
Simplicial Sets are Algorithms

William Troiani

Supervisor: Daniel Murfet

The University of Melbourne School of Mathematics
and Statistics

A thesis submitted in partial fulfilment of the requirements of the degree of Master of
Science (Mathematics and Statistics)

May 2019

Abstract

We describe how the Mitchell-Benabou language, also known as the internal
language of a topos, can be used to realise simplicial sets as algorithms. A method
for describing finite colimits in an arbitrary topos using its associated Mitchell-
Benabou language is given. This will be used to provide a map from simplicial sets
into the terms and formulas of this internal logic. Also, an example corresponding
to the topological space of the triangle is given explicitly.

Contents

1 Introduction 2

2 Topoi 4

3 Type theory 8
3.1 Some type theory Lemmas . 12
3.2 The Mitchell-Benabou language . 15
3.3 Applications of the Mitchell-Benabou Language 18
3.4 Dealing with Subobjects . 21

4 Describing colimits using the Mitchell-Benabou language 27
4.1 Initial object . 29
4.2 Finite Coproducts . 29
4.3 Coequalisers . 33

5 The map from simplicial sets to algorithms 37
5.1 The General Method . 40

6 An Example 43

1

1 Introduction

In this thesis we defend the following proposition: simplicial sets are algorithms for
constructing topological spaces. Recall that a simplicial set X is a collection of sets
{Xn}n≥0 consisting of n-simplices Xn for each n ≥ 0, together with face and degeneracy
maps between these sets satisfying certain equations, see [9, §I.1.xii], [1, §10]. The idea
is that simplicial sets are combinatorial models of topological spaces, which can be built
up from a set X0 of vertices, a set X1 of edges, a set X2 of triangles, and so on, by
gluing these basic spaces together in a particular way.

Here by a vertex we mean the standard 0-simplex ∆0 = {0} ⊆ R0, by an edge we
mean the standard 1-simplex ∆1 = {x ∈ R | 0 ≤ x ≤ 1} and by a triangle we mean the
standard 2-simplex ∆2 = {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ x2 ≤ 1}, and more generally by a
standard n-simplex we mean the topological space

∆n = {(x1, ..., xn) ∈ Rn | 0 ≤ x1 ≤ ... ≤ xn ≤ 1}

The simplicial set X = ∆[2] (where ∆[2] is the image of [2] in the simplex category,
see Definition 5.0.6, under the Yoneda embedding) has three nondegenerate 0-simplices
a, b, c ⊆ X0, three nondegenerate 1-simplices e, f, g ⊆ X1 and one nondegenerate 2-
simplex h ⊆ X2. This is read as a combinatorial model of a topological space according
to the following algorithm: we take three copies ∆0

a,∆
0
b ,∆

0
c of the standard 0-simplex,

three copies ∆1
e,∆

1
f ,∆

1
g of the standard 1-simplex and one copy ∆2

h of the standard
2-simplex and glue them together according to the aforementioned face and degeneracy
maps in the simplicial set. For ∆[2] this means that we identify 0 in ∆0

a with 0 in the
∆1
e and with 1 in ∆1

f , 0 in ∆b with 0 in ∆1
f and with ∆1

g, 0 in ∆0
c with 0 in ∆g and

with 1 in ∆1
a. As well as the subspace {(x1, x2) ∈ ∆2 | x1 = 0} with ∆1

e, the subspace
{(x1, x2) ∈ ∆2

f | x2 = 0} with ∆1
f , and the subspace {(x1, x2) ∈ ∆2

2 | x1 + x2 = 1} with
∆1
g. The result of all this gluing is the topological space ∆2. In general this process

of gluing together standard n-simplices ∆n according to the combinatorial information
in X is called geometric realisation. In the case of X = ∆[2] we can see that some
parts of this process are redundant, since the end result is just homeomorphic to one
of the starting pieces ∆2

h, but this does not hold in general.

The question that motivates this thesis is the following: can we give a precise sense in
which this construction is algorithmic? That is, can we give a precise sense in which a
simplicial set is an algorithm for constructing a topological space? To grapple with this
question we must first decide what counts as an algorithm. This is no trivial matter, but
several satisfactory (and different) Definitions were given by Godel [3], Turing [4] and
Church [5]. In each case the notion of algorithm is predicated on certain fundamental
operations that are assumed to be allowed in the list of instructions which constitute
the algorithm: for example, in Turings Definition, the semantic interpretation of his
machines involves a pre-existing notion of a tape, and the operations of reading from
and writing to such a tape. In our context, the basic operations seem to necessarily

2

include (a) making copies of the interval I, (b) any construction involving the standard
order ≤ on I, the end points 0, 1 ∈ I, and (c) any construction permitted by higher
order intuitionistic logic.

Realising simplicial sets as algorithms in this sense will be done using the language
of classifying topoi [9, §VIII] and the link between topoi and higher-order logic given
by the Mitchell-Benabou language [6], [10]. In short, it was proven by Joyal that the
category of simplicial sets is the classifying topos of a particular first-order theory, called
the theory of linear orders, which is roughly speaking a logic in which all we can talk
about is an object I which carries a partial order ≤ with a bottom element b and a top
element t, satisfying some axioms that make (I,≤, b, t) resemble the unit interval. A
topos is a category which admits all finite limits and all finite colimits, as well as all ex-
ponentials, and also admits a subobject classifier (see 2.0.7), with the natural example
being the category of sets or sheaves of sets on a topological space. A useful intuition
is a topos is a generalised universe of sets, see [9, §Prologue, p.1]. Then the classifying
topos of linear orders is the universal domain of mathematical discourse where it is
possible to talk about something like an interval (see 5.0.5 for a precise Definition).

The way we can talk about this platonic interval is using a type theory called the
Mitchell-Benabou language, and this language contains as its primitive elements pre-
cisely the fundamental operations that are necessary in order to realise sim-
plicial sets as algorithms. We establish this formally by giving a function

Objects(sSet)→ Terms and formulas

which sends a simplicial set X to a corresponding term in this language, where the
term contains in explicit form the instructions for constructing a topological space that
are implicit in X. For example, the term corresponding to the triangle names several
copies of ∆1, and a copy of ∆2 (or rather, their logical incarnation I, and the relation
≤) and describes how to glue the copies of ∆1 together along copies of their endpoints
(whose logical incarnations are b and t), and also describes how to glue ∆2 to copies of
∆1, see Section 6.

Most of the work involved in establishing this picture lies in Joyal’s Theorem, but
at least from our point of view there is a gap, since the Mitchell-Benabou language
does not (in its usual presentation) talk directly about the colimit diagram (gluing)
that is necessary for us to view a simplicial set as a single term. So the main contri-
bution of this thesis is to explain how to talk in the Mitchell-Benabou language about
colimits, and thus define the map mentioned above, and thus establish the sense in
which simplicial sets are algorithms.

3

2 Topoi

We assume the reader is familiar with category theory, for background see [2] or the
categorical preliminaries chapter of [9].

This section covers the topos theory content which will be required for the remain-
der of this thesis.

Definition 2.0.1. Let C be a category which admits all products, and let X be an
object in C . Then a family of exponentials with exponent X is a collection of
objects {ZX}Z∈C and a collection of morphisms {evX,Z : X × ZX → X}Z∈C such that
for every morphism f : X × Y → Z, there exists a unique morphism _f ^ : Y → ZX

such that the diagram

X × Y

X × ZX Z

idZ×_f ^ f

evX,Z

commutes. The morphism _f ^ is the transpose of f , and f is the inverse transpose
of _f ^.

Definition 2.0.2. We say a category C admits all exponentials if for every object
X ∈ C , there exists a family of exponentials with exponent X.

Definition 2.0.3. Let C be a category which admits a terminal object 1. Then a
subobject classifier is an object Ω together with a monomorphism true : 1 � Ω,
such that for any object A ∈ C and any monomorphism A′ � A, there exists a unique
morphism χA′ : A→ Ω such that the following is a pullback diagram,

A′ 1

A Ω

true

χA′

Definition 2.0.4. Let C be an object of a category C , let ≤ be the preorder on the
collection of monomorphisms with codomain C, which is such that f : A � C ≤ g :
B � C if there exists a morphism h : A→ B such that the triangle

A B

C

h

f
g

commutes. Let ∼ be the smallest equivalence relation on this same collection such that
f ∼ g if and only if f ≤ g and g ≤ f . An equivalence class of monomorphisms is a
subobject of C, and Sub(C) is the collection of subobjects of C.

4

Remark 2.0.1. Any partially ordered set is naturally a category, and in particular
Sub(C) can be made into a category, where the objects are given by the subobjects, and
given two subobjects f : A � C and g : B � C, there is a morphism f → g if and
only if f ≤ g.

Theorem 2.0.1. Let C be a category which admits all pullbacks and a subobject clas-
sifier Ω. Then there is a natural isomorphism

ηX : Sub(X) ∼= Hom(X,Ω)

This isomorphism maps a subobject m : X ′ � X to the unique morphism f : X → Ω
such that the following is a pullback diagram,

X ′ 1

X Ω

m true

The inverse of this isomorphism maps a morphism f : X → Ω to the monic m : X ′ � X
such that the following is a pullback diagram

X ′ 1

X Ω

m true

f

Proof. See proposition 1 of [9, §I]

Definition 2.0.5. Given an object A in a category which admits all exponentials and
a subobject classifier, let ∈A� A × ΩA be the subobject such that the following is a
pullback diagram,

∈A 1

A× ΩA Ω

true

evA

Definition 2.0.6. Let C be a category which admits all pullbacks. For every morphism
f : A→ B of C there exists a functor f−1 : Sub(B)→ Sub(A) which is such that given
a subobject m : B′ � B, the image under f−1 is the subobject n : A′ � A such that the
following is a pullback diagram,

A′ B′

A B

n m

f

Notice that this is a functor as the partial order ≤ is preserved.

5

Definition 2.0.7. A topos (plural: topoi) is a category E which admits

• all finite limits and all finite colimits,

• all exponentials,

• a subobject classifier.

For a list of examples of topoi, see [9, §1.1]. A topos with all colimits is called
cocomplete.

Many familiar concepts from the topos Sets can be generalised to an arbitrary topos,
including the image of a morphism:

Definition 2.0.8. Let C be a category which admits all pushouts and equalisers. Then
the image of a subobject f : A → B is the morphism e such that the following is an
equaliser diagram,

Equaliser(ι1, ι2) B Pushout(f, f)e
ι1

ι2

where ι1, ι2, and Pushout(f, f) are such that the following is a pushout diagram,

A B

B Pushout(f, f)

f

f ι1

ι2

The domain of e will be notated Im(f). By the universal properties of Equaliser(ι1, ι2)
and Pushout(f, f), there exists a unique morphism k : A→ Im(f) such that the diagram

A

Im(f) B

k
f

e

commutes. Moreover, k an epimorphism (see [9, IV 6.1]).

Later, a type theory will be associated to an arbitrary cocomplete topos. Part of
this type theory will be universal and existential quantifiers, ∀ and ∃, as well as the
usual logical connective, ∧, ∨, and⇒. We now recall the categorical structures required
to interpret these connectives in a topos.

Theorem 2.0.2. Let E be a topos and f : A → B a morphism. Then the functor
f−1 : Sub(B)→ Sub(A) admits both a left and a right adjoint.

Proof. See Johnstone [12, §A 1.4.10].

6

Definition 2.0.9. Let f : A → B be a morphism in a topos. Then the left adjoint to
f−1 will be denoted ∃f , and the right adjoint by ∀f .

The reason why this notation is used, is because in the topos Set, these adjoints are
given by the following explicit maps

∃f : Sub(A)→ Sub(B)

A′ 7→ {b ∈ B | there exists a ∈ A′ such that f(a) = b}

and

∀f : Sub(A)→ Sub(B)

A′ 7→ {b ∈ B | for all a ∈ A if f(a) = b then a ∈ A′}

Proof. See [9, §1 9.2].

Definition 2.0.10. A Heyting algebra is a set with a partial order, which as a
category admits

• initial and terminal objects,

• binary products, binary coproducts,

• all exponentials.

Many examples are given by the following Theorem.

