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Chapter 1

Introduction

As neural networks rapidly change scientific discovery and technological development, the simplest and
smallest of them remain difficult to rigorously understand. One of the most promising approaches for
studying these networks is Sumio Watanabe’s Singular Learning Theory (SLT). It combines algebraic
geometry and statistics to show that the singular structure of these models makes their generalisation
performance theoretically predictable [Wat09]. In this approach, a key but often overlooked step is
to transition from the study of analytic functions and analytic sets to the study of polynomials and
algebraic sets.

This thesis focuses on the transition from analytic to algebraic in biasless two layer tanh networks,
which are functions of the form

f(x,w) =
n∑
i=1

ai tanh(bix) ,

where x ∈ R is the input and w = (a1, ..., an, b1, ..., bn) ∈ R2n is the parameter. The goal of many
machine learning problems is to find a parameter w which makes the network closely match some “true”
function, fT : R→ R. This “closeness” between the model f and the true function fT at parameter
w ∈ R2n is given by the Kullback Leibler (KL) divergence, which in this case can be shown to be

K(w) =
1

2

∫
R

(fT (x)− f(x,w))2 q(x)dx ,

where q(x) is the input distribution.

Typically K(w) is analytic but not algebraic (ie: a polynomial or rational function) and “transitioning
from analytic to algebraic” refers to replacing K(w) with a polynomial that is equivalent for the
purposes of SLT. For example, consider the two neuron network f(x, a, b, c, d) = a tanh(bx)+c tanh(dx).
The KL divergence for this model is given by the integral

∫
[−1,1](a tanh(bx) + c tanh(dx))2dx, which is

analytic. We will see that this can be replaced by the equivalent polynomial

(ab+ cd)2 + (ab3 + cd3)2 .

This polynomial is simpler and easier to study than K(w). In fact, finding equivalent polynomials is
crucial for understanding the behaviour of neural networks in SLT.

What makes two layer neural networks difficult to study, is the fact they are singular statistical models.
In particular the map w 7→ f(−, w) is not injective. Such models fail the assumptions of common
statistical tools, and hence we require a whole new theory to describe their behavior. Singular Learning
Theory was developed to fill this gap.

At the heart of this theory, Watanabe suggests, is a “fundamental relation between algebraic geometry
and statistical learning theory” [Wat09]. Algebraic geometry appears in SLT primarily through
Hironaka’s theorem on the resolution of singularities, which Watanabe uses to show that each model
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has an associated invariant called the Real Log Canonical Threshold (RLCT). The RLCT determines
a model’s ability to generalise to new data, and hence a central way to understand how a model works
is to calculate its RLCT.

In general, this is no simple task. A model’s RLCT is calculated by resolving the singularities of the KL
divergence. This involves applying repeated blow ups, a tool from algebraic geometry which simplifies
singularities, and while such a desingularisation is theoretically known to exist, it may be difficult
to calculate in practice. This is where the transition from analytic functions to algebraic geometry
and polynomials comes in. Equivalent polynomials are defined to have the same geometry as the KL
divergence, meaning they have the same RLCT. Computing the RLCT may be much easier using a
polynomial rather than the original KL divergence, and in practice, every nontrivial calculation of an
RLCT in the literature relies on this approach.

While equivalent polynomials are crucial for calculations, the literature does not provide clear methods
for finding them. This step is rarely explained in much detail, and the methods used appear difficult
to generalise to new models. This can be a major roadblock for both understanding the theory and
applying it to new examples.

This thesis aims to clarify this process in two layer tanh networks. In Chapter 2-Chapter 4, we develop
general methods to derive equivalent polynomials for neural networks, and apply them to the two
layer example, resulting in a new proof that the KL divergence of these networks is bounded by a
polynomial (this was proven by other methods in [Wat00c]). We also show a small application of these
equivalent polynomials in Chapter 5, where we study their geometry while varying the true function
fT . For a detailed summary of this thesis, see Section 1.0.2.

1.0.1 Explanation of the main methods and results

In our search for methods to replace K(w) with a polynomial, the starting point was a remark in
Watanabe’s book on SLT, Algebraic Geometry and Statistical Learning Theory [Wat09, Remark 7.6].
The remark proposes a general set of conditions based on a model’s Taylor series, which it claims
automatically give an equivalent polynomial.

Remark 7.6 If a statistical model p(y|x,w)q(x) and a true distribution q(y|x)q(x) are
respectively given by

p(y|x,w) =
1

2
exp

(
−1

2
(y − f(x,w))2

)
,

q(y|x) =
1

2
exp

(
−1

2
(y − fT (x))2

)
,

... If

f(x,w)− fT (x) =
∞∑
j=0

fj(w)ej(x), (1.0.1)

where fk(w) is a set of polynomials and {ek(x)} is a set of linearly independent functions
on the support of q(x), then by the Hilbert basis theorem, there exists J such that K(w)
is equivalent to

K1(w) =

J∑
j=0

fj(w)2 .

According to [Wat09, Remark 7.6], all that is needed to find an equivalent polynomial is a Taylor series
which is a sum of polynomials multiplied by functions of the input x. With such general assumptions,
it has the potential to apply to a wide class of neural networks.

However, [Wat09, Remark 7.6] is not proven in the book, nor, to the best of our knowledge, in the
wider literature. We cannot apply it to new examples without first understanding if and how it would
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work. As we will discuss in Section 1.1.3, our attempts to prove the remark ultimately failed and
it remains unclear if it holds in its stated generality. Notably, Watanabe never directly applies this
remark in any examples.

What the remark does provide though, is a promising set of ideas and techniques for finding equivalent
polynomials. Decomposing a model into a series of the form in (1.0.1) and using the Hilbert basis
theorem make up the core of our approach in this thesis. This approach adds several technical conditions
though, and in checking these, we will further explore Watanabe’s proposed link between statistical
learning theory and algebraic geometry, introducing tools from computational algebraic geometry such
as Gröbner bases and modified versions of the polynomial division algorithm.

The main result of this approach is the following theorem, which gives a polynomial upper bound for
the KL divergence of two layer tanh networks, even in cases where the true parameter is non-zero.

Theorem. (Main Theorem) Given a biasless two layer neural network with n neurons, f , with input
space X = [−t, t] for some 0 < t <

√
π

2
√
2
and weight space W = Rn× [−s, s]n where 0 < s <

√
2π, then

for any given true parameter w0 = (a0,1, ..., a0,n, b0,1, ..., b0,n) ∈ W , the Kullback Leibler divergence
satisfies

K(w) ≤ C
2n−1∑
j=0

(
n∑
l=1

alb
2j+1
l − a0,lb2j+1

0,l

)2

(1.0.2)

as functions on W for some constant C > 0.

This upper bound was proven by Aoyagi and Watanabe in [AW09, Wat01a]. In fact, their method
appears to show both an upper and lower bound using the polynomial. However we found their proof
difficult to follow, and so have developed an alternative proof of the upper bound which we hope is
easier to understand.

Though proving equivalence also requires a lower bound, an upper bound is still meaningful by itself.
Upper bounds on the KL divergence can provide bounds for the RLCT, which in turn give upper
bounds on the asymptotic behaviour of a model’s generalisation error.

Equivalent polynomials let us explore one of the key conceptual points of SLT – that the geometry of
the KL divergence affects the generalisation performance of a model. The polynomials make it easy to
find the zero set of K(w). For the tanh network with two neurons, we projected this zero set into 3
dimensions and plotted it, with the result shown in Figure 1.1.

Figure 1.1: The geometry of a two neuron tanh network. For a detailed analysis of this
set, see Chapter 5.
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1.0.2 Summary of this thesis

While the main focus of this thesis is two layer neural networks, much of the discussion will be more
general. In the first three Chapters we examine [Wat09, Remark 7.6] quite generally and develop
techniques which might apply to many types of networks. Once we have introduced these methods, we
will zero in on two layer biasless tanh networks, using our results to find polynomial upper bounds for
their KL divergences.

We will begin by introducing the background of SLT in the first Chapter. This will include all the
relevant statistical definitions and an outline of Watanabe’s process for calculating RLCTs. The first
Chapter will also set up the problem of finding equivalent polynomials, giving a mathematically precise
notion of “equivalence” and discussing the challenges of proving [Wat09, Remark 7.6] in its stated
generality.

Chapter 2 examines which models satisfy the assumptions of [Wat09, Remark 7.6]. We show that the
Taylor series of biasless tanh neural networks have coefficients that are polynomials of the network
weights, implying that the remark would in fact apply to these models. Having Taylor series of this
form also has implications on the set of true parameters, which we show are not just analytic, but
algebraic.

It is unclear if the assumptions in [Wat09, Remark 7.6] alone are enough to guarantee a polynomial
upper bound for the KL divergence. In Chapter 3 we find extra conditions which ensure such an
upper bound holds. Specifically, we show that if a collection of series made up of the Taylor series
polynomials converge and are bounded, then a model’s KL divergence is bounded by a polynomial.
Checking these conditions for actual models is not straightforward though, and involves dividing a
sequence of polynomials by a finite generating set. To carry out this division we introduce methods
from computational algebraic geometry such as Gröbner bases and the generic division algorithm.

In Chapter 4 we apply these methods to two layer neural networks of various sizes. For networks with
two neurons, the generic division algorithm and Gröbner bases can successfully be used. However
for larger networks these methods increase in complexity and become unworkable. To analyse two
layer networks with arbitrarily many neurons, we instead exploit the patterns in their Taylor series
polynomials. The results obtained from this technique let us investigate models in which the true
parameter is non-zero, leading to the Main Theorem of the thesis.

With the polynomials from Chapter 4, we can analyse the geometry of the KL divergence. In Chapter
5 we compute the irreducible decompositions of the sets of true parameters for small neural networks.
These decompositions let us plot the zero sets, and observe how they change as the true function fT
changes. We then use Aoyagi and Watanabe’s formula for the RLCT [AW09] to compute the RLCTs
for these networks and observe how the value of the RLCT is reflected in the geometry of the zero set.

1.1 Background

1.1.1 Models and regression functions

A common problem in statistics is a learning problem, where the goal is to infer some underlying
relationship between elements of two spaces using a dataset of known examples. The spaces are called
the input space X ⊂ RN , and output space Y ⊂ RM . The elements of these spaces are assumed to be
related by some conditional probability distribution q(y|x) called the true distribution. Additionally,
an input distribution q(x) describes how common each element of the input space is.

Learning problems are set up by constructing a parameterised conditional probability distribution
called the model, p(y|x,w). The value w ∈W ⊂ Rd is called the weight or parameter, and each choice
of weight, w, determines a conditional probability distribution via the function (x, y) 7→ p(y|x,w).
The goal of many learning problems is to use a dataset of known input-output pairs (x, y) to find a
parameter w ∈W making p(y|x,w) match the true distribution q(y|x) as closely as possible.
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Along with a model p(y|x,w), true distribution q(y|x), and input distribution q(x), learning problems
are equipped with a prior probability distribution ϕ(w). The prior is a probability distribution on the
set of parameters W which describes one’s initial belief on how likely each weight is before any data
has been seen.

