(a) = 0\\ rank_K \Omega_{K/k} & d_{K/k}(a) \neq 0 \end{cases}$$
(13)

The minimal polynomial of t over K is $f = x^{p^e} - a$ and we have a K-isomorphism $K[x]/(f) \cong L$. Set C = K[x]/(f) and observe that by Example 3 we have an isomorphism of C-modules

$$\Omega_{C/k} \cong \left(\left(\Omega_{K/k} \otimes_K C \right) \oplus Cz \right) / C\delta f$$

where $\delta f = -d_{K/k}(a) \otimes 1$. If $d_{K/k}(a) = 0$ then $rank_L\Omega_{L/k} = rank_C\Omega_{C/k} = rank_K\Omega_{K/k} + 1$. Otherwise δf is nonzero and therefore generates a subspace of rank 1. Subtracting this from the rank of $(\Omega_{K/k} \otimes_K C) \oplus Cz$, which is $rank_K\Omega_{K/k} + 1$, we see that $rank_L\Omega_{L/k} = rank_C\Omega_{C/k} = rank_K\Omega_{K/k}$, as required. (iv) Now assume more generally that L/K is purely inseparable algebraic, say $L = K(t_1, \ldots, t_n)$. Then we have a chain of purely inseparable field extensions

$$K \subseteq K(t_1) \subseteq K(t_1, t_2) \subseteq \cdots \subseteq K(t_1, \dots, t_n) = L$$

so the result follows immediately from (*iii*).

Theorem 19. Let $k \subseteq K \subseteq L$ be finitely generated field extensions. Then

$$rank_L\Omega_{L/k} \ge rank_K\Omega_{K/k} + tr.deg.L/K$$

with equality if L is separably generated over K.

Proof. First we establish the inequality. Since L/K is a finitely generated field extension we can write $L = K(t_1, \ldots, t_n)$ where the first r generators $\{t_1, \ldots, t_r\}$ are a transcendence basis for L over K. Let $Q = K(t_1, \ldots, t_r)$ so that Q/K is pure transcendental and L/Q is algebraic. By Proposition 18(i) we have $rank_Q \Omega_{Q/k} = rank_K \Omega_{K/k} + r$, so we can reduce to the case where L/K is algebraic.

If K_s denotes the set of elements of L separable over K, then K_s/K is a finite separable field extension and L/K_s is purely inseparable and finitely generated. By Proposition 18(*ii*) we have $rank_{K_s}\Omega_{K_s/K} = rank_K\Omega_{K/k}$ so we reduce to the case where L/K is purely inseparable algebraic, which is Proposition 18(*iv*).

If L is separably generated over K then find a separating transcendence basis $\{t_1, \ldots, t_r\}$ and set $Q = K(t_1, \ldots, t_r)$. Since Q/K is pure transcendental and L/Q is separable algebraic we have by Proposition 18(i) and (ii)

$$rank_L\Omega_{L/k} = rank_Q\Omega_{Q/k} = rank_K\Omega_{K/k} + r$$

as required.

Corollary 20. Let L be a finitely generated extension of a field k. Then $\operatorname{rank}_L \Omega_{L/k} \geq \operatorname{tr.deg.}_{L/k}$ with equality if and only if L is separably generated over k. In particular $\Omega_{L/k} = 0$ if and only if L is separably algebraic over k.

Proof. The inequality is a special case of Theorem 19. Let S be a transcendence basis of L/k and set Q = k(S) (note that S may be empty), so that Q/k is pure transcendental and L/Q is finitely generated algebraic (therefore also finite). Let K be the set of elements of L separable over Q, so that we have L/K purely inseparable and K/Q separable. Therefore by Proposition 18 we have

$$k \subseteq Q \subseteq K \subseteq L$$
$$rank_L \Omega_{L/k} \ge rank_K \Omega_{K/k} = rank_Q \Omega_{Q/k} = tr.deg.L/k$$

If L is separably generated over k then we can take S to be a separating transcendence basis, whence K = L and we have the desired equality.

For the converse, suppose that $rank_L\Omega_{L/k} = tr.deg.L/k = r$. If r = 0 then $\Omega_{L/k} = 0$ and L/kis a finitely generated algebraic extension. Therefore k = Q so K/k is separable algebraic and $\Omega_{K/k} = 0$. We have to show that L/k is separable algebraic (that is, K = L). Suppose otherwise that $t \in L \setminus K$. Let $char(k) = p \neq 0$ and $e \geq 1$ be minimal with $t^{p^e} = a \in K$. Since $\Omega_{K/k} = 0$ we have $d_{K/k}(a) = 0$ and therefore by (13), $rank_{K(t)/k}\Omega_{K(t)/k} = 1$. But L/K(t) is purely inseparable so $rank_L\Omega_{L/k} \geq 1$, which is a contradiction. Therefore the converse is true for r = 0. In particular $\Omega_{L/k} = 0$ if and only if L is separably algebraic over k.

Now assume that $r \geq 1$ and let $x_1, \ldots, x_r \in L$ be such that $\{dx_1, \ldots, dx_r\}$ is a basis of $\Omega_{L/k}$ over L. Then we have $\Omega_{L/k(x_1,\ldots,x_r)} = 0$ by Theorem 13 so L is separably algebraic over $k(x_1,\ldots,x_r)$. Since r = tr.deg.L/k the elements x_i must form a transcendence basis of L over k, so the proof is complete. \Box

References

[Mat80] Hideyuki Matsumura, Commutative algebra, second ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR MR575344 (82i:13003)