Theorem 2.0.3. Let E be a topos, and let E be any object of E . Then the set Sub(E),
with partial order given by inclusion, is a Heyting algebra, with

• terminal object given by idE : E → E,

• initial object given by the monic 0 � E, where 0 is the initial object of the topos
E . Note; this morphism 0 � E is necessarily monic as E is a topos (see [12,
§A1.4.1]),

• the binary product of subobjects m : A� E and n : B � E is given by the triple
(A×E B, πA, πB), which is such that the following is a pullback diagram in E ,

A×E B A

B E

πA

πB m

n

• the binary coproduct of subobjects m : A → E and n : B → E given by the
triple (Im(m

∐
n), kιA, kι

′
B) where (A

∐
B, ιA, ιB) is a coproduct in E , k is as in

7

Definition 2.0.8, and m
∐
n is the unique morphism A

∐
B → E such that the

diagram

E

A A
∐
B B

m

ιA

m
∐
n

n

ιB

commutes in E .

• the exponentials are more complicated, see [12, §A1.4.13].

Proof. See [12, §A1.4], for exponentials specifically see [12, §A1.4.13].

Definition 2.0.11. We denote the initial and terminal objects of a Heyting algebra by
0 and 1 respectively. The object corresponding to the binary product of objects A and B
will be denoted A ∧ B, and the object corresponding the coproduct, A ∨ B. Lastly, the
objects BA will be denoted A⇒ B.

Remark 2.0.2. If E admits arbitrary coproducts, then for any object E ∈ E , the
category Sub(E) also admits arbitrary coproducts. See [12, §A1.4].

3 Type theory

Type theories were originally suggested by Russell and Whitehead [7] as a foundation
for mathematics, for a historical view, see [10, p.124]. For an introduction to type
theories, see [8, §3.3]. The idea of approaching logic from the perspective of category
theory is originially due to Lawvere. In the modern form, associated to every topos is
a type theory, called the Mitchell-Benabou language. This type theory can be used to
describe constructions of objects and monomorphisms in E (see section 3.3). First, the
Definition of a type theory will be given, then in section 3.1, some helpful Lemmas will
be proved.

Definition 3.0.1. A type theory consists of

• a class of types, including special types Ω,1. Also, for each type τ , there is a
countably infinite set of variables of type τ ,

• a class of function symbols f : τ → σ, where f is a formal symbol, τ and σ
are types,

• a class of relation symbols R ⊆ τ , where R is a formal symbol, and τ is a type,

• a class of terms, where to each term t, there is an associated type, τ . t : τ means
“t is of type τ”. Also, there is an associated set FV(t) of free variables.

8

• a class of formulas, where similarly to terms, to each formula there is an asso-
ciated set of free variables, however unlike terms, there is no associated type,

• for every finite sequence ∆ = (x1 : τ1, ..., xn : τn) of variables, a binary rela-
tion, `∆, of entailment between formulas whose free variables appear in ∆. An
expression p `∆ q, where p and q are formulas, is called a sequent.

Subject to,

1. if τ and σ are types, then so are τ × σ and Pτ . Identification between types is
also allowed.

The following axiom describes how the class of terms and formulas along with
their associated type (for terms) and free variable set is constructed. First a class
of preterms will be defined by induction, then appropriate equivalence classes
of preterms will constitute the terms, a similar process will be undertaken for
formulas.

2. the class of preterms is such that,

(a) there is the class of atomic preterms, containing all the variables, as well
as the special term ∗ : 1. There is also assumed to be atomic preformulas
which are >,⊥.

(b) the preterms and preformulas are closed under the following preterm and
preformula formation rules,

i. if t : τ and s : σ are preterms, then 〈t, s〉 : τ × σ is a preterm,

ii. if t : τ × σ is a preterm, then fst(t) : τ and snd(t) : σ are preterms,

iii. if f : τ → σ is a function symbol, and t : τ is a preterm, then ft : σ is
a preterm,

iv. if R ⊆ τ is a relation symbol, and t : τ is a term, then R(t) is a
preformula,

v. if t, s : τ , then t = s is a preformula,

vi. if p and q are preformulas, then p ∧ q, p ∨ q, and p⇒ q, are all prefor-
mulas,

vii. if {pi}∞i=0 is a countable set of preformulas, then
∨∞
i=0 pi is a preformula,

viii. if x : τ is a variable, and p is a preformula, then ∀x : τ, p and ∃x : τ, p
are both preformulas.

ix. if p is a preformula, and x : τ is a variable, then {x : τ | p} is a preterm
of type Pτ ,

x. if t : τ and T : Pτ , then t ∈ T is in a preformula.

(c) the preterms and preformulas have free variable sets such that

i. FV(∗) = FV(⊥) = FV(>) = ∅,

9

ii. FV(x : τ) = {x : τ}, if x : τ is any variable,

iii. FV(〈t, s〉) = FV(t) ∪ FV(s),

iv. FV(fst(t)) = FV(snd(t)) = FV(t),

v. FV(ft) = FV(t),

vi. FV(R(t)) = FV(t),

vii. FV(t = s) = FV(t) ∪ FV(s),

viii. FV(t ∈ T) = FV(t) ∪ FV(T),

ix. FV(p ∧ q) = FV(p ∨ q) = FV(p⇒ q) = FV(p) ∪ FV(q),

x. FV(
∨∞
i=0 pi) =

⋃∞
i=0 FV(pi)

xi. FV({x : τ | p}) = FV(∀x : τ, p) = FV(∃x : τ, p) = FV(p) \ {x}
An occurence of a variable x in a term will mean any which is not the
“x ∈ τ” part of any term of the form {x : τ | p}, ∀x : τ, p, or ∃x : τ, p. Any
occurence of a variable which is not part of a term’s free variable set is a
bound variable.

(d) The terms and formulas are α-equivalence classes of preterms and preformu-
las respectively, where α-equivalence is the smallest relation on the collec-
tion of preterms or preformulas respectively, such that

i. if t =α s, then t and s are of the same type,

ii. if t =α t
′ and s =α s

′, then 〈t, s〉 =α 〈t′, s′〉,
iii. if t =α s, then fst(t) =α fst(t), and snd(t) =α snd(s),

iv. if t =α t
′, then ft =α ft

′,

v. if t =α t
′, then R(t) =α R(t′),

vi. if t =α t
′ and s =α s

′, then (t = s) =α (t′ = s′),

vii. if p =α p′ and q =α q′, then p ∧ q =α p′ ∧ q′, p ∨ q =α p′ ∨ q′, and
p⇒ q =α p

′ ⇒ q′,

viii. if for all i, pi =α p
′
i, then

∨∞
i=0 pi =α

∨∞
i=0 p

′
i,

ix. if p =α p
′, then {x : τ | p} =α {x : τ | p′}, ∀(x : τ)p =α ∀(x : τ)p′, and

∃(x : τ)p =α ∃(x : τ)p′,

x. if t =α t
′ and T =α T

′, then t ∈ T =α t
′ ∈ T ′,

xi. {x : τ | p} =α {y : τ | p[x := y]},
∀x : τ, p =α ∀y : τ, (p[x := y]),
∃x : τ, p =α ∃y : τ, (p[x := y]), provided that no free occurrence of x in p
is such that y in place of x would be bound. In the above, the notation
p[x := y] means the term p but with every occurrence of x replaced with
y.

(e) The free variable set of a term [t] is FV(t), where t is any representative of
[t], and similarly for formulas. For convenience, equivalence class brackets
will be dropped.

10

(f) There is also the following shorthand notation,

i. ¬p means p⇒ ⊥,

ii. p⇔ q means (p⇒ q) ∧ (q ⇒ p),

iii. {x} means {x′ : τ | x = x′}, where x : τ ,

iv. ∅x:τ means {x : τ | ⊥}

3. Finally, there are two sets of axioms concerning the entailment relation, these are

(a) the structural rules:

i. p `∆ p

ii.
p `∆ q q `∆ r

p `∆ r

iii. For any sequence of variables (x1 : τ1, ..., xn : τn), sequence of terms
(t1 : τ1, ..., tn : τn), and context Σ such that each variable which appears
in ∆, except for those in (x1, ..., xn), also appear in Σ,

p `∆ q

p[(x1, ..., xn) := (t1, ..., tn)] `Σ q[(x1, ..., xn) := (t1, ..., tn)]

where p[(x1, ..., xn) := (t1, ..., tn)] means the term given by p after simul-
taneously substituting each xi for ti (similarly for q). It is assumed that
no free variable in any ti becomes bound in p[(x1, ..., xn) := (t1, ..., tn)]
nor q[(x1, ..., xn) := (t1, ..., tn)]. This can always be achieved by remain-
ing bound variables. 1

Note: this axiom also allows introducing superfluous variables to the
context ∆, and also for rearrangement of elements.

(b) the logical rules, in the following, the notation ∆, x : τ means the context
given by ∆ with the variable x : τ appended to the end,

i. p `∆ >,

ii. ⊥ `∆ p,

iii. r `∆ p ∧ q if and only if r `∆ p and r `∆ q,

iv. p ∨ q `∆ r if and only if p `∆ r and q `∆ r,

v. p `∆ q ⇒ r if and only if p ∧ q `∆ r,

vi. p `∆ ∀x ∈ τ, q if and only if p `∆,x:τ q, for any variable x : τ , and

1This final rule is the one to which contexts owe their existence. The essential point is that from
p `∆,x:X q (where ∆, x : τ is the context given by appending x : τ to the end of ∆), one can infer
that p[x := t] `∆ q[x := t] only if there exists a term t : X such that FV(t) ⊆ ∆. Lambek and Scott
point out [10, §II.1 p.131] that to deduce ∀x : X, p ` ∃x : X, p from ∀x : X, p `x:X ∃x : X, p without
there existing a closed term of type X is undesirable from a logical point of view, as although “for all
unicorns x, x has a horn”, it is not the case that “there exists a unicorn x, such that x has a horn”,
because (presumably) there does not exist any unicorns at all!

11

vii. ∃x ∈ τ, p `∆ q if and only if p `∆,x:τ q, for any variable x : τ .

viii. > `∆ x = x, for any variable x : τ ,

ix. (x1 = y1) ∧ ... ∧ (xn = yn) ∧ p `∆ p[(x1, ..., xn) := (y1, ..., yn)], for any
sequence of variables (x1 : τ1, ..., xn : τn).

We write t ` s for t `∅ s and `∆ p for > `∆ p.

Definition 3.0.2. If a term has a single free variable a : A, it will be denoted t(a), and
the notation t(a′) will be used for t(a)[a := a′]. Similarly for formulas.

Definition 3.0.3. Given a term t in a type theory, a suitable context for t is a
context ∆ such that every free variable of t appears in ∆. Similarly for formulas.

3.1 Some type theory Lemmas

Many reasonable sounding statements concerning the entailment relation do in fact
follow from the axioms. This section provides a collection of particularly helpful ones.
Many of these will be used in sections 3.3 and 4. In what follows, ∆, x : τ will always
mean the context given by appending x : τ to the end of the sequence ∆, we give full
proofs to illustrate the basic methods involved in working with type theories.

Lemma 3.1.1. 1. p ∧ q `∆ r if and only if q ∧ p `∆ r

2. p `∆ ¬(¬p),

3. if p `∆ q, then p ∧ r `∆ q,

4. ¬q `∆ ¬(q ∧ p),

5. p ∧ (q ∨ r) `∆ (p ∧ q) ∨ (p ∧ r),

6. (p ∨ q) ∧ ¬q `∆ p, and

7. (∃x : τ, p) ∧ q `∆ ∃x : τ, p ∧ q and ∃x : τ, p ∧ q `∆ (∃x : τ, p) ∧ q

Proof. 1. There is the following proof tree,

q ∧ p `∆ q ∧ p
3.b.iii

q ∧ p `∆ p

q ∧ p `∆ q ∧ p
3.b.iii

q ∧ p `∆ p
3.b.iii

q ∧ p `∆ p ∧ q

...
p ∧ q `∆ r

3.a.ii
q ∧ p `∆ r

2. Let π denote the following proof tree,

p ∧ (p⇒ ⊥) `∆ p ∧ (p⇒ ⊥)
3.b.iii

p ∧ (p⇒ ⊥) `∆ p⇒ ⊥
p ∧ (p⇒ ⊥) `∆ p ∧ (p⇒ ⊥)

3.b.iii
p ∧ (p⇒ ⊥) `∆ p

3.b.iii
p ∧ (p⇒ ⊥) `∆ (p⇒ ⊥) ∧ p

12

Then, there is the following proof tree,

π
...

p ∧ (p⇒ ⊥) `∆ (p⇒ ⊥) ∧ p
p⇒ ⊥ `∆ p⇒ ⊥

3.b.v
(p⇒ ⊥) ∧ p `∆ ⊥

3.a.ii
p ∧ (p⇒ ⊥) `∆ ⊥

3.b.v
p `∆ (p⇒ ⊥)⇒ ⊥

3. Observe the following proof tree,

...
p `∆ q

q ∧ r `∆ q ∧ r
3.b.v

q `∆ r ⇒ (q ∧ r)
3.a.ii

p `∆ r ⇒ (q ∧ r)
3.b.v

p ∧ r `∆ q ∧ r
3.b.iii

p ∧ r `∆ q

4. By axiom 3.b.v, it suffices to show (q ⇒ ⊥) ∧ (q ∧ p) `∆ ⊥, for which it suffices
to show ((q ⇒ ⊥) ∧ q) ∧ p) `∆ ⊥. By part 2 of this Lemma, it suffices to show
(q ⇒ ⊥) ∧ q ` ⊥, which follows from axiom 3.b.v, as q ⇒ ⊥ `∆ q ⇒ ⊥.