The “closeness” between the true distribution q(y|x) and the parameterised distribution p(y|x) is
measured by the following function.

Definition 1. The Kullback Leibler (KL) divergence from the parameterised distribution p to the
true distribution q at parameter w is given by

K(w) =

∫
q(y|x)q(x) log

(
q(y|x)

p(y|x,w)

)
dydx . (1.1.1)

Remark. The KL divergence has the following properties

• K(w) ≥ 0 for all w.

• K(w) = 0 if and only if p(y|x,w) = q(y|x) almost everywhere with respect to q(x)dydx.

For the models considered in this thesis, K(w) is an analytic function.

Learning problems, such as supervised machine learning, are often based around some regression
function f : X → Y which takes an input and maps it to a corresponding output. In machine learning,
this function f is parameterised by a weight, w ∈ W , and can be thought of as a function from
X ×W → Y . The goal of supervised learning tasks is to then use a dataset of known examples to find
a weight w so that the function f(−, w) : X → Y “performs well”. In order to bring such a function
into the framework of statistical learning, a common technique is to construct a conditional probability
distribution by setting

p(y|x,w) =
1√

(2π)M
exp

(
−1

2
‖y − f(x,w)‖2

)
, (1.1.2)

where M is the dimension of the output space (ie: Y = RM ). So given a choice of weight w and input
x, the probability of obtaining output y is given by a normal distribution centered at f(x,w) with
identity covariance matrix.

In many problems, it is assumed that the true distribution is generated in a similar manner from some
true function fT : X → Y , so that

q(y|x) =
1√

(2π)M
exp

(
−1

2
‖y − fT (x)‖2

)
. (1.1.3)

This true function maps an input to the “correct” output.

Example. A classic machine learning problem is digit recognition where the goal is to find a function
which takes an image of a handwritten digit and identifies the digit it depicts. The input space is a set
of greyscale images made up of m×m pixels, each with a brightness described by a number x ∈ [0, 1],
where 0 is black and 1 is white. Hence the input space for this example is [0, 1]m

2 ⊂ Rm2 .

The output space needs to describe the digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This is often done using the
space [0, 1]10, where the digit i is encoded as the vector with 0 in all but the i+ 1th component, which
equals 1.

The true function for this example fT : [0, 1]m
2 → [0, 1]10, would take an image of a handwritten digit

and correctly map it to the digit it depicts.

While the original definition of the KL divergence (1.1.1) can be opaque and hard to interpret, it takes a
much simpler form when both the true distribution and model are constructed from regression functions.
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Lemma 1. When the true conditional distribution q(y|x) and model p(y|x,w) take the forms given
in (1.1.3) and (1.1.2), the Kullback Leibler divergence is

K(w) =
1

2

∫
X
‖fT (x)− f(x,w)‖2 q(x)dx. (1.1.4)

In other words, the KL divergence equals the mean squared error between the regression function and
the true function, where the average is calculated with respect to the input distribution q(x).

This is proven by Carroll in [Car21, Lemma A.2].

1.1.2 Singular Learning Theory

Definition 2. Given a parameterised model p(y|x,w), a true conditional distribution q(y|x) is
realisable if there exists w ∈W so that K(w) = 0. That is, w makes p(y|x,w) into the same conditional
probability distribution as q(y|x).

Definition 3. A weight w which makes K(w) = 0 is called a true parameter. The set of all such
weights

W0 = {w ∈W | K(w) = 0} ,
is called the set of true parameters or zero set.

Watanabe showed that the structure of the set of true parameters greatly influences the behaviour of
a model, and this structure differs dramatically based on a model’s Fisher information matrix.

Definition 4. The Fisher information matrix for a model, p(y|x,w), where X = RN and w ∈ Rd is
the d× d matrix with components

Ijk(w) =

∫
RN

(
∂

∂wj
log(p(y|x,w))

)(
∂

∂wk
log(p(y|x,w))

)
p(y|x,w)q(x)dxdy. (1.1.5)

Definition 5. A statistical model p(y|x,w) is called identifiable if the function w 7→ p(−|−, w) is
injective.

Definition 6. A model p(y|x,w) is regular if it is identifiable and the Fisher information matrix is
positive definite for all parameters w ∈W .

Definition 7. A model p(y|x,w) is called singular if it is not regular, that is either it’s not identifiable,
or its Fisher information matrix is not positive definite at some weight w ∈W .

Many well known tools in statistics only work for regular models. The KL divergence of a regular model
is given locally by a sum of squares and the set of true parameters is always a single point [Wat09]. As
a result, the Bayesian posterior distribution asymptotically approaches a normal distribution, a fact
which has been used to derive popular model selection tools such as the Bayes Information Criterion
(BIC) [Wat13].

The KL divergence for singular models on the other hand, can be much more interesting. K(w) for a
singular model is often a complicated analytic function which cannot be written as a sum of squares
and the set of true parameters can be an analytic set containing singularities. Model selection tools
like the BIC are hence inapplicable and a whole new theory is required to understand their behaviour,
namely Watanabe’s SLT. The theory shows that the structure of the singularities in the set of true
parameters dramatically alters the generalisation abilities of a model. The argument for this statement
begins by analysing the following zeta function.

Definition 8. From the KL divergence, K(w), and prior distribution ϕ(w) for a model, Watanabe
defines the complex valued zeta function [Wat09]

ζ(z) =

∫
K(w)zϕ(w)dw , (1.1.6)

where z ∈ C.
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Proposition 1. The zeta function is holomorphic for Re(z) > 0 and can be analytically continued to
a meromorphic function on C whose poles are all negative rational numbers.

This proposition is a core part of SLT and provides the most apparent link between algebraic geometry
and statistical learning theory. Watanabe uses Hironaka’s resolution of singularities to write K(w)
locally as a monomial, using this form to read off the largest pole of ζ(z) [Wat09].

Definition 9. The largest pole of the zeta function for a model is written as (−λ). The non-negative
rational number λ is called the model’s Real Log Canonical Threshold (RLCT).

Watanabe shows that the RLCT controls the asymptotic behavior of a model’s free energy and hence
generalisation error as the dataset of training examples grows in size [Wat09]. Here, the generalisation
error refers to the average KL distance between the Bayes predictive distribution and the true
distribution, where the average is taken over all datasets of pairs (x, y) ∈ X × Y of size n drawn
from the true joint distribution q(x, y) = q(y|x)q(x). The generalisation error is denoted EnG(n), and
Watanabe’s results show that its asymptotic behaviour as the dataset size n increases is determined
by the following [MWG+20]

EnG(n) =
λ

n
+ o

(
1

n

)
. (1.1.7)

Hence, a key way to understand a model’s generalisation properties is to calculate its RLCT.

1.1.3 Equivalence and the Replacement Strategy

As discussed, calculating an RLCT can be far from simple, and so an important step is to replace a
model’s KL divergence with an “equivalent” polynomial. The notion of equivalence comes from the
following lemma.

Lemma 2. Consider two positive analytic functions K(w) and H(w). If there exist constants c1, c2 > 0
such that

c1H(w) ≤ K(w) ≤ c2H(w) (1.1.8)

for all w ∈W , then K(w) and H(w) are said to be equivalent and their RLCTs are equal.

A proof of this lemma is given by Waring in [War21, Corollary 3.17].

Rather than trying to resolve the singularities of the analytic KL divergence directly, Lemma 2 implies
that if we can find an equivalent polynomial, resolving the polynomial’s singularities will give the same
RLCT. Finding a resolution for the polynomial may be much easier than for a given analytic K(w).

In his book, Watanabe proposes [Wat09, Remark 7.6] as a method for finding these equivalent
polynomials. This remark is left unproven though, and at first glance it can appear trivial. However,
trying to prove this remark has so far been unsuccessful, and has led us to many dead ends. To
understand why the remark both intuitively makes sense, but is difficult to prove, we will first run
through some arguments which are obvious to try but ultimately fail. The lower bound in particular,
c
∑

j=0 fj(w)2 ≤ K(w), caused us many problems.

Our first thought was to consider everything taking place in the Hilbert space L2(X, q) which has
inner product given by (f, g) =

∫
X f(x)g(x)q(x)dx. The KL divergence for a model described in the

remark is then
K(w) = ‖f(−, w)− fT ‖2L2(X,q) .

If you assume that the ej(x)’s are not just linearly independent, but are also orthonormal with respect
to the inner product, it immediately follows from (1.0.1) that

K(w) =

∞∑
j=0

fj(w)2 ,
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and the lower bound
∑J

j=0 fj(w)2 ≤ K(w) clearly holds. In no example we’ve seen though are the
ej(x)’s actually orthonormal (unless you cook one up to have this property). The next obvious step to
try is to orthonormalise the ej(x)’s using the Gram Schmidt algorithm, which defines

c̃1 = e1 ,

c̃2 = e2 −
(e2, c̃1)

(c̃1, c̃1)
c̃1 ,

...

c̃k = ek −
k−1∑
i=1

(ek, c̃i)

(c̃i, c̃i)
c̃i ,

...

before normalising by setting ci = c̃i
‖c̃i‖ .

We could then write f(x,w) − ft(x) =
∑∞

j=0 gj(w)cj(x) where gj(w) = (f(−, w), cj) and it would
certainly be true that

K(w) =
∞∑
j=0

gj(w)2 .

The problem with this approach is that the gj(w)’s aren’t necessarily polynomials. For example (c1, ej)
could be non-zero for infinitely many j (since c1 ∝ e1, and the ej(x)’s aren’t orthogonal), meaning
g1(w) would be an infinite sum of the fj(w)’s and potentially a power series rather than a polynomial.
This technique would then fail to produce an equivalent polynomial.

Another approach was to consider the linear function `2(R)→ L2(X, q) sending (αj)
∞
j=0 7→

∑∞
j=0 αjej(x).

If this function was well defined, injective, and bounded bellow, and if (fj(w))∞j=0 ∈ `2(R) for all values
of w ∈W , the lower bound would follow. Checking injectivity and boundedness however is in general
not at all simple, and our work on proving the lower bound has stalled for the moment.

Hence, we instead decided to focus on understanding the upper bound half of the equivalence condition,
K(w) ≤ c2

∑J
j=0 fj(w)2. Even though such a bound is only half of the equivalence requirement, finding

an upper bound is still meaningful in itself. Lemma 2 is a corollary of the following result:

Lemma 3. If there exists a real number c > 0 such that K(w) ≤ cH(w) then the RLCT for K(w) is
less than or equal to the RLCT of H(w).

Hence finding a polynomial upper bound can help find a bound on a model’s RLCT. Bounding
the RLCT is informative, as doing so provides a bound on the asymptotic behaviour of a model’s
generalisation performance (as in (1.1.7)).