5. By 3.b.v, it suffices to show q ∨ r `∆ p⇒ ((p∧ q)∨ (p∧ r)), for which by 3.b.iv, it
suffices to show both q `∆ p⇒ ((p∧ q)∨ (p∧ r)), and r `∆ p⇒ ((p∧ q)∨ (p∧ r)).
The first sequent can be proved by the following, where the label (1) is referring
to the first part of this Lemma,

(p ∧ q) ∨ (p ∧ r) `∆ (p ∧ q) ∨ (p ∧ q)
3.b.iv

p ∧ q `∆ (p ∧ q) ∨ (p ∧ q)
(1)

q ∧ p `∆ (p ∧ q) ∨ (p ∧ q)
3.b.v

q `∆ p⇒ ((p ∧ q) ∨ (p ∧ r))

with a similar proof tree for the remaining sequent.

6. From part 4 of this Lemma, it suffices to show (p∧¬q)∨ (¬q ∧ q) `∆ p, for which
there is the following proof tree,

p ∧ (q ⇒ ⊥) `∆ p ∧ (q ⇒ ⊥)
3.b.iii

p ∧ (q ⇒ ⊥) `∆ p

(q ⇒ ⊥) `∆ (q ⇒ ⊥)
3.b.v

(q ⇒ ⊥) ∧ q `∆ ⊥ 3.b.ii⊥ `∆ p
3.a.ii

(q ⇒ ⊥) ∧ q `∆ p
3.b.iv

(p ∧ (q ⇒ ⊥)) ∨ ((q ⇒ ⊥) ∧ q) `∆ p

7. Observe the following proof tree,

13

∃x : τ, p ∧ q `∆ ∃x : τ, p ∧ q
3.b.vii

p ∧ q `∆,x:τ ∃x : τ, p ∧ q
3.b.v

p `∆,x:τ q ⇒ (∃x : τ, p ∧ q)
3.b.vii∃x : τ, p `∆ q ⇒ (∃x : τ, p ∧ q)
3.b.v

(∃x : τ, p) ∧ q `∆ ∃x : τ, p ∧ q
Reading this same proof tree from bottom to top gives a proof tree for the second
sequent.

Lemma 3.1.2. If x : τ is a variable, and t : τ is a term, then

x = t `∆,x:τ s if and only if `∆ s[x := t]

Proof. The “only if” direction follows from the following proof tree,

3.b.viii`∆ t = t

...
x = t `∆,x:τ s

3.a.iii
t = t `∆ s[x := t]

2.a.ii`∆ s[x := t]

For the other direction, let x′ : τ be such that x′ 6∈ FV(s), then there is the following
proof tree,

...
`x,∆ s[x := t]

3.b.xi
x = x′ ∧ s[x := x′] `∆,x:τ,x′:τ s

3.a.iii
x = t ∧ s[x := t] `∆,x:τ s

3.1.1 (1)
s[x := t] ∧ x = t `∆,x:τ s

3.b.v
s[x := t] `∆,x:τ (x = t)⇒ s

3.a.ii`∆,x:τ (x = t)⇒ s[x := t]
3.b.v

x = t `∆,x:τ s[x := t]

where the label 3.1.1 (1) is referring to the first part of Lemma 3.1.1.

Lemma 3.1.3. If p `∆,x:τ q, then ∃x : τ, p `∆ ∃x : τ, q.

Proof. First, let π denote the following proof tree,

∀x : τ, q `∆ ∀x : τ, q
3.b.vi∀x : τ, q `∆,x:τ q

∃x : τ, q `∆ ∃x : τ, q
3.b.vii

q `∆,x:τ ∃x : τ, q
3.a.ii∀x : τ, q `∆,x:τ ∃x : τ, q

Then there is the following,

...
p `∆,x:τ q

3.b.vii
p `∆ ∀x : τ, q

3.a.iii
p `∆,x:τ ∀x : τ, q

π
...

∀x : τ, q `∆,x:τ ∃x : τ, q
3.a.ii

p `∆,x:τ ∃x : τ, q
3.b.vii∃x : τ, p `∆ ∃x : τ, q

14

Lemma 3.1.4. Let t : τ be a term and p a formula. Then

p[x := t] `∆ ∃x : τ, p

The term t can be thought of as a witness of the statement p, so this Lemma states
that to entail ∃x : τ, p, it suffices to bear a witness t.

Proof. Observe the following proof tree,

∃x : τ, p `∆ ∃x : τ, p
3.b.vii

p `∆,x:τ ∃x : τ, p
3.a.iii

p[x := t] `∆ ∃x : τ, p

3.2 The Mitchell-Benabou language

As already mentioned, if E is a cocomplete topos, then there is an associated type
theory in the sense of Definition 3.0.1, called the Mitchell-Benabou language of E .

Definition 3.2.1. Choose a colimit for every cocone, and a limit for every finite cone.
Also choose an initial object 1, a subobject classifer Ω, along with a representative for
every subobject, and lastly a family of exponentials for Ω. Let E be a topos which admits
all colimits. The Mitchell-Benabou language of E is a type theory in the sense
of Definition 3.0.1, which for every object A ∈ E admits a type with the same name.
If C in E is the chosen product of objects A and B, then identify the type C with the
product type A×B. Similarly, if C is the chosen exponent ΩA for some obejct A ∈ E ,
then identify the type PA with the type C. The function symbols are all f : A → B,
where f is a morphism in E , the relation symbols are all R ⊆ A where r : R � A is
a monomorphism in E , and terms and formulas consisting only of those which can be
constructed from the formation rules as given in Definition 3.0.1.

The Definition of entailment for this type theory is delayed until after Definition
3.2.2 below.

Largely following Johnstone [12, §D4.1], associated to the Mitchell-Benabou language
of a topos E is an interpretation of this type theory in E , ie, an assignment of an object
in E to every type, a morphism with codomain B to every tuple (∆, t : B) consisting
of a term t along with a suitable context (where, as was given in Definition 3.0.3, a
context ∆ is a suitable context for t if every free variable of t appears in ∆), and a
monomorphism to every tuple (∆, p) where p is a formula and ∆ is a suitable context.
In more detail, if ∆ = (x1 : A1, ..., xn : An) is a context and we have assigned objects

15

JAiK to each type Ai, and t : B is a term for which ∆ is a suitable context, then J∆ | tK
is a morphism

JA1K× ...× JAnK JBK
J∆|tK

If p is a formula for which ∆ is a suitable context, then J∆ | pK is a subobject

J∆ | pK � ∆ = JA1K× ...× JAnK

Definition 3.2.2. The interpretation J·K, of a type, term or formula of the Mitchell-
Benabou language of E is defined by induction on the collection of objects and mor-
phisms:

• Types: If A is an object of E viewed as a type, then JAK is this object. If A×B
is a product type, then let JA × BK be the chosen product JAK × JBK. For terms
of the form PA, let JPAK be the object ΩA.

• Terms and formulas: assume in what follows that ∆ is always a suitable
context. Also, for any context Σ = (x1 : A1, ..., xn : An), let Σ be JA1K× ...× JAnK
in E ,

– if x : A is a variable, then

J∆ | xK = πA : ∆→ JAK

is the projection onto JAK,

– J∆ | ∗K = ∆→ J1K, the unique morphism into the terminal object,

– Recall from Theorem 2.0.3 that Sub(∆) is a Heyting algebra. In light of this,
let J∆ | >K be the terminal object of this category, and J∆ | ⊥K the initial
object of this category.

– if t : A and s : B, then

J∆ | 〈t, s〉K = 〈J∆ | tK, J∆ | sK〉

– if t : A×B, then J∆ | fst(t)K = πLJ∆ | tK, similarly for snd(t).

– if f : A → B is a function symbol, and t : A a term, then J∆ | ftK is the
composite

∆ JAK JBK
J∆|tK f

– if R ⊆ A is a relation symbol corresponding to a monomorphism r : R→ A,
and t : A a term, then J∆ | R(t)K is the subobject B � ∆ such that the
following is a pullback diagram,

B R

∆ A

r

J∆|tK

16

– J∆ | t = sK is the subobject

Equaliser(J∆ | tK, J∆ | sK) � ∆

– In the notation of Definition 2.0.11, if p and q are formulas, then

J∆ | p ∧ qK = J∆ | pK ∧ J∆ | qK,
J∆ | p ∨ qK = J∆ | pK ∨ J∆ | qK,

J∆ | p⇒ qK = J∆ | pK⇒ J∆ | qK.

– similarly, if {pi}∞i=0 is a collection of formulas, then

J∆ |
∞∨
i=0

piK =
∞∨
i=1

(
J∆ | piK

)

where
∞∨
i=1

is the coproduct of the category Sub(∆),

– As was done at the beginning of Section 3.1, let ∆, a : A mean the context
∆ with a : A appended to the end. Also, ∆ \ a : A will mean ∆ with a : A
omitted (assuming a : A appears in ∆). J∆ | ∃a : A, pK is the image (see
Definition 2.0.8) of the composite

J∆ | pK ∆ ∆ \ a : Aπ

where the morphism π is given by a product of projection morphisms,

– Recall from Theorem 2.0.2 that the functor π∗ : Sub(∆ \ a : A) → Sub(∆)
admits a right adjoint, in accordance with Definition 2.0.9, we denote this
adjoint by ∀π. Then

J∆ | ∀a : A, pK = ∀π(J∆, a : A | pK)

– J∆ | {x : A | p}K is the transpose of the morphism χJ∆,a:A|pK, where, as per
the notation defined in 2.0.3, χJ∆|{x:A|p}K is the unique morphism such that
the following is a pullback diagram

J∆, a : A | pK 1

∆× A Ω

true

χJ∆,a:A|pK

That is, J∆ | {x : A | p}K : ∆ → ωA corresponds under adjunction to
χJ∆,a:A|pK.

17

– J∆ | t ∈ {x : A | p}K is the monic C � ∆ such that the following is a
pullback diagram

C ∈A

∆ A× ΩA

where the bottom morphism is 〈J∆ | tK, J∆ | {x : A | p}K〉.

Now, Definition 3.2.1 can be completed by defining p `∆ q to hold only if J∆ | pK ≤
J∆ | qK, where ≤ is the preorder on the set Sub(∆).

3.3 Applications of the Mitchell-Benabou Language

We begin with some useful Lemmas (Lemma 3.3.1, Lemma 3.3.2) which illustrate how
the Mitchell-Benabou language may be used to prove statements about the topos. In
Section 3.4 we establish some of the most important technical Lemmas of the thesis,
which help make the Mitchell-Benabou language useable in practice to deal with mor-
phisms out of subobjects.

Some sequents hold in the Mitchell-Benabou language but not in arbitrary type theories.

Lemma 3.3.1. In the setting of the Mitchell-Benabou language associated to a topos,

1. `z:1 z = ∗,

2. `X,x:A x ∈ {x′ : A | p} ⇔ p[x′ := x], and

3. `z:A×B ∃x : A, ∃y : B, z = 〈x, y〉.