The general strategy we will use for finding polynomial upper bounds is based on [Wat09, Remark
7.6]. This strategy will be referred to as the Replacement Strategy and involves the following steps:

Replacement Strategy

1. Check the Taylor series of a model and true function has the form

f(x,w)− fT (x) =
∞∑
j=0

fj(w)ej(x) ,

where the fj(w)’s are polynomials. We will frequently refer to this as the condition of the
Replacement Strategy.

2. Find a finite basis {f0, f1, ..., fJ} for the ideal I =
〈
{fj}∞j=0

〉
.

3. Do some algebra to show K(w) ≤ C
∑J

j=0 fj(w)2.
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Remark. While [Wat09, Remark 7.6] requires the functions of the input, the ej(x)’s, to be linearly
independent on supp{q(x)}, we have left this condition out of the Replacement Strategy. In Section
3.1, we will see that this condition is not necessary for finding an upper bound.

1.2 A history of two layer tanh networks and equivalent polynomials
in Singular Learning Theory

The development of SLT and the study of two layer tanh networks have gone hand in hand from the
beginning. Neural networks were one of the earlier types of models whose non-regularity was noticed,
and the failure of statistical techniques like the BIC to describe them appears to have been a major
motivation for the development of SLT. As this development occurred and the theory became more
sophisticated, it revealed deeper insights into the behaviour of two layer networks.

Before Watanabe began working on SLT, Hagiwara, Toda, and Usui realised in 1993 that the Akaike
Information Criterion could not be derived for two layer neural networks because of the non-uniqueness
of each weight [HTU93]. Fukumizu further examined the non regularity of neural networks. In 1996,
he studied which parameters w make the Fisher information matrix singular for a two layer neural
network, f(x,w). He found that this matrix I(w) is positive definite at a parameter w if and only if
the function f(−, w) does not equal that of a neural network with less neurons [Fuk96].

Noting this failure of the regularity condition and model selection tools in layered neural networks,
Watanabe began developing new techniques to study their generalisation behaviour. In the paper
On the Generalization Error by a Layered Statistical Model with Bayesian Estimation from 1998, he
bounded the generalisation error of a two layer neural network by comparing individual terms in the
KL divergence with polynomials [Wat00c].

While polynomials played an important role in this analysis, the approach was quite different to the
techniques Watanabe would later develop. The analysis was very specific to the example of two layer
tanh networks, and didn’t use zeta functions, RLCTs, or blow ups. Additionally, the bounds obtained
in this paper are “coarser” than those he found later.

After this result, Watanabe started developing the main tools of SLT, defining the zeta function and
RLCT, and showing how they provide a bound on a model’s generalisation error in 1999 [Wat99a].
The main example of a singular model used to motivate these techniques was the two layer tanh
network. However at this time, Watanabe was not yet able to compute RLCTs for these models.

It was not until Watanabe started replacing the KL divergence with polynomials that he was able to
compute the RLCTs exactly for neural networks. The first example of this replacement is in the 1999
paper Algebraic Analysis for Singular Statistical Estimation, which looks at the two neuron network
f(x, a, b, c, d) = a tanh(bx) + c tanh(dx) [Wat99c]. Here Watanabe found that the RLCT is λ = 2

3 by
replacing the model’s KL divergence with the polynomial (ab+ cd)2 + (ab3 + cd3)2 and then computing
blow ups. The paper doesn’t justify the replacement in much detail, with no mention of equivalence.
Instead, it cites [Wat00c] to explain this step.

The same calculation for the two neuron network appears in several other papers from the same time
period. All of these papers replace the model’s KL divergence with the same polynomial, and again
cite [Wat00c] to explain the replacement [Wat99b, Wat00b].

Having found the RLCT of networks with two neurons, Watanabe set out to understand larger
networks, attempting the problem for networks with arbitrarily many neurons. The first few papers
studying larger networks didn’t actually replace the KL divergence with a polynomial, and as a result
only found bounds on the RLCT. Here, Watanabe factored some the weights out of the integral
defining K(w), and used this factorisation to partially resolve the singularities of K [Wat00a, Wat01b].
The partial resolution let Watanabe find some, but not all of the poles of the zeta function. Since the
RLCT is given by the negative of the largest pole of the zeta function, finding any poles gives a bound
on the RLCT.
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It would be some time before the exact RLCTs of general two layer tanh networks would be found. In
the mean time, Watanabe and his collaborators spent a few years using the techniques honed on tanh
networks to explore other types of singular models. For example, Yamazaki and Watanabe repeated
the technique of factorising the KL divergence and finding a partial resolution to bound the RLCTs
of hidden Markov models and mixture models [YW03b, YW03a]. Meanwhile, Aoyagi and Watanabe
were able to completely calculate the RLCTs of reduced rank regression models [AW04]. What made
this calculation possible though, was the fact that the KL divergence for a reduced rank regression
model is a polynomial.

Eventually in 2005, Aoyagi and Watanabe returned to the problem of finding the RLCT for arbitrarily
large two layer tanh networks. First, an intricate calculation found that the RLCT for the network
with p neurons, f(x, a1, b1, ..., ap, bp) =

∑p
k=1 ak tanh(bkx), with true function fT (x) = 0, is given by

λ =
p2 + i2 + i

4i+ 2
,

where i is the largest integer satisfying i2 ≤ p [AW05]. In this example, they replaced the KL divergence
with the polynomial

p−1∑
j=0

(
p∑

k=1

akb
2j+1
k

)2

,

and computed the resolution for this polynomial.

The most general result for the RLCT of two layer tanh networks appeared that same year in the
paper [AW09]. Aoyagi and Watanabe computed the RLCT for two layer networks with arbitrarily
many neurons in the case where the true function isn’t just zero, but is given by another two layer
network. They found that the RLCT depended on the value of the true parameter, and jumped to
different values based on how many components of the true parameter were zero. To calculate this
RLCT, they replace K(w) with the polynomial

P∑
j=0

(
p∑
i=1

aib
2j+1
i − a∗i b∗i

2j+1

)2

,

“for sufficiently large P”, where (a∗1, b
∗
1, ..., a

∗
p, b
∗
p) is the true parameter. Even with this replacement,

the calculation is still very complicated, taking about 60 pages.

In 2009, Watanabe compiled his work on Singular Learning Theory into the book Algebraic Geometry
and Statistical Learning Theory [Wat09], which outlines all the main ideas and examples of the theory.
Here he introduces [Wat09, Remark 7.6], but as discussed, does not prove it.

A pattern emerges from all these examples. The only models whose RLCTs have been exactly computed
are those whose KL divergence either equals a polynomial, or is equivalent to a polynomial. This
emphasises the role of finding equivalent polynomials in SLT, showing how necessary it is to have
good methods to find them.

A few questions arise from this history of tanh networks in SLT. Firstly, since Aoyagi and Watanabe
have already computed the RLCT for two layer networks, even when the true parameter is non-
zero, why study these networks any more? Hasn’t everything you’d hope to find out already been
discovered? While the results themselves are very important, we’re most interested in understanding
the methods used to obtain them, especially the step of replacing the KL divergence with a polynomial.
Understanding this is a prerequisite for computing the RLCTs of deeper neural networks, something
which so far has not been done.

Secondly, many of the papers which replace the KL divergence with a polynomial cite the paper
[Wat00c] for justification, so why haven’t we just used the method in that paper? The first reason is
that it is difficult to use the paper alone to reconstruct an argument for polynomial equivalence. It
wasn’t until we neared completing this thesis that we were able to figure out how the arguments the
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paper [Wat00c] can prove an upper bound, and we were only able to do so by bringing in the methods
we had developed for this thesis. Additionally, the argument in [Wat00c] is very specific to two layer
tanh networks, and doesn’t look generalisable to other models. It doesn’t include any of the ideas
in [Wat09, Remark 7.6], which to us, looks like the most promising starting point for developing a
general method.
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Chapter 2

Taylor series and polynomials

Before focusing on polynomial upper bounds and two layer tanh networks, we will try to understand
[Wat09, Remark 7.6] more generally. In this chapter we study which models satisfy the main condition
of the remark and the Replacement Strategy.

The main condition requires that the model’s regression function and true function can be written as
a series

f(x,w)− fT (x) =

∞∑
j=0

fj(w)ej(x) ,

where the functions of w, fj(w) are all polynomials. The most obvious way to try and write f(x,w)−
fT (x) as a series of this form is to take its Taylor series in x about the origin x = 0, and see whether
the coefficients are polynomials as functions of w.

The main result of this chapter is Lemma 5, which shows that the Taylor series of biasless tanh
feedforward neural networks always have the above form. We will first introduce what a feedforward
neural network is, before proving this lemma via induction on the network depth. We will then show
that the sets of true parameters for such models are always algebraic sets.

2.1 Feedforward neural networks

The simplest form of neural networks are feedforward neural networks, whose basic structure is used as a
starting point for the more sophisticated models in use today. We have chosen to study neural networks
rather than other statistical models due to their success in a huge array of complex computational
problems from computer vision, language generation, and protein structure prediction, to green tea
classification [KSH12, BMR+20, JEP+21, YG21].

Definition 10. A feedforward neural network is a function f : RM → RN constructed as a composition
of functions f (l) : Rdl → Rdl+1 called “layers”. Each f (l) is an affine transformation followed by a
nonlinear activation function φ : R→ R applied to each component.

f (l) : Rdl −→ Rdl+1

x 7−→ φ
(
w(l+1)x+ b(l+1)

)
,

where w(l+1) is a dl+1 × dl matrix of real numbers called weights and b(l+1) ∈ Rdl+1 is a vector of
“biases”. In the above expression, if v ∈ Rdl is a vector, φ(v) refers to the function φ applied component
wise to v. The neural network f is then the function

f = f (n) ◦ f (n−1) ◦ · · · ◦ f (1) . (2.1.1)
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The weights w(l) and biases b(l) make up the parameters of a network which are tuned during the
learning process. The network described in (2.1.1) is said to have n layers, where the first layer is
the input layer, and final layer is called the output layer. The width of layer l is dl, referring to the
dimension of its output space Rdl .

A convenient way to visualise a neural network is to think of it as a graph of neurons representing
weighted inputs and activations organised in the manner shown in Figure 2.1.

Figure 2.1: A feedforward neural network with four layers. The input layer has three
neurons, the second layer has two, the third layer has three, and the output layer has
one. This network represents a function from R3 to R. The weight connecting the first
neuron in the third layer to the first neuron in the final layer w(4)

1,1 has been highlighted.

The output of the lth layer is called the lth activation, denoted by the vector a(l)(x) = (f (l)◦ ...◦f (1))(x),
with the first layer’s activation being the input a(1)(x) = x. The quantity z(l)(x) = w(l)a(l−1)(x) + b(l)

is called the lth layer’s weighted input. The network can then be thought of as the following sequence
of activations and weighted inputs

a(1) = x ,

z(2) = w(2)(a(1)) + b(2) ,

a(2) = φ(z(2)) ,

...

z(n) = w(n)a(n−1) + b(n) ,

a(n) = φ(z(n)) ,

with the final network output being given by f(x) = a(n)(x).

The neurons or nodes in Figure 2.1 represent the components of each activation vector. The edges
between neurons represent the weight matrices w(2), w(3), ..., w(n), with the weight w(l)

jk being represented
as the edge connecting the kth neuron in the (l − 1)th layer to the jth neuron in the lth layer.

The network in Figure 2.1 is an example of a 1D network, a neural network whose output is a single real
number. In this thesis we will only look at 1D networks. While this looks like a significant restriction,
multidimensional networks are simple generalisations of the 1D case since each output neuron in a
multidimensional network can be thought of as an individual 1D network.

Suppose an n layer multidimensional network F : RM × W → RN has N output neurons. The
activations of these output neurons can each be viewed as functions gi : RM ×W → R (i = 1, ..., N),
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and each of these functions is a 1D neural network. If the true function is given by

FT : RM → RN

x 7→
(
gT,1(x), ..., gT,N (x)

)
,

then the KL divergence for this model and true function is

K(w) =
1

2

∫
RM
‖F (x,w)− FT (x)‖2q(x)dx

=
1

2

N∑
i=1

∫
RM

(
gi(x,w)− gT,i(x)

)2
q(x)dx ,

which we can interpret as a sum of N separate KL divergences for several 1D models. If we are able to
find equivalent polynomials for the KL divergences of each of the 1D networks, we can add them up
to find an equivalent polynomial for the KL divergence of the original N dimensional model.

As well as restricting to 1D networks, we will only study networks with no biases. This restriction is
less benign though, since the bias terms b(l) are important in practical networks and are necessary
for their universal approximation abilities [LLPS93]. We will see that when biases are included in a
network, its Taylor series coefficients will not be polynomials of the weights and we will be unable to
study them using the Replacement Strategy. While this limits the applicability of our results, it is still
a useful starting point for more work.

2.2 Polynomial coefficient lemma

In this section we show that biasless networks satisfy the condition in the Replacement Strategy when
their activation function φ has certain properties. In particular, we will see that the Taylor series
coefficients for these networks are polynomials of the network weights. To do this, we will use the
following definitions.

Definition 11. Let X = {x1, x2, ...} be a countably infinite set. Define R = R[X] to be the real
polynomial ring over X, which we define as having a basis of monomials Xα = Πi∈N x

αi
i where α is a

sequence of non-negative integers with αi 6= 0 for only finitely many i.

Definition 12. Given a sequence of functions (gi : Rk → R)i∈N, we say that a function G : Rk → R is a
polynomial of the gi’s if there is a polynomial p(X) ∈ R[X] such that as functions, G = p(g1, g2, g3, ...).

Definition 13. Given a feedforward neural network with one dimensional output, F : Rm ×W → R,
we say that a function H : Rm ×W → R is a P-function with respect to F if it is a polynomial of the
network weights, the network output F , and the partial derivatives of the second last layer’s neuron

activations
∂|α|a

(n−1)
j

∂xα (Where α ∈ Zm≥0 is a multi-index). In this definition, we can view a weight w(i)
kj

as the function Rm ×W → R given by the projection of x× w onto that component w(i)
kj .

Example: Consider the three layer network F shown in Figure 2.2.

17



Figure 2.2: A three layer neural network, with three input neurons, four neurons in the
second layer, and a single output neuron.

The function

G = 2w
(2)
3,1F

2

(
∂5a

(2)
3

∂x21∂x2∂x
2
3

)3

− (w
(3)
11 )5w

(2)
2,2

(
∂2a

(2)
1

∂x2∂x3

)(
∂a

(2)
4

∂x1

)
,

is a P-function with respect to F .

Lemma 4. Let F : Rm ×W → R be a biasless n-layer neural network with activation function
φ : R→ R which satisfies the two conditions

1. φ(0) = 0

2. dφ
dx = Q ◦ φ for some polynomial Q ∈ R[y].

Then if G : Rm ×W → R is a P-function for F , any partial derivative of G with respect to an input
variable ∂G

∂xi
is also a P-function for F .

Proof: First assume that F has k neurons in its second last layer, so that

F (x,w) = φ

 k∑
j=1

w
(n)
1,j a

(n−1)
j

 .

It is sufficient to prove the statement for a “monomial” of the form

Fn
r∏
l=1

fl ,

where each fl is a partial derivative (of any order) of a second last layer activation a(n−1)j , and we
allow repeated factors. We claim that a partial derivative of this monomial is a P-function with respect
to F . The derivative of this monomial with respect to an input xi is

∂

∂xi

(
Fn

r∏
l=1

fl

)
= nFn−1

∂F

∂xi

r∏
l=1

fl + Fn
r∑
l=1

∂fl
∂xi

∏
j 6=l

fj

= nFn−1
∂

∂xi

φ
 k∑
j=1

w
(n)
1,j a

(n−1)
j

 r∏
l=1

fl + Fn
r∑
l=1

∂fl
∂xi

∏
j 6=l

fj

= nFn−1Q(F )

 k∑
j=1

w
(n)
1,j

∂a
(n−1)
j

∂xi

 r∏
l=1

fl + Fn
r∑
l=1

∂fl
∂xi

∏
j 6=l

fj . (2.2.1)
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The derivatives ∂fl
∂xi

are still partial derivatives of (n− 1)th layer activations, and so the expression in
(2.2.1) is a P-function of F . Any P-function for F will be a finite sum of such monomials multiplied by
polynomials of the weights. Hence a partial derivative of any P-function for F will also be a P-function
for F . �

We are now able to prove the main result of this Section.

Lemma 5 (Polynomial coefficient lemma). Let φ : R→ R satisfy the conditions of Lemma 4. Given
a biasless neural network F : Rm ×W → R which has φ as its activation function, every partial
derivative of F with respect to the inputs x evaluated at x = 0 is a polynomial of the weights.

Proof: The main idea is to use induction on the number of layers in the network, with a two layer
network as the base case.

During the proof we will frequently use “networks” to refer to 1D biasless neural networks whose
activation φ satisfies the conditions of Lemma 4.

Base case: A two layer neural network will be of the form

F (x,w) = φ

(
m∑
i=1

w
(1)
1i xi

)
. (2.2.2)

Since F is a P-function of itself, by Lemma 4 every partial derivative of F is too. In particular any
partial derivative is a finite linear combination of terms of the form

wαF j
r∏
l=1

fl ,

where α is a multi-index and each fl is a partial derivative of first layer activation. The first layer
activations are just the inputs, a(1)j = xj , so these partial derivatives either equal an input component,
or are zero or 1. Hence any partial derivative of F is a linear combination of terms of the form

wαFnxβ ,

where β is another multi-index. By property 1 of Lemma 4, F (0) = 0, and it follows that every partial
derivative of F in x, evaluated at x = 0, is a polynomial of the weights (note that it can be non-zero if
n = 0, β = 0).

Induction case: Suppose the claim holds for all networks with n layers. Let F be a network with n+ 1

layers. Then F is itself a P-function for F and so any partial derivative ∂|α|F
∂xα is also a P-function for

F , meaning it will be a finite sum of terms of the form

wβF t
r∏
l=1

fl , (2.2.3)

where β is a multi-index, t ∈ Z≥0 and each fl is a partial derivative of an nth layer neuron activation

(where we allow repeated factors in the product). Each fl equals a derivative of the form
∂|γ|a

(n)
j

∂xγ .
However the function

a
(n)
j : Rm ×W → R

(x,w) 7→ a
(n)
j (x,w) ,

can itself be thought of as the output of an n layer network. By the induction hypothesis, fl(0, w) =
∂|γ|a

(n)
j

∂xγ (0, w) is then a polynomial of the weights. Using property 1 from Lemma 4 of the activation φ,
F (0, w)t = 0 or 1 depending on the value of t, so(

wβF t
r∏
l=1

fl

)
(0, w)
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is a polynomial of the network weights. It follows that ∂|α|F
∂xα (0, w) is as well. �

This result implies that for a network F , within the domain of its Taylor series’ convergence,

F (x,w) =
∑
α∈Zm≥0

fα(w)xα ,

where each fα is a polynomial.

Remark. To see why Lemma 5 requires the network to have no biases, consider a simple two layer
counter example

F (x, a, b) = φ (ax+ b) ,

where x ∈ R is the input and (a, b) ∈ R2 is the weight, where in particular b is a bias. Assuming φ is
analytic but not a polynomial, the first coefficient in the Taylor series of F about x = 0 is F (0) = φ(b),
which is not a polynomial.

In Appendix A.2 we will return to this problem and describe a method which may give a polynomial
upper bound for two layer networks containing biases.

2.3 Tanh networks

In the previous section we found conditions on the activation function of a network which guarantee
its Taylor series coefficients are polynomials of the weights. In this section we use these results to show
that tanh networks have polynomial Taylor series coefficients, and we find what these coefficents are
when the networks have two layers.

The tanh function satisfies both properties of Lemma 4, since

tanh(0) = 0 ,

d

dx
(tanh(x)) = 1− tanh(x)2 .

Hence by Lemma 5, the Taylor series coefficents for biasless tanh networks are polynomials of the
weights, and such networks satisfy the condition of the Replacement Strategy. This does have the
caveat that the input and weight spaces, X and W , must small enough for these Taylor series (about
x = 0) to converge. This restriction will be discussed later on in Chapter 4, but for the moment we
assume they are sufficiently small.

If f : Rm ×W → R is a biasless tanh network, we can then write

f(x,w) =
∑
α∈Zm≥0

fα(w)xα ,

where each fα(w) is a polynomial.

If the true function fT (x) is analytic and X is also small enough for its Taylor series about 0 to
converge, then

fT (x) =
∑
α∈Zm≥0

cαx
α ,

where each cα ∈ R. It then follows that

f(x,w)− fT (x) =
∑
α∈Zm≥0

(fα(w)− cα)eα(x) ,

where eα(x) = xα. We can then conclude the statistical model defined by f and fT will satisfy all
conditions of the Replacement Strategy.
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Remark. The activation function tanh is not the only one which gives polynomial Taylor series
coefficents. In the Appendix A.1, we prove that networks with the Swish activation function have this
same property.

Two layer tanh networks

A two layer tanh network with n neurons is given by the function

f(x, a1, b1, ..., an, bn) =

n∑
i=1

ai tanh(bix) ,

where x ∈ R is the input and w = (a1, b1, ..., an, bn) ∈ R2n is the weight.

Remark. Many authors call these “three layer networks”. The difference in nomenclature depends on
whether you count combining the tanh(bix)’s into a linear combination as a seperate layer.

By Lemma 5, the coefficients in the Taylor series of f about x = 0 are polynomials of the weight w.
It’s easy to compute these polynomials using the Taylor series of tanh.

tanh(x) =
∞∑
j=0

22(j+1)(22(j+1) − 1)B2(j+1)

(2(j + 1))!
x2j+1 ,

where Bn is the nth Bernoulli number. This series has a radius of convergence of π2 [LLS12]. From this,

f(x, a1, b1, ..., an, bn) =
∞∑
j=0

22(j+1)(22(j+1) − 1)B2(j+1)

(2(j + 1))!