Proof. The proofs are exercises in “compiling” the sequent to a statement about the
category and then proving that statement using category theory. For example, to show
(3), observe first that Jz : A × B | ∃x : A,∃y : B, z = 〈x, y〉K is the image of the
composition

Equaliser(π1, 〈π2, π3〉) (A×B)× A×B (A×B)× A A×Be π π′

Thus `z:A×B ∃x : A,∃y : B, z = 〈x, y〉 is equivalent to the categorical statement that
there exists a morphism A×B → im(π′πe) such that the triangle

A×B Im(π′πe)

A×B

18

commutes. Then, since ∆A×B, the diagonal morphism, is such that π1∆A×B = 〈π2, π3〉∆A×B,
by the universal property of Equaliser(π1, 〈π2, π3〉), there exists a morphism ϕ : A×B →
Equaliser(π1, 〈π2, π3〉) such that the triangle

A×B Equaliser(π1, 〈π2, π3〉)

(A×B)× A×B

ϕ

∆A×B

commutes. Thus, the composite

A×B Equaliser(π1, 〈π2, π3〉) Im(π′πe)
ϕ

is a suitable morphism.

The power of the Mitchell-Benabou language of a topos E comes from its ability to
describe morphisms and objects of E as though they have “elements” in them.

Lemma 3.3.2. Let f, g : A→ B be morphisms, then `a:A fa = ga if and only if f = g
(as morphisms in the topos).

Proof. This is a matter of unwinding Definitions. The morphism Ja : A | fa = gaK is
the monic

Equaliser(Ja : A | faK, Ja : A | gaK) A B
Ja:A|faK

Ja:A|gaK

Moreover, the morphism Ja : A | faK is

A A B
Ja:A|aK f

and similar for Ja : A | gaK. Then, Ja : A | aK is the identity morphism idA : A → A.
Thus, if `a:A fa = ga, there exists a morphism A → equaliser(f, g) such that the
diagram

A

Equaliser(f, g) A

idA

commutes, and so f = g. Conversely, if f = g, then such a morphism exists by the
universal property of the equaliser, and so `a fa = ga.

The Mitchell-Benabou language also has the power to prove existence of morphisms
in E . An example of this is Lemma 3.4.1 below. The proof of this Lemma will require the
following one, which in itself is helpful for making arguments about the interpretation
of formulas of the form t(a) ∈ {x : A | p}.

19

Lemma 3.3.3. Let t(a) be a term of type B with free variable set FV(t(a)) = {a : A},
and let p(b) be a formula with free variable set FV(p(b)) = {b : B}. Let f = Ja : A |
t(a)K, then

Ja : A | p(t(a))K ∼= f−1Jb : B | p(b)K
where f−1 is as defined in Definition 2.0.6.

Proof. By Lemma 3.3.1, it suffices to show that

Ja : A | t(a) ∈ {b : B | q(b)}K ∼= f−1Jb : B | q(b)K

By unwinding Definitions, Ja : A | t(a) ∈ {b : B | q(b)}K is the monomorphism with
codomain A such that the following is a pullback diagram,

Ja : A | t(a) ∈ {b : B | q(b)}K ∈B

A B × ΩB

(1)

where ∈B is as in Definition 2.0.5, and the morphism in the bottom row is

〈Ja : A | t(a)K, Ja : A | {b : B | q(b)}K〉

Also, let B′ be the domain of the monomorphism Jb : B | q(b)K, then there is the
following commuting diagram,

A B × ΩB Ω

B × 1

B

f,_χB′ ^ 0B〉

f

evB

idB×_χB′ ^

χB′
(2)

By combining diagrams 1 and 2 and using the defining pullback square of ∈B, it follows
that

Ja : A | t(a) ∈ {b : B | q(b)}K 1

A B Ω

true

f χB′

(3)

is a pullback diagram. Then, by unravelling Definitions, the following are also pullback
diagrams

B′ 1

B Ω

true

χB′

20

and
f−1Jb : B | q(b)K B′

A B
f

Thus Ja : A | t(a) ∈ {b : B | q(b)}K and f−1Jb : B | q(b)K are isomorphic by essential
uniqueness of pullbacks.

3.4 Dealing with Subobjects

Recall that a term t(a) of type B with free variable set FV(t(a)) = {a : A} has for its
interpretation a morphism Ja : A | t(a)K : A → B. It makes sense that this morphism
factors through the subobject Jb : B | p(b)K of “elements” satisfying a formula p(b) if
and only if the sequent p(a) `a:A t(a) ∈ {b : B | q(b)}:

Lemma 3.4.1. If t(a) is a term of type B with free variable a : A, and Ja : A | p(a)K �
A is a subobject of A, then p(a) `a:A t(a) ∈ {b : B | q(b)} if and only if there exists a
(necessarily unique) morphism g : Ja : A | p(a)K→ Jb : B | q(b)K such that the diagram

Ja : A | p(a)K Jb : B | q(b)K

A B

g

Ja:A|t(a)K

commutes.

Proof. Let f = Ja : A | t(a)K. Then g exists if and only if Ja : A | p(a)K ≤ f−1Jb : B |
q(b)K, where ≤ is the order on the set Sub(A). By Lemma 3.4.1, this is the case if and
only if

Ja : A | t(a)K ≤ Ja : A | t(a) ∈ {b : B | q(b)}K

which by the Definition of entailment in the Mitchell-Benabou language is true if and
only if

p(a) `a:A t(a) ∈ {b : B | q(b)}

The remaining results of this section will be used heavily in the proofs of Theorems
4.3.2 and 4.2.3 in section 4. The following Lemma gives sufficient conditions on when a
particular type of morphism is a monomorphism or an epimorphism. Later, this will be
used to imply the existence of a morphism for which it seems difficult to give a direct
description.

Lemma 3.4.2. If f : A � B is an epimorphism, {a : A | p(a)} is a subobject of A
such that FV({a : A | p(a)}) = ∅, then

21

• if a ∈ {a : A | p(a)} ∧ a′ ∈ {a : A | p(a)} `a:A,a′:A (fa = fa′) ⇒ (a = a′), then
fJa : A | p(a)K is monic, and

• if `b:B ∃a : A, a ∈ {a : A | p(a)} ∧ fa = b then fJa : A | pK is epic.

Proof. Let T be the domain of the morphism Ja : A | p(a)K → A. For the first dot
point, it suffices to show that for any g, g′ : C → A which factor through T such that
fg = fg′, that g = g′. Let T := {a : A | p} and say g, g′ : C → A both factor through
T , and are such that fg = fg′. The equaliser of fg and fg′ is isomorphic to C, so by
Definition, `c:C f(gc) = f(g′c). Also, since g and g′ both factor through T , it follows
from Lemma 3.4.1 that `c gc ∈ T ∧ g′c ∈ T . Thus

`c gc ∈ T ∧ gc′ ∈ T ∧ f(gc) = f(g′c) (4)

Thus, if a ∈ T ∧ a′ ∈ T `a:A,a′:A (fa = fa′) ∧ (a = a), ie, a ∈ T ∧ a′ ∈ T ∧ fa =
fa′ `a,a′:A a = a, it follows from axiom 3.a.iii of Definition 3.0.1 that,

gc ∈ T ∧ g′c ∈ T ∧ f(gc) = f(g′c) `c:C gc = g′c (5)

It then follows by axiom 3.a.ii of Definition 3.0.1 that sequents 4 and 5 imply that
`c gc = g′c, which by Lemma 3.3.2, implies that g = g′ as morphisms in the topos.

Next, say g, g′ : B → C are such that gfJa : A | pK = g′fJa : A | p(a)K. This as-
sumption implies that there exists a morphism h : T → Equaliser(gr, g′f) such that the
diagram

A B C

T Equaliser(gf, g′f)

f g

g′

h

commutes. From Lemma 3.4.1, it follows that p(a) `a:A gfa = g′fa, which by Lemma
3.3.1, implies that a ∈ T `a g(fa) = g′(fa). So, if `b:B ∃a : A, a ∈ T ∧ fa = b, then

`b:B ∃a : A, a ∈ T ∧ fa = b ∧ g(fa) = g′(fa) (6)

Also, by axiom 3.b.ix in Definition 3.0.1,

b′ = b ∧ gb′ = g′b′ `a:A,b,b′:B gb = g′b

so
(b′ = b ∧ gb′ = g′b′)[b′ := fa] `a:A,b,b′:B (gb = g′b)[b′ := fa]

ie,
fa = b ∧ g(fa) = g′(fa) `a:A,b:B gb = g′b

and so
fa = b ∧ g(fa) = g′(fa) ∧ a ∈ T `a:A,b:B gb = g′b

22

which follows from Lemma 3.1.1 (2). Lemma 3.1.3 implies that

∃a : A, fa = b ∧ g(fa) = g′(fa) ∧ a ∈ A′ `b ∃a : A, gb = g′b

Combining this with Equation 6, it then follows that `a:A,b:B gb = g′b, then, using
axiom 3.a.iii of Definition 3.0.1, it follows that `a:A gb = g′b.

A special case of this is the following:

Corollary 3.4.1. Let f : A→ B be a morphism. Then,

• if `a,a′ fa = fa′ ⇒ a = a′, then f is monic, and

• if `b:B ∃a : A, fa = b, then f is epic.

Lemma 3.4.3. Let f
q(y)
1 : Jy : A × B | q(y)K � A × B be a subobject, and let tq(y) =

{y : A×B | q(y)}. Then if tqy is “provably functional”, ie, the sequents

x ∈ tq(y) ∧ x′ ∈ tq(y) `x,x′:A×B fst(x) = fst(x′)⇒ x = x′

and
`z:A ∃x : A×B, x ∈ tq(y) ∧ fst(x) = z

hold, then there exists a morphism f : A→ A×B in the topos such that πLf = idA.

Proof. First, by unwinding Definition, J∆ | fst(x)K = J∆ | πL(x)K, for any suitable
context ∆, so the two hypotheses are equivalent to the sequents given by replacing
“fst” with “πL”. It then follows from Lemma 3.4.2 that the morphism

Jy : A×B | q(y)K A×B A
f
q(y)
1 πL

is an isomorphism, as any morphism which is both a monomorphism and an epimor-
phism in a topos is an isomorphism. Let f

q(y)
2 denote the inverse of this isomorphism.

The desired morphism f is then f
q(y)
1 f

q(y)
2 .

In the constructions of Section 4 we will need to encode at the level of the Mitchell-
Benabou language the following construction: we have a formula p(z) determining a
subobject Jz : Z | p(z)K � Z and a term t(b) : Z determining a morphism B → Z
which factors through the subobject, or what is the same, `b:B t(b) ∈ {z : Z | p(z)}.

Suppose h : B → U is a morphism such that t(b) = t(b′) `b:B,b′:B hb = hb′. In the
topos Sets, this implies h factors through the image of the morphism B → Z by the
construction “given z ∈ Z in the image, choose b ∈ B such that z = t(b) and send z to
h(b)”.

For our purposes, it is also useful to realise this construction as a morphism out of Z
(rather than the image) which sends any z ∈ Z not in the image to a special value.

23

Lemma 3.4.4. Let Jz : Z | p(z)K � Z be a subobject, t(b) : Z be a term with free
variable b : B, such that

`b:B t(b) ∈ {z : Z | p(z)}

Also, let h : B → U be a morphism such that

t(b) = t(b′) `b,b′:B hb = hb′

Then there exists a morphism f : Z → Z × ΩU such that the diagram

B U

Jz : Z | p(z)K

Z Z × ΩU ΩU

h

Jb:B|t(b)K

Ju:U |{u}K

f πR

commutes, and πLf = idZ.

We first give the proof of a stronger result:

Lemma 3.4.5. Let Jz : Z | p(z)K � Z be a subobject, t(a), s(b) : Z be a terms with
free variables a : A and b : B respectively such that

`a:A,b:B t(a) ∈ {z : Z | p(z)} ∧ s(b) ∈ {z : Z | p(z)}

and
`a:A,b:B ¬(t(a) = s(b))

Also, let h1 : A→ U and h2 : B → U be a morphisms such that

t(a) = t(a′) `a,a′:A h1a = h1a
′

and
s(b) = s(b′) `b,b′:B h2b = h2b

′

Then there exists a morphism f : Z → Z × ΩU such that the diagrams

A U

Jz : Z | p(z)K

Z Z × ΩU ΩU

Ja:A|t(a)K

h1

Ju:U |{u}K

f πR

24

and

B U

Jz : Z | p(z)K

Z Z × ΩU ΩU

Jb:B|s(b)K

h2

Ju:U |{u}K

f πR

both commute, and πLf = idZ.