(
n∑
i=1

aib
2j+1
i

)
x2j+1 .

Writing cj =
22(j+1)(22(j+1)−1)B2(j+1)

(2(j+1))! , we can rewrite this as

f(x, a1, b1, ..., an, bn) =
∞∑
j=0

cj

(
n∑
i=1

aib
2j+1
i

)
x2j+1 .

Setting fj(w) = γj

(∑n
i=1 aib

2j+1
i

)
and ej(x) = ηjx

2j+1, where γj and ηj are any real numbers
satisfying γjηj = cj , the Taylor series for f becomes

f(x,w) =
∞∑
j=0

fj(w)ej(x) ,

which is in the form that the Replacement Strategy requires.

In Chapter 4, we use the above expression to find a polynomial upper bound for the KL divergence of
two layer tanh networks.

2.4 Algebraic zero sets

We have just seen that biasless tanh networks satisfy the Replacement Strategy’s requirements. While
the KL divergence for one of these models is an analytic function, the set of true parameters is actually
an algebraic set.

Lemma 6. Suppose a model’s regression function f(x,w) is analytic, and that every partial derivative
of f with respect to x evaluated at x = 0 is a polynomial in the weights. Further assume q(x) > 0 on
some open set, A ⊂ Rm, and that the true function fT (x) is analytic. Then the set of true parameters
W0 is an algebraic set.
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Proof: For any fixed w ∈ W , the function f̂w : x 7→ f(x,w) − fT (x) is analytic. By the identity
theorem for analytic functions, f̂w is zero on all of Rm if and only if it is zero everywhere on A. Hence

K(w) = 0 =⇒
∫
A

(f(x,w)− fT (x))2q(x)dx = 0

=⇒ (f(x,w)− fT (x))2q(x) = 0 for almost all x ∈ A

=⇒ f(x,w)− fT (x) = 0 for almost all x ∈ A

=⇒ f(x,w)− fT (x) = 0 for all x ∈ A, (as f̂w is continuous)

=⇒ f(x,w)− fT (x) = 0 for all x ∈ Rm .

In particular this implies f̂w is zero on some open neighborhood of the origin, so that all its derivatives
evaluated at x = 0 are zero. We’ve already shown that these derivatives are the polynomials(

∂|α|

∂xα
f̂w

)
(0) = fα(w)− cα .

We can conclude that
K(w) = 0 =⇒ fα(w)− cα = 0 ,

for all α ∈ Zm≥0. Conversely, if fα(w) − cα = 0 for all α, then f̂w(x) = 0 for all x in the domain of
convergence for its Taylor series about zero. In turn this implies f̂w(x) is zero on all of Rm, and hence
K(w) is zero. We conclude that

{w ∈W | K(w) = 0} = {w ∈W | fα(w)− cα = 0 , ∀α ∈ Zm≥0} ,

which is the zero set of a sequence of polynomials, ie: an algebraic set. �

Corollary. Combining Lemma 5 and Lemma 6 tells us that biasless tanh neural networks have
algebraic sets of true parameters.
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Chapter 3

Polynomial upper bounds

In Chapter 2 we saw that a significant class of neural networks meet the conditions in [Wat09, Remark
7.6] and the Replacement Strategy. In this Chapter, we delve deeper into the techniques from the
Replacement Strategy, showing that the Hilbert basis theorem can provide a polynomial upper bound
to a regression model’s KL divergence. Our approach won’t be as “automatic” as the remark suggests.
Instead, we will have to manually check the convergence of several series in order to find an upper
bound.

3.1 Upper bound conditions

Let f : X ×W → R be a 1D regression function, and fT : X → R be the true function. Suppose these
functions can be written in the form from the Replacement Strategy, that is

f(x,w)− fT (x) =

∞∑
j=1

fj(w)ej(x) ,

where the fk(w)’s are polynomials.

The Hilbert basis theorem says that every ascending chain of polynomial ideals stabilises. This implies
there is some J > 0 so that {f0, ..., fJ} generates the ideal I = 〈{fj}∞j=0〉 in R[w], meaning for each j,
we can write

fj(w) =
J∑
k=0

akj (w)fk(w) ,

where each akj (w) ∈ R[w] is a polynomial called a quotient. In general these quotients will not be
unique [CLO15, p.83].

The following lemma proves that the sum of squares of the above generating set
∑J

j=0 fj(w)2 bounds
the KL divergence K(w) provided that several series made up of the fj polynomials and quotients
akj converge and are bounded. In the lemma, we use the Hilbert space L2(X, q) which we defined in
Section 1.1.3, as well as the Hilbert space `2(R).

Lemma 7. In addition to the condition of the Replacement Strategy, assume that (fj(w))∞j=0 ∈ `2(R)

for all w ∈ W , and that the linear map τ : `2(R) → L2(X, q) sending ((tj)j) 7→
∑

j tjej(x) is well
defined and bounded. Further, assume that for some choice of quotients akj (w), for each k = 1, ..., J

the series
∑∞

j=0(a
k
j (w)2) converges and is bounded on W . Then there exists C > 0 such that

K(w) ≤ C
J∑
j=1

fj(w)2 .
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Proof: The KL divergence is given by

K(w) =
1

2

∫
X

(f(x,w)− fT (x))2q(x)dx ,

which equals

1

2

∫
X

(f(x,w)− fT (x))2q(x)dx =
1

2

∫
X

 ∞∑
j=0

fj(w)ej(x)

2

q(x)dx

=
1

2

∥∥τ(
(
fj(w))∞j=0

)∥∥2
L2(X,q)

≤ C1‖ (fj(w))∞j=0 ‖
2
`2

= C1

∞∑
j=0

fj(w)2 ,

for some C1 > 0, since τ is bounded. Using the Cauchy-Schwartz inequality, we obtain

J∑
j=0

fj(w)2 +

∞∑
j=J+1

fj(w)2 =

J∑
j=0

fj(w)2 +

∞∑
j=J+1

(
J∑
k=0

akj (w)fk(w)

)2

≤
J∑
j=0

fj(w)2 +
∞∑

j=J+1

(
J∑
k=0

akj (w)2

)(
J∑
k=0

fk(w)2

)

=
J∑
j=0

fj(w)2

1 +
∞∑

j=J+1

J∑
k=0

akj (w)2


=

J∑
j=0

fj(w)2
J∑
k=0

∞∑
j=J+1

akj (w)2

≤ sup
k=0,...,J

sup
w∈W


∞∑

j=J+1

akj (w)2


 J∑
j=0

fj(w)2

 ,

where the above suprema exist by the assumption that each series
∑∞

j=0 a
k
j (w)2 is bounded on the

weight space W . �

At first, the requirement that τ : `2(R) → L2(X, q) is well defined and bounded looks a little
difficult. However, it is one of the easier conditions to check due to the following lemma.

Lemma 8. Suppose
∑∞

j=0 ‖ej(x)‖2L2(X,q) < ∞. Then τ : `2(R) → L2(X, q) is well defined and
bounded.

Proof: If (cj)j ∈ `2(R), then for each finite n,

n∑
j=0

‖cjej‖L2(X,q) =
n∑
j=0

|cj |‖ej‖L2(X,q)

≤

 n∑
j=0

|cj |2
 1

2
 n∑
j=0

‖ej‖2L2(X,q)

 1
2

(Cauchy-Schwarz)

≤ ‖(cj)j‖`2

 ∞∑
j=0

‖ej‖2L2(X,q)

 1
2

.
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This implies that the series
∑∞

j=0 ‖cjej‖L2(X,q) converges in R and so τ((cj)j) = limn→∞
∑n

j=0 cjej
converges in the Hilbert space L2(X, q) and τ is well defined. Further,

‖τ((cj)j)‖L2(X,q) ≤
∞∑
j=0

‖cjej‖L2(X,q) ≤ ‖(cj)‖`2(R)

 ∞∑
j=0

‖ej‖2L2(X,q)

 1
2

,

so ‖τ‖ is bounded by
(∑∞

j=0 ‖ej‖2L2(X,q)

) 1
2 . �

The following lemma summarises the above results, combining them into a list of four conditions which
together prove a polynomial upper bound for a model’s KL divergence.

Lemma 9 (Four main conditions). Suppose a model and true distribution are given by regression
functions f(x,w) and fT (x). If the four following conditions are satisfied

• (C1) f(x,w) − fT (x) =
∑∞

j=0 fj(w)ej(x) for all x ∈ X and w ∈ W , where each fj(w) is a
polynomial,

• (C2)
∑∞

j=0 ‖ej(x)‖2L2(X,q) <∞,

• (C3) (fj(w))∞j=0 ∈ `2(R) for each w ∈W ,

• (C4) There exists J > 0 such that {f1, ...fJ} generates the ideal I, and a set of quotients
akj (w) ∈ R[w], so that for each j ≥ 0 and k between 0 and J ,

∑∞
j=0(a

k
j (w)2) converges and is

bounded on W ,

then K(w) ≤ C
∑J

j=0 fj(w)2 as functions on W .

Conditions (C1)-(C3) are often not too difficult to check. We already know (C1) holds for biasless
tanh networks, and we can check (C2) and (C3) using the ratio test. However, condition (C4) can be
significantly harder to verify.

First, it may be hard to find a finite basis {f0, ..., fJ} for the ideal I = 〈{fj}∞j=0〉. The Hilbert basis
theorem only guarantees that some finite basis exists, but the proof is not constructive [CLO15,
Theorem 4]. To see if condition (C4) holds, we need to know what this basis actually is. Currently
our only way to deal with this problem is to hope that the ideal I is simple enough for us to notice a
pattern which helps find a generating set. This is the approach we will use when analysing two layer
tanh networks in Chapter 4.

Second, even if you manage to find a finite generating set, {f0, ..., fJ}, computing the quotients
akj (w) ∈ R[w] for each k = 0, ..., 1 and j ≥ 0 may be difficult. The obvious thing to try is to divide
each Taylor series polynomial fj by the basis (f0, ..., fJ) using the polynomial division algorithm.
However this method may give quotients which don’t recreate fj . Even if a polynomial p lies in the
ideal 〈f0, ..., fj〉, so that p = a1f1 + ...+ aJfJ for some a1, ..., aJ ∈ R[w], the division algorithm may
instead output quotients q1, ..., qJ and remainder r such that

p = q1f1 + ...qJfJ + r ,

where the remainder r 6= 0. If this occurs, we can’t use the quotients to check condition (C4).

Example 1. Consider the polynomials f1 = xy + z, f2 = x+ y, and p = −y2 + z in R[x, y, z]. Then
p = f1 − yf2, however when using the polynomial division algorithm (with lexicographic order), the
outputs are q1 = q2 = 0 and r = p.