The idea of this technical sounding Theorem is that f is designed with the graph of
the familiar mapping of sets

Z → P (U)

z 7→

{h1a}, where a ∈ A is such that z = t(a)

{h2b}, where b ∈ B is such that z = s(b)

∅, else

in mind. Notice that this map is well defined by the hypotheses on h1 and h2. So indeed
the terms t and s can be thought of as conditions on “elements” in Jz : Z | p(z)K. The
reason why the map out of Z and into the power set of U is considered instead of simply
mapping Jz : Z | p(z)K into U is because there seems to be no simple way of describing
maps out of subobjects using the Mitchell-Benabou language. To work around this, a
map out of Z is considered instead, but then the action of f on elements in Z which
are not in Jz : Z | pK need to be accounted for. So U is injected into ΩU by the map
u 7→ {u}, and these elements can now be mapped to the canonical element ∅.

Proof. First, a term which generalises the graph of the above mapping will be defined.
In alignment with the notation of Theorem 3.4.3, let tq(y) = {y : Z ×ΩU | q(y)}, where

q(y) = (∃a : A, y = 〈t(a), {h1a}〉)
∨ (∃b : B, y = 〈s(b), {h2b}〉)
∨ (¬(∃a : A, fst(y) = t(a)) ∧ ¬(∃b : B, fst(y) = s(b)) ∧ snd(y) = ∅)

The goal now is to prove that the hypotheses of Theorem 3.4.3 are satisfied, which will
then yield the desired morphism f . So it must be shown that

y ∈ tq(y) ∧ y′ ∈ tq(y) `y,y′:Z×ΩU fst(y) = fst(y′)⇒ y = y′ (7)

and
`z:Z ∃y : Z × ΩU , y ∈ tq(y) ∧ fst(y) = x (8)

The proofs for each of these are technical exercises in type theory manipulation, only
the proof of Equation 7 will be shown here, but the same general idea is used to prove
Equation 8. To prove that sequent 7 holds, it suffices to show

q(y) ∧ q(y′) ∧ fst(y) = fst(y′) `y,y′:Z×ΩU y = y′

25

for which it suffices to show

q(y) ∧ q(y′) ∧ fst(y) = fst(y′) `y,y′:Z×ΩU snd(y) = snd(y′)

as
fst(y) = fst(y′) ∧ snd(y) = snd(y′) `y,y′ y = y′

which follows from Lemma 3.3.1. By multiple applications of Lemma 3.1.1, q(y)∧q(y′)∧
fst(y) = fst(y′) entails the disjunction of nine terms, corresponding to the nine “cases”
of y and y′. fst(y) = fst(y′) entail the negation of six of these, corresponding to the
cases where y and y′ are of different forms. Thus by multiple applications of Lemma
3.1.1,

q(y) ∧ q(y′) ∧ fst(y) = fst(y′)

`y,y′
(
∃a : A, y = 〈t(a), {h1a}〉) ∧ (∃a′ : A, y′ = 〈t(a′), {h1a

′}〉
)

∨
(
∃b : B, y = 〈s(b), {h2b}〉 ∧ ∃b′ : B, y′ = 〈s(b′), {h2b

′}〉
)

∨
(

(¬(∃a : A, fst(y) = t(a)) ∧ ¬(∃b : B, fst(y) = s(b)) ∧ snd(y) = ∅)

∧ (¬(∃a′ : A, fst(y′) = t(a′)) ∧ ¬(∃b′ : B, fst(y′) = s(b′)) ∧ snd(y′) = ∅)
)

It now needs to be shown that these three disjuncts each entail y = y′. The last of
these follows similarly to the first two, but in fact is easier, and the arguments for the
first two disjuncts are essentially the same as each other, so only the argument for the
first one will be shown.

First, by Lemma 3.1.1, it suffices to show

∃a : A,∃a′ : A, y = 〈t(a), {h1a}〉 ∧ y′ = 〈t(a′), {h1a
′}〉 ∧ fst(y) = fst(y′)

`y,y′ snd(y) = snd(y′)

Since y = 〈t(a), {h1a}〉 `y,a fst(y) = t(a), it follows that

∃a : A, ∃a′ : A, y = 〈t(a), {fa}〉 ∧ y′ = 〈t(a′), {fa′}〉 ∧ fst(y) = fst(y′)

`y,y′ ∃a : A.∃a′ : A, y = 〈t(a), {h1a}〉 ∧ y′ = 〈t(a′), {h1a
′}〉 ∧ t(a) = t(a′)

So by Lemmas 3.1.4 and 3.1.2, it suffices to show

t(a) = t(a′) `y,y′ snd(〈t(a), {h1a}〉) = snd(〈t(a′), {h1a
′}〉)

which follows from the hypothesis

t(a) = t(a′) `a,a′ h1a = h1a
′

This establishes existence of the morphism f , to show that the respective diagrams
commute, it suffices to show

`a:A snd(ft(a)) = {h1a} and `b:B snd(fs(b)) = {h2b}

26

The proofs of each of these are almost identical. To see the first one, the fact that
πLf = idZ is used to show that `a:A fst(ft(a)) = t(a) which in turn is used to show
`a ft(a) = 〈t(a), {h1a}〉, from which the result follows.

The proof of Lemma 3.4.4 follows in almost exactly the same way as the proof of
Lemma 3.4.5, except rather than considering the term q(y) defined there, instead the
term

{y : Z × ΩU |(∃b : B, y = 〈t(b), {hb}〉)
∨
(
¬(∃b : B, fst(y) = t(b)) ∧ snd(y) = ∅

)
is considered.

4 Describing colimits using the Mitchell-Benabou

language

This section is the main contribution of this thesis. Here, it will be shown how to
describe finite colimits of a topos E using its associated Mitchell-Benabou language.
Since all colimits are either an initial object, or a coequaliser of a diagram consisting of
coproducts, it suffices to show how to describe an initial object, as well as coproducts,
and coequalisers using the Mitchell-Benabou language.

The inclusion maps corresponding to the coproduct will be described by defining two
terms, both of type ΩA × ΩB, one with free variable of type A, and the other with
free variable of type B, corresponding respectively to the inclusion map of A and the
inclusion map of B. Then it will be shown that these maps factor uniquely through
the object of the coproduct, these unique morphisms will be the inclusions. A similar
process will be done to define the projection map corresponding to the coequaliser.

First though, a few preliminary results which will be used in both Sections 4.2 and
4.3 will be proved. In the following, ∆E is the diagonal morphism of E, see Definitions
2.0.1 and 2.0.3 for Definition of the notation _χ∆E

^.

Lemma 4.0.1. The map _χ∆E
^ is monic, for any object E ∈ E .

Proof. Let b1, b2 : B → E be two maps such that _χ∆E
^b1 = _χ∆E

^b2. Since the diagram

B E

B × E E × E

bi

〈idB ,bi〉 ∆E

bi×1E

27

is a pullback square for each i, the following,

B E 1

B × E E × E Ω

bi

〈idB ,bi〉 ∆E true

bi×idE
χ∆E

is a pullback diagram. It follows that 〈idB, b1〉 and 〈idB, b2〉 represent the same subobject
of B × E, so by the Definition of the equivalence relation on subobjects, there exists
an isomorphism h : B → B such that 〈idB, b〉h = 〈idB, b′〉. Projecting onto the first
component shows that h = idB, and projecting onto the second shows that b = b′.

Corollary 4.0.1. The morphism Ju : U | {u}K is monic.

Proof. By unravelling Definitions, Ju : U | {u}K = _χ∆U
^.

Recall from Definition 3.0.1, that {u} means the term {u′ : U | u′ = u}.

Definition 4.0.1. Given an object U , let Single(U) be the domain of the monic Jz :
ΩU | ∃u : U, z = {u}K � ΩU . Let this monic be denoted l.

The idea of Single(U) is to be “the set of singleton subsets of U”.

Lemma 4.0.2. There exists an isomorphism g : U → Single(U) such that the diagram

U

Single(U) ΩU

g
Ju|{u}K

l

commutes.

Proof. First, notice that since `u:U {u} ∈
{
y : ΩU | ∃u′ : U, z = {u′}

}
, g exists at least

as a morphism, so it only remains to show that it is an isomorphism. By Lemmas 3.4.2
and 3.4.1, it suffices to show that

g(u) = g(u′) `u:U,u′:U u = u′

and
z ∈ {z′ : ΩU | ∃u : U, {u} = z′} `z:ΩU ∃u : U, gu = z

which are both exercises.

28

4.1 Initial object

Definition 4.1.1. Define
Initial = {z : 1 | ⊥}

Let I be such that the following is a pullback diagram

I 1

1 Ω

true

where the bottom morphism is the interpretation of Initial with respect to the empty
context.

Theorem 4.1.1. I is the initial object.

Proof. By unravelling Definitions, the morphism I → 1 is Jz : 1 | ⊥K, which in turn is
the unique morphism 0→ 1. Thus there is the following diagram

I U

1

where all the maps are the unique according to the universal property of either the
terminal object or the initial object. Thus I is initial.

4.2 Finite Coproducts

Recall that in the category Sets the coproduct is the disjoint union. Here we emulate
the disjoint union in a roundabout way by viewing A,B as subsets of “marked” single-
tons in ΩA × ΩB. Theorem 4.2.1 will give a description of finite coproducts using the
Mitchell-Benabou language, then the details of the proof will be given for the binary
coproduct case.

Recall from Definition 3.0.1 that, {a} = {a′ : A | a′ = a}, and ∅a:A = {a : A | ⊥}.

Definition 4.2.1. Let {Ai}ni=0 be a finite set of objects, then
∐n

i=0Ai is the following
term,

{
z :

n∏
i=0

ΩAi |
n∨
i=0

(∃ai : Ai, z = 〈∅a0:A0 , ...,∅ai−1:Ai−1
, {ai},∅ai+1:Ai+1

, ...,∅an:An〉)
}

where 〈∅a0:A0 , ...,∅ai−1:A, {ai},∅ai+1:A, ...,∅an:A〉 is the term

〈〈...〈∅a0:A0 ,∅a1:A1〉,∅a2:A2〉, ...〉,∅ai−1:Ai−1
〉, {ai}〉,∅ai+1:Ai+1

〉, ...〉,∅an:An〉

which will be denoted ιAi
(ai).

29

Lemma 4.2.1. The interpretation of
∐n

i=0Ai is a morphism 1 → P (
∏n

i=0 ΩAi) which
we identify with its transpose

∏n
i=0 ΩAi → Ω. Let j : C �

∏n
i=0 ΩAi be the subobject

classified by this morphism. For each i, there exists a unique morphism Ai → C such
that the triangle

Ai C

∏n
i=0 ΩAi

Ja:A|ιAi
(a)K

commutes. We denote these morphisms Ai → C also by Jai : A | ιAi
(ai)K.

Theorem 4.2.1. (C, {JιAi
(ai)K}ni=0) is the coproduct of {Ai}ni=0.

We give the proof in the special case of binary coproducts, as the general case is
similar.

Definition 4.2.2. Define the following term,

A
∐

B :=
{
z : ΩA × ΩB |

(
∃a : A, z = 〈{a},∅b:B〉

)
∨
(
∃b : B, z = 〈∅a:A, {b}〉

)}
Also define

ιA(a) := 〈{a},∅b:B〉 and ιB := 〈∅a:A, {b}〉

Theorem 4.2.2. The interpretation of A
∐
B is a morphism 1→ P (ΩA × ΩB) which

we identify with its transpose ΩA × ΩB → Ω. Let j : C � ΩA × ΩB be the subobject
classified by this morphism. Then there exists a unique morphism A→ C such that the
triangle

A C

ΩA × ΩB

Ja:A|ιA(a)K

commutes, and similarly for B → C. We denote these morphisms respectively by
Ja : A | ιA(a)K and Jb : B | ιB(b)K.

Proof. The proofs for A and B are almost identical, so only the case corresponding to
A is given. Let p be the formula such that A

∐
B = {z : ΩA × ΩB | p}. By unwinding

Definitions, Jz : ΩA × ΩB | pK is equal to the morphism j. Thus, by Lemma 3.4.1,
it suffices to show that `a:A ιA(a) ∈ A

∐
B. By the Definition of ιA(a) and Lemma

3.3.1, it suffices to show p[z := 〈{a},∅b:B〉]. In turn, it suffices to show `a:A ∃a′ :
A, 〈{a},∅b:B〉 = 〈{a′},∅b:B〉, which since `a:A 〈{a},∅b:B〉 = 〈{a},∅b:B〉, follows from
Lemma 3.1.4.

Theorem 4.2.3. (C, Ja : A | ιA(a)K, Jb : B | ιB(b)K) is the coproduct of A and B.

30

Here is a sketch of the proof: Let h1 : A→ U and h2 : B → U be arbitrary. There
seems to be no easy way of describing morphisms out of subobjects in any direct way
using the Mitchell-Benabou language. So instead, Theorem 3.4.5 will be used to define
a morphism f : ΩA×ΩB → (ΩA×ΩB)×ΩU which will be precomposed with the monic
j and post composed with the epic πR : (ΩA×ΩB)×ΩU to yield a morphism C → ΩU .
Lemma 3.4.1 will then be used to show that this induces a morphism f ′ : C → Single(U),
where Single(U) is as defined in Definition 4.0.1. The universal map will then be g−1f ′,
where g is as given in Lemma 4.0.2. The facts that g−1f ′Ja : A | ιA(a)K = h1 and
g−1f ′Jb : B | ιB(b)K = h2 will follow easily from the Lemmas used in the construction
of g−1f ′. This can all be summarised in the following commuting diagram,

A U

C Single(U)

ΩA × ΩB (ΩA × ΩB)× ΩU ΩU

Ja:A|ιA(a)K

h1

g

Ju|{u}K

j

f ′

l

f πR

along with a similar one corresponding to B. That g−1f ′ is the unique such map will
require a bit more work.

Proof. It will first be shown that the hypotheses of Theorem 3.4.5 are satisfied, in the
notation used there, let Z = ΩA×ΩB, and let p be such that A

∐
B = {z : ΩA×ΩB | p}.

The terms t(a) and s(b) will respectively be ιA(a) and ιB(b). It was shown in Theo-
rem 4.2.2 that `a ιA(a) ∈ A

∐
B ∧ ιB(b) ∈ A

∐
B, so it needs to be shown that

ιA(a) = ιA(a′) `a:A,a′:A h1a = h1a
′ and similarly for B, these arguments are essentially

the same, and so only the first one will be shown. It suffices to show 〈{a},∅b:B〉 =
〈{a′},∅b:B〉 `a,a′ a = a′, for which it suffices to show that {a} = {a′} `a,a′ a = a′, which
follows from the facts that {a} = {a′} `a,a′ a ∈ {a′} and a ∈ {a′} `a,a′ a = a′. Thus
there exists the desired morphism f .

Next, the existence of f ′ is to be validated. By Lemma 3.4.1, it suffices to show
z ∈ A

∐
B `z:ΩA×ΩB snd(fz) ∈ Single(U). This ammounts to showing

∃a : A, z = ιA(a) `z:ΩA×ΩB ∃u : U, snd(fz) = {u}

and
∃b : B, z = ιB(b) `b:B,z:ΩA×ΩB ∃u : U, snd(fz) = {u}

for which, by Lemma 3.1.4, it suffices to show

z = ιA(a) `a:A,z:ΩA×ΩB snd(fιA(a)) = {h1a}

and
z = ιB(b) `b:B,z:ΩA×ΩB snd(fιB(b)) = {h2b}

31

for which, by Lemma 3.1.2, reduces to showing

`a:A snd(fιA(a)) = {h1a} and `b:B snd(fιB(b)) = {h2b}

By the construction of f , these are also easily verified, as

πRfjJa : A | ιA(a)K = Ju | {u}Kh1

which amounts to saying `a:A snd(fιA(a)) = {h1a}, and similarly for B.

To show that

g−1f ′Ja : A | ιA(a)K = h1 and g−1f ′Jb : B | ιB(b)K = h2

it suffices to show that

Ju : U | {u}Kg−1f ′Ja : A | ιA(a)K = Ju : U | {u}Kh1

and
Ju : U | {u}Kg−1f ′Jb : B | ιB(b)K = Ju : U | {u}Kh2

as by Lemma 4.0.1, the morphism Ju : U | {u}K is monic. Indeed both of these equa-
tions follow from commutativity of the morphisms involved in the construction of g−1f ′.

To show uniqueness, it is required to recall the construction of the morphism f as
given in the proofs of Lemmas 3.4.3 and 3.4.5. It is recommended that these proofs are
read and understood before this one. Say l1, l2 : C → U where morphisms such that
l1Ja : A | ιA(a)K = l2Ja : A | ιA(a)K = h1 and l1Jb : B | ιB(b)K = l2Jb : B | ιB(b)K = h2.
Then, since Ju : U | {u}K is monic, it suffices to show that Ju : U | {u}Kl1 = Ju : U |
{u}Kl2. In accordance with the notation of Lemmas 3.4.5 and 3.4.3, f is the composite

ΩA × ΩB Jy : (ΩA × ΩB)× ΩU | q(y)K (ΩA × ΩB)× ΩU
f
q(y)
1 f

q(y)
2

where

q(y) = (∃a : A, y = 〈ιA(a), {h1a}〉)
∨ (∃b : B, y = 〈ιB(b), {h2a}〉)
∨ (¬(∃a : A, fst(y) = ιA(a)) ∧ ¬(∃b : B, fst(y) = ιB(b)) ∧ snd(y) = ∅u:U)

The aim is to show that for i = 1, 2, the diagram

C U

ΩA × ΩB Jy : (ΩA × ΩB)× ΩU | q(y)K (ΩA × ΩB)× ΩU ΩU

li

j Ju:U |{u}K

f
q(y)
1 f

q(y)
2

πR

32

commutes. For each i, the same diagram but with f
q(y)
1 , f

q(y)
2 , q(y) replaced respectively

by f
qi(y)
1 , f

qi(y)
2 , qi(y) commutes, where

qi(y) = (∃a : A, y = 〈jιA(a), {liιA(a)}〉)
∨ (∃b : B, y = 〈jιB(b), {liιB(b)}〉)
∨ (¬(∃a : A, fst(y) = 〈{a},∅b:B〉) ∧ ¬(∃b : B, fst(y) = 〈∅a:A, {b}〉) ∧ snd(y) = ∅)

The final observation to make is that due to the hypotheses on l1 and l2, the terms
q(y), q1(y), and q2(y) are all equal.

4.3 Coequalisers

In the topos Sets the coequaliser of functions f, g : A→ B is given by B/∼, where ∼ is
the smallest equivalence relation on B such that f(a) ∼ g(a), for all a ∈ A. We emulate
this by taking the subobject of ΩB consisting only of those the “equivalence classes” of
∼, where in turn, ∼ is emulated by a the subobject of B × B consisting of elements
〈b0, b1〉 such that either b0 = b1, or b0 is related to b1 by a finite number of applications
of transitivity and symmetry.

Definition 4.3.1. Given morphisms g0, g1 : A→ B in E , let Rg0,g1 be the term{
z : B ×B |∃b0, b1 : B, z = 〈b0, b1〉 ∧

(
b0 = b1

∨
n∨

m=1

∨
α∈An

(
∃a0, ..., an−1, (b0 = gα0a0)

∧ (gα0+1a0 = gα1a1) ∧ ... ∧ (gαn−2+1an−2 = gαn−1an−1)

∧ (gαn−1+1an−1 = b1)
))}

where Zn2 is the set of length n sequences of elements of Z2.

The idea of this term is that it is a generalisation of the smallest equivalence relation
∼ such that for all a, g0(a) ∼ g1(a). It does this by declaring 〈b0, b1〉 to be in the relation
if either b0 = b1, or there exists a sequence (a0, ..., an−1) which “connect” b0 and b1 by
the images of these ai under g0 and g1. A diagram representing an example of this is
the following,

a0 a1 a2

b0 = g0(a0) g1(a0) = g0(a1) g1(a1) = g0(a2) g1(a2) = b2

However, it must also be allowed for that g0 and g1 do not always appear in this
order, due to the symmetry axiom of an equivalence relation, this is why the set An

is considered. The next Definition generalises “the set of elements related to b under
Rg0,g1”, and “the set of equivalence classes of Rg0,g1”.

33

Definition 4.3.2. In the setting of Definition 4.3.1, for any variable b : B, define the
term

[b]g0,g1 := {b′ : B | 〈b, b′〉 ∈ Rg0,g1}
and finally,

Coequaliser(g0, g1) := {z : PB | ∃b : B, z = [b]g0,g1}
The subscripts g0, g1 on Rg0,g1 and [b]g0,g1 will now be dropped to avoid clutter. The

interpretation of Coequaliser(g0, g1) is a morphism

JCoequaliser(g0, g1)K : 1→ ΩΩB

which corresponds under adjunction to a morphism ΩB → Ω we also denote JCoequaliser(g0, g1)K.
Let jR : C → ΩB be the subobject classified by this morphism.

Theorem 4.3.1. There exists a unique morphism B → C such that the triangle

B C

ΩB

Jb:B|[b]K
jR

commutes.

Proof. By unwinding Definitions, Jz : ΩB | ∃b : B, z = [b]K is equal to the morphism j.
Thus, by Lemma 3.4.1, it suffices to show that `b:B [b] ∈ Coequaliser(g0, g1), ie, that
`b:B ∃b′ : B, [b] = [b′], which is an easy application of Lemma 3.1.4.

From now on, Jb : B | [b]K will always refer to this induced morphism B → C.

Theorem 4.3.2. (C, Jb : B | [b]K) is the coequaliser of g0 and g1.

Proof sketch: Following the proof of Theorem 4.2.3, given arbitrary h : B → U
such that hg0 = hg1 Theorem 3.4.4 will be used to define a morphism f : ΩB →
ΩB × ΩU which will be precomposed with the monic j and post composed with the
epic πR : ΩB → ΩU to yield a morphism C → ΩU . Then, Lemma 3.4.1 will be
used to show there exists a morphism f ′ : C → Single(U), where, as in the proof
of Theorem 4.2.3, Single(U) is the domain of the “subobject of singleton subsets of
U”, ie, k : Jz : ΩU | ∃u : U, z = {u}K � ΩU . Next, by Lemma 4.0.2, there exists
an isomorphism g : U → Single(U). The claimed universal map is then g−1f ′. That
g−1f ′Jb : B | [b]K = h will follow easily from the Lemmas used in the construction of
g−1f ′. This is all summarised by the following commuting diagram

B U

C Single(U)

ΩB ΩB × ΩU ΩU

h

Jb:B|[b]K

Ju|{u}K

g

j

f ′

k

f πR

34

Proof. It will now be shown that the hypotheses of Theorem 3.4.4 are satisfied. In the
notation used there, let Z = ΩB, and let t(b) = [b]. Clearly, `b:B [b] ∈ coeq(g0, g1), so
it remains to show that t(b) = t(b′) `b,b′:B hb = hb′. This can be done by first noticing
that

[b] = [b′] `b,b′ b′ ∈ [b]

and then showing
b′ ∈ [b] `b,b′ hb = hb′

This in turn amounts to showing that any of the infinite amount of terms which appear
in the infinite disjunction in the Definition of R entail hb = hb′. This can be done using a
general argument, although notation becomes burdensome. Instead, an example which
highlights the general idea will be presented. To show

∃a0...an−1 : A, b = g0a0 ∧ g1a0 = g0a1 ∧ ... ∧ g1an−2 = g0an−1 ∧ g1an = b `b,b′ hb = hb′

It follows immediately from Lemma 3.1.2 that if 1 ≤ i ≤ n− 2, then g1ai = g0ai+1 `ai:A
hg1ai = hg0ai+1. Similarly, b = g0a0 `a0:A,b:B hb = hg0a0 and g1an = b `an:A,b′:B

hg1an = hb. Thus, by multiple applications of Lemma 3.1.1 and 3.1.3, it follows that
notice first that

∃a0...an−1 : A, b = g0a0 ∧ g1a0 = g0a1 ∧ ... ∧ g1an−2 = g0an−1 ∧ g1an = b

`b,b′:B ∃a0...an−1 : A, hb = hg0a0 ∧ hg1a0 = hg0a1 ∧ ... ∧ hg1an−2 = hg0an−1

∧ hg1an = hb′

Since h as a morphism is assumed to be such that hg0 = hg1, it then follows that

∃a0...an−1 : A, hb = hg0a0 ∧ hg1a0 = hg0a1 ∧ ... ∧ hg1an−2 = hg0an−1 ∧ hg1an = hb′

`b,b′:B ∃a0...an−1 : A, hb = hg0a0 ∧ hg0a0 = hg0a1 ∧ ... ∧ hg0an−2 = hg0an−1

∧ hg0an = hb′

(where the difference between the two sides of the sequent is that in the second, all gi
have been set to g0). It then follows from multiple applications of Lemma 3.1.2, that

∃a0...an−1 : A, hb = hg0a0 ∧ hg0a0 = hg0a1 ∧ ... ∧ hg0an−2 = hg0an−1 ∧ hg0an = hb′

`b,b′:B ∃a0...an−1 : A, hb = hb′

It then follows from n applications of Lemma 3.1.1 and axiom 3.b.vii of Definition 3.0.1
that

∃a0...an−1 : A, hb = hb′ `b,b′:B hb = hb′

Thus the morphism f exists.