In the following Section we introduce some techniques from computational algebraic geometry to deal
with this problem, culminating in Lemma 11.
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3.2 Monomial orders and Gröbner bases

Despite the issues described in Section 3.1, the polynomial division algorithm still seems like our best
hope for finding quotients to check condition (C4) of Lemma 9 and there are techniques which fix
the problem of obtaining non-zero remainders. Specifically, Gröbner bases ensure that the division
algorithm will output quotients with no remainder. In this section we define Gröbner bases, first
introducing the required background on monomial orders.

A monomial order is a way of deciding which monomials are “bigger” than others, and once a monomial
order is chosen, the division algorithm runs by cancelling out the largest monomial in the polynomial
you are dividing, before continuing on to the smallest.

Definition 14. A monomial order for the polynomial ring R[x1, ..., xn] is a total ordering, >, on Zn≥0
satisfying

• for all α, β ∈ Zn≥0, α > β and γ ∈ Zn≥0 =⇒ α+ γ > β + γ,

• > is a well ordering, meaning every subset of Zn≥0 contains a smallest element.

An ordering on Zn≥0 is associated to an ordering on the set of monomials in R[x1, ...xn] by identifying
α with xα.

Definition 15. In this report we will use graded lexicographic order (grlex). Given a multi-index
α = (α1, ..., αn) ∈ Zn≥0, define |α| := α1 + ...+ αn. In graded lexicographic order, α > β if |α| > |β| or
|α| = |β| and the first non-zero component of α− β is positive.

For other examples of monomial orders, and a proof that graded lexicographic order is a monomial
order, see Chapter 2 of [CLO15].

An important property of graded lexicographic order is that given an index α, there are only finitely
many indices β which are smaller than α. For the following definitions, we assume some monomial
order has been chosen, and later in the thesis we will exclusively use graded lexicographic order.

Definition 16. Given a polynomial p(x1, ..., xn) ∈ R[x1, ..., xn] and multi-index α ∈ Zn≥0, write pα ∈ R
for the coefficient of the monomial xα in p. The polynomial p can be written as

p(x1, ..., xn) =
∑
α∈Zn≥0

pαx
α .

By definition only finitely many of the pα’s will be non-zero. The multidegree of p is the multi-index
multideg(p) = max{α| pα 6= 0}, where the maximum is taken with respect to the chosen monomial
order. Suppose α = multideg(p), then the leading monomial of p, LM(p), is xα, and the leading term
of p is LT(p) = pαx

α. Less formally, the leading term is the largest term in p according to the chosen
monomial order.

Example 2. Let p(x, y, z) = 3xy2z− 5x2z2 + 2xy. Using grlex order, multideg(p) = (2, 0, 2), LT(p) =
−5x2z2, and LM(p) = x2z2.

Definition 17. Given a polynomial ideal I ⊂ R[x1, ..., xn], LT(I) is the set of all leading terms of
elements of I

LT(I) = {LT(p) | p ∈ I\{0}} ,

and 〈LT(I)〉 is the ideal generated by this set. This is called the leading term ideal.

Remark. Counterintuitively, if I = 〈f1, ..., fJ〉, it’s possible that

〈LT(I)〉 6= 〈LT(f1), ...,LT(fj)〉 .

This is the case in Example 1, where LT(p) = −y2 which is not an element of 〈LT(f1),LT(f2)〉 = 〈xy, x〉,
even though p ∈ 〈f1, f2〉.
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This causes the problem of non-zero remainders from the division algorithm. When the algorithm
comes across a term which isn’t divisible by a leading term of any divisors, it throws that term into
the remainder.

Gröbner bases fix this problem, and make the division algorithm work as desired.

Definition 18. Given an ideal I ⊂ R[x1, ..., xn], a finite subset {g1, ..., gm} ⊂ I is a Gröbner basis for
I if

I = 〈g1, ..., gm〉 and
〈LT(I)〉 = 〈LT(g1), ...,LT(gm)〉 .

The following properties of Gröbner bases are proven in Chapter 2 of [CLO15].

• Every ideal I ⊂ R[x1, ..., xn] has a Gröbner basis. The Hilbert basis theorem guarantees a finite
basis exists, and Buchberger’s algorithm converts a finite basis into a Gröbner basis by adding
extra elements.

• Given a Gröbner basis G = {g1, ..., gm} of I and p ∈ R[x1, ..., xn], there exists unique r ∈
R[x1, ..., xn] such that

1. LT(g1), ..., LT(gm) do not divide any of the terms of r, and

2. There exists g ∈ I such that p = g + r.

This implies the remainder of p on division by G is unique.

• p ∈ I if and only if the remainder on division by G is zero.

The third property solves the ideal membership problem, namely given any polynomial p and ideal I,
you can tell if p is an element of I by dividing it by a Gröbner basis for I. If the remainder is zero,
then p is an element of I, while if the remainder is non-zero, p is not an element of I.

Returning to the problem of finding the quotients for condition (C4), suppose that {f0, ..., fJ} is a
Gröbner basis for the ideal 〈{fj}∞j=0〉. Then the quotients produced by the division algorithm akj (w)
will always satisfy the following equation

fj(w) =

J∑
k=0

akj (w)fk(w) ,

which is exactly what we need for checking (C4).

While there is no reason to assume that {f0, ..., fJ} is a Gröbner basis, it is easy to convert it into one
using Buchberger’s algorithm [CLO15, §2.7 ]. The following lemma ensures that doing so won’t change
the RLCT λ.

Lemma 10. Suppose {f1, ..., ft} and {g1, ..., gs} generate the same ideal in R[w]. Assuming the weight
space W is compact, there exists C1, C2 > 0 such that

C1

t∑
j=1

fj(w)2 ≤
s∑
l=1

gl(w)2 ≤ C2

t∑
j=1

fj(w)2 ,

for all w ∈ W . In particular, the polynomials H1(w) =
∑t

j=1 fj(w)2 and H2(w) =
∑s

l=1 gl(w)2 are
equivalent and have the same RLCT.

This is proven by Lin in [Lin11, Proposition 4.3].

We can use Lemma 10 to help us find a polynomial upper bound as follows. First, we convert our Hilbert
basis {f0, ..., fJ} to a Gröbner basis {g0, ..., gs}. We can then divide each Taylor series polynomial by
the Gröbner basis to get a set of quotients. If condition (C4) holds for these quotients, we obtain an
upper bound K(w) ≤ C1

∑s
j=0 gj(w)2. The lemma turns this into an upper bound for the original

Taylor series polynomials K(w) ≤ C2
∑J

j=0 fj(w)2.
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3.3 The generic division algorithm

In this section we will assume G = {f0, ..., fJ} is a Gröbner basis for the ideal 〈{fj}∞j=0〉. We could
immediately divide each polynomial fj by this basis and find a collection of quotients ajk(w) to check
condition (C4).

One problem with jumping straight into the calculation in this way is that the quotients aren’t unique.
For example, we could obtain different quotients by changing the order of the divisors (f0, ..., fJ) in
the division algorithm. At each step, the polynomial division algorithm takes a polynomial called
the intermediate dividend, p, and picks the first divisor fj whose leading term divides LT(p). It then
subtracts from p the polynomial LT(p)

LT(fj)
fj , and adds LT(p)

LT(fj)
to the jth quotient. Changing the order of

the divisors potentially changes the choice the algorithm makes at each step, in turn changing the
outputs.

Example 3. Consider the polynomials f1 = x2 + yx, f2 = y2 + yx and p = x2y + yx2. Dividing p by
(f1, f2) with grlex order yields p = yf1, with quotients a1 = y and a2 = 0. Meanwhile division of p by
(f2, f1) gives p = xf2 and quotients a1 = 0 and a2 = x.

Condition (C4) requires us to show that the series of quotients
∑∞

j=0 a
k
j (w)2 converges, but it is unclear

whether the specific choice of quotients could affect this convergence. Perhaps the convergence could
depend on the chosen order of the divisors (f1, ..., fJ) in the division algorithm. This makes it hard to
know if any any observed convergence is a result of chance.

To deal with this problem we investigated modified versions of the division algorithm which work
independently of the order of the divisors. The algorithm we studied is the generic division algorithm,
which runs very similarly to the standard polynomial division algorithm, but instead of picking a single
divisor fj at each step, it averages over all divisors which “work”. This algorithm was communicated
to me by my supervisor Daniel Murfet.

The generic division algorithm requires us to make a few choices. First, we need to choose a monomial
order with the property that for each multi-index α, there are only finitely many smaller multi-indices.
As we’ve mentioned, graded lexicographic order has this property, and we will use this order for the
rest of the Chapter.

Second, we need to choose a finite downwards closed set of multi-indices, Λ ⊂ Zn≥0. Being downwards
closed means that if α ∈ Λ, every monomial less than α also lies in Λ. The previously mentioned
finiteness condition on the monomial order is needed for such sets to exist in general. As a counter
example, lexicographic order on R[x, y] doesn’t have this property and there are infinitely many
smaller monomials than x (specifically yj < x, ∀j > 0). This motivates our decision to use graded
lexicographic order.

Assuming we have chosen one of these sets Λ, we can then write it as

Λ = {α1 > α2 > ... > αq} .

We then choose a set of polynomials G = {f1, ..., fs} in R[x1, ..., xn], to be the divisors. For each index
β ∈ Λ, define the set

Dβ =
{

1 ≤ j ≤ s | LT(fj)|xβ
}
.

This records which of the fj ’s leading terms divide the monomial xβ .

Given a polynomial f for which LM(f) ∈ Λ we can divide f by {f1, ..., fs} using the generic division
algorithm as follows.
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Algorithm 1 The generic division algorithm
Input: divisors f1, ..., fs, polynomial f , and Λ ⊂ Zn≥0 with Λ downwards closed, finite, and LM(f) ∈ Λ.
Output: quotients a1, ..., as, remainder r
a1 := 0, ..., as := 0
r := 0
dα1 := |Dα1 |, ..., dαq := |Dαq |
p := f
i := 1
while i ≤ q do

if dαi 6= 0 then
p := p−

∑
j∈Dαi

1
dαi

pαix
αi

LT(fj)
fj

for each j ∈ Dαi do
aj := aj + 1

dαi

pαix
αi

LT(fj)

end for
end if
i := i+ 1

end while
Output: r := p and a1, ... as

Definition 19. In the above algorithm, call the polynomial p the intermediate remainder

At the ith step, the algorithm uses every divisor whose leading term divides xαi , subtracting the
following sum from the intermediate remainder p

pαi
dαi

∑
j∈Dαi

xαi

LT(fj)
fj .

The intermediate remainder at each step is independent of any choice of order of the divisors since
this sum is unaffected by reordering them. Additionally, if we do reorder the divisors, the quotients aj
are also reordered, but aren’t changed in any other way.

For the generic division algorithm to be useful, it should share some of the standard polynomial
division algorithm’s main properties. The following proposition states firstly that the generic division
algorithm outputs quotients and remainder which recreate the starting function, and secondly, the
outputs have the same properties as those from the standard polynomial division algorithm.