To show that the morphism f ′ exists, it suffices by Lemma 3.4.1 to show that z ∈
Coequaliser(g0, g1) `z:ΩB snd(fz) ∈ Single(U), ie, that

∃b : B, z = [b] `z:ΩB ∃u : U, snd(fz) = {u}

35

Similarly to the proof of Theorem 4.2.3, to show this it suffices to show by Lemma 3.1.4
that

z = [b] `z:ΩB ,b:B snd(f [b]) = {[b]}
which by Lemma 3.1.2, reduces to showing

`b:B snd(f [b]) = {[b]}

Indeed this holds as this sequent is equivalent to πRfjJb : B | [b]K = Ju : U | {u}Kh
which holds by the construction of f .

Lastly, to show that
g−1f ′Jb : B | [b]K = h

it suffices to show that

Ju | {u}Kg−1f ′Jb : B | [b]K = Ju : U | {u}hKl2

as Ju : U | {u}K is monic, by Lemma 4.0.1. Indeed this equation holds by commutativity
of the morphisms inolved in the construction of g−1f ′.

To show that this is the unique such map, the construction of the morphism f as
given in the proofs of Lemmas 3.4.3 and 3.4.4 will be used, similarly to the uniqueness
part of Theorem 4.2.3, again, it is recommended that the proofs of these are read and
understood before this one.

Say l1, l2 : C → U are morphisms such that l1Jb : B | [b]K = l2Jb : B | [b]K. Then
since Ju : U | {u}K is monic, it suffices to show that

Ju : U | {u}Kl1 = Ju : U | {u}K

In accordance with the notation of Lemmas 3.4.3 and 3.4.4, f is the composite

ΩB Jy : ΩB × ΩU | q(y)K ΩB × ΩU
f
q(y)
1 f

q(y)
2

where

q(y) =(∃b : B, y = 〈[b], {hb}〉)
∨
(
¬(∃b : B, fst(y) = t(b)) ∧ snd(y) = ∅

)
The proof will be done once it has been shown that for i = 1, 2 the diagram

C U

ΩB Jy : ΩB × ΩU | q(y)K ΩB × ΩU ΩU

li

j Ju:U |{u}K

f
q(y)
1 f

q(y)
2

πR

36

commutes. For each i, the same diagram but with f
q(y)
1 , f

q(y)
2 , q(y) replaces respectively

by f
qi(y)
1 , f

qi(y)
2 , qi(y) commutes, where

qi(y) = (∃b : B, y = 〈[b], {li[b]}〉)
∨
(
¬(∃b : B, fst(y) = t(b)) ∧ snd(y) = ∅

)
The final observation to make is that due to the hypotheses on l1 and l2, the terms
q(y), q1(y), and q2(y) are all equal.

5 The map from simplicial sets to algorithms

The aim of this Section is to outline the general method of realising a simplicial set
X as an algorithm, ie, describe X using the Mitchell-Benabou language. One of the
key Theorems behind this description is that the category of simplicial sets is the
classifying topos for the theory of linear orders. The full weight of this Theorem will
not be required, but some of the preliminary Definitions and Lemmas will be.

Definition 5.0.1. A linear order is a set I along with two distinguished elements
b, t ∈ I and a binary relation ≤, such that

• for all x ∈ I, x ≤ x,

• for all x, y, z ∈ I, if x ≤ y and y ≤ z, then x ≤ z,

• for all x, y ∈ I, if x ≤ y and y ≤ x, then x = y,

• for all x, b ≤ x and x ≤ t,

• b 6= t,

• for all x, y ∈ I, either x ≤ y or y ≤ x.

This in fact is the particular case of a more general notion of a linear order in an
arbitrary topos E , where E = set.

Definition 5.0.2. Given a topos E , a linear order element is a tuple (I, r, b, t)
consisting of an object I, a monomorphism r : R � I × I, and two morphisms b, t :
1→ I, such that

• there exists a morphism I → R such that the following diagram commutes,

I R

I × I
∆

r

where ∆ : I → I × I is the diagonal map,

37

• there is a morphism (I × R) ×I3 (R × I) → R such that the following diagram
commutes,

(I ×R)×I3 (R× I) I3

R I2

〈π1,π3〉

r

where (I ×R)×I3 (R× I) be such that the following is a pullback diagram

(I ×R)×I3 (R× I) R× I

I ×R I3

• there is a monomorphism R×I2R→ I such that the following diagram commutes,

R×I2 R I

I2

∆

where R×I2 R is such that the following is a pullback diagram

R×I2 R R

I2

R I2

r

τ

r

where τ : I2 → I2 is the “twist map”, 〈π2, π1〉,

• there are morphisms 1× I → R and I × 1× I → R such that the diagrams

1× I R

I × I
b×idI

r

I × 1 R

I × I
idI×t

r

both commute,

• the following is a pullback diagram,

0 1

1 I

t

b

where 0 is the initial object of E ,

38

• the morphisms r and τr, where τ is the “twist map”, form an epimorphic family.

See [9, §VII 8] for a discussion on how Definition 5.0.2 generalises Definition 5.0.1.

Definition 5.0.3. Given two linear order objects of a topos E , (I, r, b, t) and (I ′, r′, b′, t′),
a pair of morphisms (f : I → I ′, g : R → R′) of E is a morphism between such orders
if the following diagrams commute,

R R′

I × I I ′ × I ′

g

r r′

f×f

1 I 1

I ′

b

b′
f

t

t′

This defines the category Orders(E) of linear orders in the topos E .

Similarly to how classifying spaces in cohomology theory are used in Topology,
there is a notion of a classifying topoi which exist in a more general setting. Here, the
classifying topos for the theory of linear orders will be considered, the idea of which is
to be a generalised universe of mathematics which contains the universal interval, see
[9, §VIII].

Definition 5.0.4. Given topoi E and F , a geometric morphism E → F is a
pair of adjoint functors F ∗ : F → E and F∗ : E → F such that F ∗ is left adjoint
to F∗, and F ∗ preserves all finite limits. F ∗ is the inverse image functor, and F∗
the direct image. Given geometric morphisms (F ∗, F∗) and (G∗, G∗), a morphism
(F ∗, F∗) → (G∗, G∗) is a natural transformation η : F ∗ → G∗. This defines a category
Geo(E ,F).

Definition 5.0.5. A classifying topos for the theory of linear orders is a topos
E together with a family of bijectsion such that for every cocomplete topos F , there is
an equivalence of categories

Orders(F) ∼= Geo(F ,E)

which is natural in F .

It was first proved by Joyal that the category of simplicial sets is a classifying topos
for the theory of linear orders.

Definition 5.0.6. The simplex category ∆ is the category whose objects are sets
of the form {0, 1, ..., n} for some n, these will be denoted [n]. The morphisms of this
category are order preserving functions. For any positive integer k, let ∆≤k be the full
subcategory of ∆ with objects {[0], ..., [k]}.

There is a canonical way of factorising morphisms in the simplex category:

39

Definition 5.0.7. Define

εin : [n− 1]→ [n]

j 7→

{
j j < i

j + 1 j ≥ i

and

ηin : [n+ 1]→ [n]

j 7→

{
j j ≤ i

j − 1 j > i

Theorem 5.0.1. Any morphism [n]→ [m] in ∆ can be written uniquely as

εi1mε
i2
m−1...ε

il
m−k+1η

j1
m−kη

j2
m−k+1...η

jk−1

m−1η
jk
m

with m ≥ i1 ≥ i2 ≥ ... ≥ il ≥ 0, and 0 ≤ j1 ≤ j2 ≤ ... ≤ jk ≤ n.

Proof. See [14, §VIII.5.1].

Definition 5.0.8. A simplicial set is a functor ∆op → Set, where Set is the category
of sets. The collection of these, along with the collection of natural transformations
between them, forms a category sSet, the category of simplicial sets.

Theorem 5.0.2. sSet is a classifying topos for the theory of linear orders.

Proof. See [9, §VIII 8]

Definition 5.0.9. Since sSet is the classifying topos for the theory of linear orders,
it admits a universal linear order object given by the image of idsSet under the cor-
respondence Geo(sSet, sSet) ∼= Orders(sSet). Let (I, r : R � I × I, b, t) denote this
order.

5.1 The General Method

In this section we explain the general method for taking a finite simplicial set X and
translating it into a term in the Mitchell-Benabou language. A simplicial set X is called
finite if it has only finitely many nondegenerate simplices, which means that there
is a canonical diagram J : J → ∆ with J finite such that X is the colimit of the
diagram

J → ∆→ sSet

where the second functor is the Yoneda embedding. Since it was already seen, roughly
speaking, the process which will be taken to realise a simplicial set as an algorithm will
be to begin with a finite simplicial set X and then write it as a finite colimit of an

40

indexing category J through a functor J : J → sSet. This can then be written as a
coequaliser diagram in a canonical way, which only uses objects and morphism in the
image of ∆ under the Yoneda embedding y : ∆ � sSet. Since it was already seen in
Section 4 how to write finite coproducts and coequalisers using the Mitchell-Benabou
language, it will then only require a way of describing the subcategory ∆ of sSet using
this language to then have a full description of an object isomorphic to X in sSet using
this type theory.

In order to describe the subcategory ∆ of sSet using the Mitchell-Benabou language,
it suffices to define a functor F : ∆→ sSet whose image is described by this language,
and is naturally isomorphic to the Yoneda embedding y. A description of such a func-
tor is given in [9, §VIII.8.2], and proved to be isomorphic to the Yoneda embedding
in [9, §VIII.8.6], but this functor is insufficient, as although it describes the image of
objects using the Mitchell-Benabou language, it does not give a term level description
of the image of morphisms. Motivated by what was done there, we define the following
construction.

Definition 5.1.1. Let F : ∆ → sSet be the functor which sends an object [n] to the
domain of the morphism

Jx1 : I, ..., xn : I | b ≤ x1 ≤ ... ≤ xn ≤ tK

where b ≤ x1 ≤ ... ≤ xn ≤ t means (b ≤ x1) ∧ (x1 ≤ x2) ∧ ... ∧ (xn−1 ≤ xn) ∧ (xn ≤ t),
and xi ≤ xi+1 means R(〈xi, xi+1〉).

By Theorem 5.0.1, in order to define FI on morphisms, it suffices to define it on the mor-
phisms εin and ηin. In the following, 〈x1, ..., xn〉 means the term 〈...〈x1, x2〉, x3〉, ...〉, xn〉.
Define

F (εin) =

Jx1 : I, ..., xn−1 : I | 〈b∗, x1, x2, ..., xn−1〉K i = 0

Jx1 : I, ..., xn−1 : I | 〈x1, ..., xi, xi, ..., xn−1〉K 0 < i < n

Jx1 : I, ..., xn−1 : I | 〈x1, ..., xn−1, t∗〉K i = n

and
F (ηin) = Jx1 : I, ..., xn+1 : I | 〈x1, ..., xi−1, x̂i, xi+1, ..., xn+1〉K

where the notation x̂i means to leave xi omitted.

As already mentioned, given a finite simplicial set X, a finite colimit diagram will
be chosen for X, and then this colimit will be written as a coequaliser diagram, which
will then allow F to be extended to a functor F̄ : sSet→ sSet, see Lemma 5.1.1 below.
The process behind the construction of this functor F̄ will then make it clear how to
write the image of F̄ using the language of the Mitchell-Benabou language.

41

Lemma 5.1.1. Given a functor F : C → D where C is a small category, and D admits
all colimits, there exists a unique (up to natural isomorphism) colimit preserving functor
F̄ : SetC

op → D such that the diagram

C

SetC
op

D

Fy

F̄

where y : C ↪→ SetC
op

is the Yoneda embedding.

The action of this functor on objects is given by the following. Let P ∈ SetC op

be a
presheaf. Then P is a colimit of representable presheaves. Pick a colimit diagram for
each such presheaf. Also choose a coproduct for every collection of objects of D , and
also a coequaliser for every pair of suitable morphisms. Let J : J → C is a functor
such that the colimit of J through J is isomorphic to P , and construct the following
diagram, ∐

f :j→j′ Jj
∐

j∈J Jj coeq(g0, g1) ∼= P
g0

g1

where g0 is such that for all f : j → j′, the following diagram commutes∐
f :j→j′ Jj

∐
j∈J Jj

Jj Jj

g0

idJj

and g1 is such that for all j ∈J , the following diagram commutes∐
f :j→j′ Jj

∐
j∈J Jj

Jj Jj′

g1

Jf

Then the image of P under F∗ is defined to be the coequaliser,∐
f :j→j′ AJj

∐
j∈J AJj Coequaliser(g0A, g1A)

g0A

g1A

where prePA and postPA are defined similarly to pre and post above.

Since the functor F̄ is essentially unique, assuming that the functor F is naturally
isomorphic to the Yoneda embedding, this then implies that F̄ is naturally isomorphic
to the identity functor idsSet. This ensures that the description of the image of a sim-
plicial set X under F̄ using the Mitchell-Benabou language is indeed (isomorphic to)
X.

42

6 An Example

In this section we give the explicit example of the 2-simplex ∆[2] which is the func-
tor sSet(−, [2]) : ∆op → Set. The canonical diagram alluded to at the beginning
of Section 5.1 coming from the nondegenerate simplices is: The explicit example of
∆[2] = sSet(,[2]) is now considered. In what follows, the objects and morphisms of ∆
will be identified with their image in Set under the Yoneda embedding. Let T be the
partially ordered set {a ≤ b ≤ c}, and then define the following sets,

T0 =
{
{a}, {b}, {c}

}
T1 =

{
{a, b}, {a, c}, {b, c}

}
T2 =

{
{a, b, c}

}
T = T0 ∪ T1 ∪ T2

Then T is a simplicial complex whose geometric realisation is homeomorphic to the
triangle. Let ST be the corresponding simplicial set as given in Definition ??. To apply
the functor F̄ to T , first a diagram whose colimit is isomorphic to T is needed. The
following is defined with figure 1 in mind.

Figure 1: Colimit diagram of the triangle

Lemma 6.0.1. Define the indexing category J generated by the following diagram,
where all object and morphism names are formal symbols,

[0]1

[1]1 [2]1 [1]2

[0]2 [1]3 [0]3

(1,1)ε01
(1,2)ε11

(1,1)ε12
(2,1)ε22

(2,3)ε01

(2,1)ε11 (3,1)ε02

(3,3)ε11

(3,2)ε01

43

Then let J : J → sSet be the functor which “removes the label”, ie, J([i]j) = [i], and
J((i,j)ηlk) = ηlk. Then the colimit of J through J is isomorphic to ∆[2].

This colimit can be written as a coequaliser in a canonical way:

Lemma 6.0.2. Let g1 and g0 be the unique morphisms such that the following diagrams
commute, ∐

(i,j)εlk:[k−1]i→[k]j
J [k − 1]i

∐
[i]j∈J J [i]j

J [k − 1]i J [k]j

g1

(i,j)εlk

and ∐
(i,j)εlk:[k−1]i→[k]j

J [k − 1]i
∐

[i]j∈J J [i]j

J [k − 1]i J [k − 1]j

g0

id

then there is the following coequaliser diagram,

∐
(i,j)εlk:[k−1]i→[k]j

J [k − 1]i
∐

[i]j∈J J [i]j Coequaliser(g0, g1)
g0

g1

which induces∐
(i,j)εlk:[k−1]i→[k]j

F [k − 1]
∐

[i]j∈J F [i] Coequaliser(g0F, g1F)
g0F

g1F

where g0F and g1F are defined similarly to g0 and g1, and Coequaliser(g0F, g1F) ∼= ST .

Now, Coequaliser(g0F, g1F) will be written using the Mitchell-Benabou language.

Example 6.0.1.
∐

[i]j∈J F [i] is isomorphic to the object given by the domain of

Jz : Ω1 × Ω1 × Ω1 × ΩI × ΩI × ΩI × ΩR |
(z = 〈{∗},∅,∅,∅,∅,∅,∅〉)
∨ (z = 〈∅, {∗},∅,∅,∅,∅,∅〉)
∨ (z = 〈∅,∅, {∗},∅,∅,∅,∅〉)
∨ (∃x : I, z = 〈∅,∅,∅, {x},∅,∅,∅〉)
∨ (∃x : I, z = 〈∅,∅,∅,∅, {x},∅,∅〉)
∨ (∃x : I, z = 〈∅,∅,∅,∅,∅, {x},∅〉)
∨ (∃y : R, z = 〈∅,∅,∅,∅,∅,∅, {y}〉)K

44

Similarly,
∐

(i,j)εlk:[k−1]i→[k]j
F [k − 1] is isomorphic to the object given by the domain of

Jz : Ω1 × Ω1 × Ω1 × Ω1 × Ω1 × Ω1 × ΩI × ΩI × ΩI |
z = 〈{∗},∅,∅,∅,∅,∅,∅,∅,∅〉)
∨ ...
∨ z = 〈∅,∅,∅,∅,∅, {∗},∅,∅,∅〉)
∨ (∃x : I, z = 〈∅,∅,∅,∅,∅,∅, {x},∅,∅〉)
∨ (∃x : I, z = 〈∅,∅,∅,∅,∅,∅,∅, {x},∅〉)
∨ (∃x : I, z = 〈∅,∅,∅,∅,∅,∅,∅,∅, {x}〉)K

Then the morphism g1 is induced by the morphism,

Jz : (Ω1 × Ω1 × Ω1 × Ω1 × Ω1 × Ω1 × ΩI × ΩI × ΩI)

× (Ω1 × Ω1 × Ω1 × ΩI × ΩI × ΩI × ΩR) |
z =

〈
〈{∗},∅,∅,∅,∅,∅,∅,∅,∅〉, 〈 {∗},∅,∅,∅,∅,∅,∅〉

〉
∨ z =

〈
〈∅, {∗},∅,∅,∅,∅,∅,∅,∅〉, 〈{∗},∅,∅,∅,∅,∅,∅〉

〉
∨ z =

〈
〈∅,∅, {∗},∅,∅,∅,∅,∅,∅〉, 〈∅, {∗},∅,∅,∅,∅,∅〉

〉
∨ z =

〈
〈∅,∅,∅, {∗},∅,∅,∅,∅,∅〉, 〈∅, {∗},∅,∅,∅,∅,∅〉

〉
∨ z =

〈
〈∅,∅,∅,∅, {∗},∅,∅,∅,∅〉, 〈∅,∅, {∗},∅,∅,∅,∅〉

〉
∨ z =

〈
〈∅,∅,∅,∅,∅, {∗},∅,∅,∅〉, 〈∅,∅, {∗},∅,∅,∅,∅〉

〉
∨ ∃x : I, z =

〈
〈∅,∅,∅,∅,∅,∅, {x},∅,∅〉, 〈∅,∅,∅,∅,∅,∅, {x}〉

〉
∨ ∃x : I, z =

〈
〈∅,∅,∅,∅,∅,∅,∅, {x},∅〉, 〈∅,∅,∅,∅,∅,∅, {x}〉

〉
∨ ∃x : I, z =

〈
〈∅,∅,∅,∅,∅,∅,∅,∅, {x}〉, 〈∅,∅,∅,∅,∅,∅, {x}〉

〉
∨ remaining term K

where “remaining term” is the term consisting of the conjunction of ten terms, the first
of which is

¬(fst(z) = 〈{∗},∅,∅,∅,∅,∅,∅,∅,∅)

the next five are similar, but with {∗} appearing respectively in the 2nd through to 6th

position, the next three are similar but with {∗} replaced with {x}, and with the position
of {x} shifted to the 3rd last, 2nd last, and last position respectively. The final term is

snd(z) = 〈∅,∅,∅,∅,∅,∅,∅〉

This final term can be thought of as describing the map which sends the remaining cases
of the form fst(z) can take to a special element. Indeed by Lemma 3.4.5, this induces a

45

morphism which is the morphism g0. In a similar way, the morphism g1 is induced by

Jz : (Ω1 × Ω1 × Ω1 × Ω1 × Ω1 × Ω1 × ΩI × ΩI × ΩI)

× (Ω1 × Ω1 × Ω1 × ΩI × ΩI × ΩI × ΩR) |
z =

〈
〈{∗},∅,∅,∅,∅,∅,∅,∅,∅〉, 〈∅,∅,∅, {t∗},∅,∅,∅〉

〉
∨ z =

〈
〈∅, {∗},∅,∅,∅,∅,∅,∅,∅〉, 〈∅,∅,∅,∅, {b∗},∅,∅〉

〉
∨ z =

〈
〈∅,∅, {∗},∅,∅,∅,∅,∅,∅〉, 〈∅,∅,∅, {b∗},∅,∅,∅〉

〉
∨ z =

〈
〈∅,∅,∅, {∗},∅,∅,∅,∅,∅〉, 〈∅,∅,∅,∅,∅, {t∗},∅〉

〉
∨ z =

〈
〈∅,∅,∅,∅, {∗},∅,∅,∅,∅〉, 〈∅,∅,∅, {t∗},∅,∅,∅〉

〉
∨ z =

〈
〈∅,∅,∅,∅,∅, {∗},∅,∅,∅〉, 〈∅,∅,∅,∅,∅, {b∗},∅〉

〉
∨ ∃x : I, z =

〈
〈∅,∅,∅,∅,∅,∅, {x},∅,∅〉, 〈∅,∅,∅,∅,∅,∅, {〈x, t∗〉}〉

〉
∨ ∃x : I, z =

〈
〈∅,∅,∅,∅,∅,∅,∅, {x},∅〉, 〈∅,∅,∅,∅,∅,∅, {〈x, x〉}〉

〉
∨ ∃x : I, z =

〈
〈∅,∅,∅,∅,∅,∅,∅,∅, {x}〉, 〈∅,∅,∅,∅,∅,∅, {〈b∗, x〉}〉

〉
∨ remaining term K

46

References

[1] J. May, A Crash Course in Algebraic Topology, University of Chicago Press, Chicago,
1999.

[2] F. Borceux, Handbook of Categorical Algebra 1, Basic Category Theory, University
Press, Cambridge, 1994.

[3] K. Godel, Uber formal unentscheidbare Stze der Principia Mathematica und ver-
wandter Systeme I, Monatshefte fr Mathematik und Physik, 38: 173198.

[4] A. Turing, On Computable Numbers, with an Application to the Entscheidungsprob-
lem, Proceedings of the London Mathematical Society, 1936.

[5] A. Church, A Note on the Entscheidungsproblem, New York: The Association for
Symbolic Logic, Inc., 1936

[6] W. Lawvere, An Elementary Theory of the Category of Sets, Proceedings of the
National Academy of Science of the U.S.A 52, 15061511

[7] B. Russell, A. Whitehead, The Principles of Mathematics, Cambridge, Cambridge
University Press, 1903,

[8] M Sorensen, P. Urzyczyn, Lectures on the Curry-Howard Isomorphism

[9] I. Meordijk, S. Mac Lane, Sheaves in Geometry and Logic, Springer-Verlag, New
York, 1992.

[10] J. Lambek, P.J. Scott, Introduction to Higher Order Categorical Logic, Cambridge
University Press, New York, 1986.

[11] A. Hatcher, Algebraic Topology, Cambridge University Press, New York, 2002.

[12] P. Johnstone, Sketches of an Elephant; A Topos Theory Compendium, Clarendon
Press, Oxford, 2002

[13] J. Munkres, Elements of Algebraic Topology, Avalon Publishing, 1996.

[14] S. MacLane, Homology, Springer-Verlag, 1969

47

	Introduction
	Topoi
	Type theory
	Some type theory Lemmas
	The Mitchell-Benabou language
	Applications of the Mitchell-Benabou Language
	Dealing with Subobjects

	Describing colimits using the Mitchell-Benabou language
	Initial object
	Finite Coproducts
	Coequalisers

	The map from simplicial sets to algorithms
	The General Method

	An Example