Proposition 2. If LM(f) ∈ Λ, then the quotients and remainder from the generic division algorithm
satisfy

f = a1f1 + ...+ asfs + r ,

where either r = 0 or it is a linear combination of monomials, none of which are divisible by any of
LT(f1), ..., LT(fs). Further, if ajfj 6= 0 then

multideg(f) ≥ multideg(ajfj) .

Proof: Write pi for the value of the intermediate remainder p at the ith step of the algorithm, starting
with p0 = f . Additionally write (aj)i for the value of the jth quotient at the ith step, beginning with
(aj)0 = 0. At the start of the algorithm,

f = (a1)0f1 + ...+ (as)0fs + p0 ,

because p0 = f and (a1)0 = ... = (as)0 = 0. Suppose at the ith step that f = (a1)if1 + ...+ (as)ifi + pi.
Then at the next step

(a1)i+1f1 + ...+ (as)i+1fs + pi+1 =

s∑
j=1

(aj)ifj +
∑

j∈Dαi+1

1

dαi+1

(pi)αi+1x
αi+1

LT(fj)
fj
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+ pi −
∑

j∈Dαi+1

1

dαi+1

(pi)αi+1x
αi+1

LT(fj)
fj

= (a1)if1 + ...+ (as)ifs + pi

= f .

Since the statement is true for every step of the algorithm, it holds for the output, and

f = a1f1 + ...+ asfs + r ,

where a1, ..., as and r are the final quotients and remainder.

The second part of the proposition states that each term in the remainder r isn’t divisible by any of
the leading terms LT(f1), ...,LT(fs). We will prove this through the following claim. The claim uses
the chosen downwards closed set Λ = {α1 > ... > αq}.

Claim: For i ≥ 1, pi does not contain any monomials xαz for which z ≤ i and Dαz 6= ∅. Additionally
LT(pi) ≤ LT(f) for each i.

Proof of claim: We prove the claim by induction.

Base case: i = 1. For this base case, the first intermediate remainder is

p1 = f −
∑
j∈Dα1

1

dα1

fα1x
α1

LT(fj)
fj .

There are three cases for the first step of the algorithm. In the first case, xα1 = LM(f) and Dα1 6= ∅.
In this case we obtain p1 by subtracting the leading term from f and adding on several other terms.
All of these other terms are smaller as monomials than xα1 , so LT(p1) < LT(f). This means that p1
does not contain the monomial xα1 , so p1 satisfies the claim.

The second case is where LM(f) = xα1 but Dα1 = ∅. The algorithm does nothing in the first step in
this case, and p1 = f . Clearly, p1 contains no monomials xαz where z ≤ 1 and Dαz 6= ∅. Additionally,
LT(p1) = LT(f) because p1 = f .

In the final case, LM(f) < xα1 so fα1 = 0. Again the algorithm does nothing in its first step, so
LT(p1) = LT(f). Also, since xα1 is not in p1, the polynomial p1 automatically does not contain any
monomials xαz where z ≤ 1 and Dαz 6= ∅.

There is one further case, where LM(f) > xα1 , however this case can’t happen due to the assumption
that LM(f) ∈ Λ.

Induction case: Assume pi does not contain xαz for any z ≤ i with Dz 6= ∅ and LT(pi) ≤ LT(f). The
proof of the claim for this case is essentially the same as for the base case.

From the algorithm

pi+1 = pi −
∑

j∈Dαi+1

1

dαi+1

piαi+1
xαi+1

LT(fj)
fj .

There are again three cases. In the first case, piαi+1
6= 0 and Dαi+1 6= ∅. Here, the algorithm cancels out

the xαi+1 term from pi, so that pi+1 does not contain xαi+1 as a monomial. Since pi doesn’t contain
any xαz where z ≤ i+ 1 and Dz 6= ∅, it follows that pi+1 doesn’t contain any xαz where z ≤ i and
Dαz 6= ∅. Additionally, each term added to pi in this step is smaller than LT(pi) which itself is smaller
than LT(f). Hence LT(pi+1) ≤ LT(f).

In the second case, Dαi+1 = ∅, and so pi+1 = pi and the intermediate polynomial pi+1 automatically
satisfies the claim.
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Finally, the third case is where piαi+1
= 0, implying pi+1αi+1

= 0, and the algorithm does nothing at
this step so pi+1 = pi. Again, pi+1 will satisfy both parts of the claim.

We can conclude that at any step of the algorithm, pi doesn’t contain any monomials xαz where z ≤ i
and Dαz 6= ∅, and additionally LT(pi) ≤ LT(f). �

The above claim tells us that r = pq contains no monomials of the form xαz for which z ≤ q and
Dαz 6= ∅. Additionally, r contains no monomials larger than xα1 since it is constructed by adding
terms to f which are less than or equal to xα1 . Hence each term of r is not divisible by any of
LT(f1), ...,LT(fs).

For the last part of the proposition that multideg(ajfj) ≤ multideg(f), note that aj is given by a
linear combination of monomials of the form

xαi

LT(fj)
,

and the coefficient of the above term in the quotient aj can only be non-zero when xαi appears in one
of the pl’s. Since LT(pl) ≤ LT(f) for all 1 ≤ l ≤ q, the quotient aj will be made up of monomials less
than or equal to LT(f)

LT(fj)
. Hence multideg(aj) ≤ multideg(f). �

3.3.1 Steps in the algorithm

We can unravel the generic division algorithm to find expressions for the intermediate remainder pi at
each step. This will help us find expressions for the quotients output by the algorithm, and we will be
able to use these expressions to check the convergence of the series in condition (C4).

For this section, we fix a set of divisors, {f1, ..., fs} ⊂ R[x1, ..., xn] and a downwards closed set of
multi-indices Λ = {α1 > ... > αq}.

Definition 20. For each α and β in Zn≥0 define

τα,β,j =

(
xα

LT(fj)
fj

)
β

,

where 1 ≤ j ≤ s, and j ∈ Dα. The notation (−)β refers to the coefficient of xβ in the polynomial that
lies inside the parentheses. We then define

τα,β =
∑
j∈Dα

τα,β,j ,

and set τα,β = 0 if Dα = ∅.

We will use these τα,β factors to first find expressions for p1, p2 and p3. Using these three examples,
we can search for a general pattern and use it to find an expression for an arbitrary pi.

Starting with the first intermediate remainder, we have

p1 = f −
∑
j∈Dα1

1

dα1

fα1x
α1

LT(fj)
fj

(p1)α2
= fα2 −

∑
j∈Dα1

fα1

1

dα1

(
xα1

LT(fj)
fj

)
α2

= fα2 −
fα1

dα1

∑
j∈Dα1

τα1,α2,j
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= fα2 −
fα1

dα1

τα1,α2 .

We can then write p2 as

p2 = p1 −
∑
j∈Dα2

1

dα2

(p1)α2

LT(fj)
fj

= f −
∑
j∈Dα1

1

dα1

fα1x
α1

LT(fj)
fj −

∑
j∈Dα2

1

dα2

(p1)α2x
α2

LT(fj)
fj

= f −
∑
j∈Dα1

1

dα1

fα1x
α1

LT(fj)
fj −

∑
j∈Dα2

1

dα2

(
fα2 −

fα1

dα1

τα1,α2

)
xα2

LT(fj)
fj

= f −
∑
j∈Dα1

1

dα1

fα1x
α1

LT(fj)
fj −

∑
j∈Dα2

fα2

dα2

xα2

LT(fj)
fj +

∑
j∈Dα2

fα1

dα1dα2

τα1,α2

xα2

LT(fj)
fj .

This gives

(p2)α3
= fα3 −

∑
j∈Dα1

fα1

dα1

τα1,α3,j −
∑
j∈Dα2

fα2

dα2

τα2,α3,j +
∑
j∈Dα2

fα1

dα1dα2

τα1,α2τα2,α3,j

= fα3 −
1

dα1

fα1τα1,α3 −
1

dα2

fα2τα2,α3 +
1

dα1dα2

fα1τα1,α2τα2,α3 ,

and then

p3 = p2 −
∑
j∈Dα3

1

dα3

(p2)α3x
α3

LT(fj)
fj

= f −
∑
j∈Dα1

1

dα1

fα1x
α1

LT(fj)
fj −

∑
j∈Dα2

(
1

dα2

fα2 −
1

dα1dα2

τα1,α2fα1

)
xα2

LT(fj)
fj

−
∑
j∈Dα3

1

dα3

(
fα3 −

1

dα1

fα1τα1,α3 −
1

dα2

fα2τα2,α3 +
1

dα1dα2

fα1τα1,α2τα2,α3

)
xα3

LT(fj)
fj

= f −
3∑
t=1

∑
j∈Dαt

1

dαt
fαt

xαt

LT(fj)
fj +

∑
1≤s<t≤3

∑
j∈Dαt

1

dαsdαt
fαsταs,αt

xαt

LT(fj)
fj

−
∑
j∈Dα3

1

dα1dα2dα3

fα1τα1,α2τα2,α3

xα3

LT(fj)
fj .

These appear to follow a pattern. The ith intermediate remainder pi looks like it equals f with i
different sums added or subtracted to it. The first of these is a sum over each integer t lying between
1 and i, while the second is a sum over all pairs of distinct integers between 1 and i. The next is a
sum over all triples of distinct integers between 1 and i. This continues until we reach a sum over all
i-tuples of distinct integers between 1 and i. To describe these sums precisely we use the following
definitions.

Definition 21. A chain of length m is a descending chain of m multi-indices in Zn≥0, written
β1 > β2 > ...βm. If the endpoints of a chain satisfy the constraints γ ≥ β1 and βm ≥ α, we write the
chain as γ ≥ β1 > ... > βm ≥ α and describe it as a chain of length m between γ and α.

Definition 22. We will frequently come across sums of the following form∑
α1≥β1>...>βm≥αi

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj .

We will refer to this as the sum over all chains of length m between α1 and αq.
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Proposition 3. In the generic division algorithm, the intermediate remainder at the ith step is given
by

pi =f −
∑
1≤t≤i

∑
j∈Dαt

1

dαt
fαt

xαt

LT(fj)
fj

+
i∑

m=2

∑
α1≥β1>...>βm≥αi

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj . (3.3.1)

The second sum in the above expression adds over all chains of length 2 to i with endpoints between
α1 and αi.

Proof: By induction. We have just seen that the claim holds for p1, p2, and p3, which we use as the
base case.

For the induction case, suppose that the expression (3.3.1) holds for pi. Then from the algorithm

pi+1 = pi −
∑

j∈Dαi+1

1

dαi+1

(pi)αi+1

LT(fj)
fj (3.3.2)

and using (3.3.1),

(pi)αi+1 =fαi+1 −
∑
1≤t≤i

∑
j∈Dαt

1

dαt
fαt

(
xαt

LT(fj)
fj

)
αi+1

+
i∑

m=2

∑
α1≥β1>...>βm≥αi

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

(
xβm

LT(fj)
fj

)
αi+1

=fαi+1 −
∑
1≤t≤i

1

dαt
fαtταt,αi+1 +

i∑
m=2

∑
α1≥β1>...>βm≥αi

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βmτβm,αi+1

.

Substituting this and (3.3.1) into (3.3.2) gives

pi+1 =f −
∑
1≤t≤i

∑
j∈Dαt

1

dαt
fαt

xαt

LT(fj)
fj

+

i∑
m=2

∑
α1≥β1>...>βm≥αi

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj

−
∑

j∈Dαi+1

1

dαi+1

(
fαi+1 −

∑
1≤t≤i

1

dαt
fαtταt,αi+1+

i∑
m=2

∑
α1≥β1>...>βm≥αi

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βmτβm,αi+1

)
xαi+1

LT(fj)
fj . (3.3.3)

We can write this as

pi+1 = f −
∑

1≤t≤i+1

∑
j∈Dαt

1

dαt
fαt

xαt

LT(fj)
fj

+ (a) + (b) + (c) ,

where

(a) =
∑
1≤t≤i

∑
j∈Dαi+1

1

dαtdαi+1

ταt,αi+1

xαi+1

LT(fj)
fj ,
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(b) = −
i∑

m=2

∑
α1≥β1>...>βm≥αi

∑
j∈Dαi+1

(−1)m

dβ1 ...dβmdαi+1

fβ1τβ1,β2 ...τβm−1,βmτβm,αi+1

xαi+1

LT(fj)
fj ,

(c) =
i∑

m=2

∑
α1≥β1>...>βm≥αi

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj .

Term (a) is the sum over all chains of length 2 whose end point is exactly equal to αi+1. Similarly,
term (b) is the sum over all chains of lengths 3 to i+ 1 whose end point equals αi+1. Hence (a) + (b)
is the sum of all chains lengths 2 to i+ 1 with end point equal to αi+1.

(a) + (b) =
i+1∑
m=2

∑
α1≥β1>...>βm≥αi+1

s.t. βm=αi+1

(−1)m

dβ1 ...dβm

∑
j∈Dβm

fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj .

Meanwhile, the third term (c) is the sum over all chains of lengths 2 to i with end point greater than
or equal to αi. There are no chains of length i+ 1 with endpoint strictly greater than αi+1 (a set of
i+ 1 distinct indices placed in decreasing order with starting point α1 will always have endpoint β
with αi+1 ≥ β). Hence we are free to describe (c) as the sum over all chains lengths 2 to i+ 1 with
endpoint strictly greater than αi+1. Adding (a), (b), and (c) together gives the sum over all chains of
lengths 2 to i+ 1 with endpoints between α1 and αi+1

(a) + (b) + (c) =

i+1∑
m=2

∑
α1≥β1>...>βm≥αi+1

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj .

Plugging this back into (3.3.3) gives

pi+1 = f −
∑

1≤t≤i+1

∑
j∈Dαt

1

dαt
fαt

xαt

LT(fj)
fj

+
i+1∑
m=2

∑
α1≥β1>...>βm≥αi+1

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj ,

proving the claim. �

Corollary. The remainder r = pq is also given by the form in (3.3.1).

Corollary. Suppose I ⊂ R[x1, ..., xn] is an ideal and f ∈ I, if {f1, ..., fs} is a Gröbner basis for I.
Then the remainder, pq, when applying the generic division algorithm to f with this basis is zero, so

f =
∑

1≤t≤q

∑
j∈Dαt

1

dαt
fαt

xαt

LT(fj)
fj

−
q∑

m=2

∑
α1≥β1>...>βm≥αq

∑
j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj .

In particular

f =
s∑
j=1

qjfj ,

with quotients given by

qj =
∑

1≤t≤q
s.t.j∈Dαt

1

dαt
fαt

xαt

LT(fj)
−

q∑
m=2

∑
α1≥β1>...>βm≥αq

s.t.j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
. (3.3.4)
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Remark. The expression (3.3.1) does not depend on the choice of finite downwards closed set Λ ⊂ Zm≥0
as long as LM(f) ∈ Λ. If Λ = {α1 > ... > αq} and Λ′ is another finite downwards closed set which
contains Λ as a subset, we can write it as Λ′ = {β1 > ... > βt > α1 > ... > αq}. When the generic
division algorithm is run with the same f and divisors f1, ..., fs, but with Λ′ in place of Λ, it does
nothing until it reaches the index αi = LM(f) before proceeding in the exact same manner.

This lets us drop the choice of downwards closed set Λ from the notation. We can rewrite the first
term in (3.3.4) as ∑

1≤t≤q
s.t.j∈Dαt

1

dαt
fαt

xαt

LT(fj)
=

∑
α

s.t. j∈Dα

1

dα
fα

xα

LT(fj)
,

where
∑

α is the sum over all multi-indices in Zn≥0. The sum on the right is finite since fα 6= 0 for only
finitely many indices α. While the left hand side is written in terms of a chosen Λ = {α1 > ... > αq},
Λ is assumed to contain every monomial in f . Hence the two sides of the equation are the same.

Likewise, the other term can be written

−
q∑

m=2

∑
α1≥β1>...>βm≥αq

s.t.j∈Dβm

(−1)m

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)

=

∞∑
m=2

∑
β1>...>βm
s.t.j∈Dβm

(−1)m+1

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
,

where
∑

β1>...>βm
is the sum over all chains of length m, without any restrictions on the end points.

Again, the right hand side is a finite sum because f contains only finitely many monomials, and for
each monomial in f there are only finitely many smaller monomials when grlex is used. Additionally,
since each monomial of f , α, is assumed to be in Λ, every chain starting at α has no more than q
multi-indices and so there are no extra chains included on the right hand side. Hence the two sides are
equal. The quotients can then be written as

qj =
∑
α

s.t. j∈Dα

1

dα
fα

xα

LT(fj)
+
∞∑
m=2

∑
β1>...>βm
s.t.j∈Dβm

(−1)m+1

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
. (3.3.5)

3.3.2 Division graphs

A division graph is a useful way to visualise the expressions coming from the generic division algorithm,
especially the “chains” of indices made up of the τα,β terms from Definition 20.

Definition 23. Given a Gröbner basis G = {f1, ..., fs} in R[x1, ..., xn], the division graph for G is the
oriented graph which has Zn≥0 as the vertices, and an arrow from index β to index α if τα,β 6= 0.

Note that τα,β can only be non-zero if α ≥ β in the chosen monomial order. Hence the division graph
will only contain arrows pointing in non-decreasing directions.

Figure 3.1: A path in the division graph associated to the chain β1 > β2 > ... > βm.
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Consider the sum over all chains of length m∑
β1>...>βm
s.t.j∈Dβm

(−1)m+1

dβ1 ...dβm
fβ1τβ1,β2 ...τβm−1,βm

xβm

LT(fj)
fj . (3.3.6)

If τβl,βl+1
= 0 for any pair of adjacent indices in a chain, that chain’s term in the sum will be zero.

Hence (3.3.6) can be thought of as the sum over all paths in the division graph containing m distinct
indices.

3.4 The generic division algorithm for polynomial upper bounds

The generic division algorithm gives expressions for the quotients (3.3.5) which we can use to check
convergence condition (C4). First we introduce some definitions to simplify the notation.

Definition 24. Given two multi-indices α > β in Zn≥0, define the real number

K(α, β) =
∞∑
m=2

∑
β1>...>βm
β1=α,βm=β

(−1)m+1

dβ1 ...dβm
τβ1,β2 ...τβm−1,βm .

We also define

K(α, α) =

{
1
dα
, dα 6= 0

0 , dα = 0
.

K(α, β) can only be non-zero when there is a path from β to α in the division graph. Additionally,
the value of each K(α, β) only depends on the Gröbner basis G = {f1, ..., fs}, and not the polynomial
f which is being divided.

This notation lets us write the expressions for the quotients (3.3.5) as

qj =
∑
α≥β

s.t. j∈Dβ

K(α, β)fα
xβ

LT(fj)
.

Returning to problem of finding a polynomial upper bound for the KL divergence, we will replace the
variable x with w to emphasise that the polynomials are functions of the weights of a neural network.
As we had before, we have a sequence of polynomials {fj}∞j=0, and we can assume that G = {f0, ..., fJ}
is a Gröbner basis for their ideal I = 〈{fj}∞j=0〉. For each j > J , we use the generic division algorithm
to write

fj =

J∑
k=0

akj fk ,

where

akj =
∑
α≥β

s.t. k∈Dβ

K(α, β)(fj)α
wβ

LT(fk)
.

To simplify the expressions, for each α ∈ Zn≥0 we define

Ωk
α :=

∑
β≤α
k∈Dβ

K(α, β)
wβ

LT(fk)
, (3.4.1)

so then
akj =

∑
α

(fj)αΩk
α .

36



To show condition (C4) we must bound the series
∑∞

j=0(a
k
j )

2 for each k = 0, 1, ..., J . We can rewrite
this series as

∞∑
j=0

(akj )
2 =

∞∑
j=0

(∑
α

(fj)αΩk
α

)2

.

For each j define the set Hj = {α ∈ Zn≥0 | (fj)α 6= 0}, so that

∞∑
j=0

(akj )
2 =

∞∑
j=0

∑
α∈Hj

(fj)αΩk
α

2

≤
∞∑
j=0

∑
α∈Hj

(fj)
2
α

∑
α∈Hj

(
Ωk
α

)2 .

Lemma 11. Condition (C4) will hold if for each k = 0, ..., J , the series
∑∞

j=0

(∑
α∈Hj (fj)

2
α

)(∑
α∈Hj

(
Ωk
α

)2)
converges and is bounded for all w ∈W .

In the next Chapter, we will use this lemma to find polynomial upper bounds for two layer networks.
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Chapter 4

Examples

In the previous Chapters, we saw that the Taylor series coefficients for biasless two layer tanh networks
are polynomials of the weights, and found conditions (C1)-(C4) in Lemma 9, which could provide a
polynomial upper bound for these models’ KL divergence. In this Chapter we check these conditions
for a variety of two layer networks.

The first model we will study is a two neuron network with sine activation functions studied in [Wat09].
We will use Gröbner bases and the generic division algorithm to find a polynomial upper bound for
this model, and the results will easily carry over to a similar network with tanh neurons. To study
larger tanh networks with arbitrarily many neurons though, the generic division algorithm becomes
computationally unworkable, and we require a different approach.

In Sections 4.1-4.4 the polynomial upper bounds will apply when the true function fT (x) is zero
everywhere. In the final part of this Chapter, Section 4.5, we will extend our results to models where
the true function is non-zero, leading to the Main Theorem.

4.1 Example 1: Two neuron sine network

In this section we use the generic division algorithm to show conditions (C1)-(C4) are satisfied in
[Wat09, Example 3.2].

In this example, Watanabe introduces a two layer neural network which has sine as its activation
function. He uses this example to illustrate Hilbert’s basis theorem, showing that the model’s Taylor
series splits into a sum of polynomials of the weights and functions of the input (like the form in the
Replacement Strategy), and finds a finite generating set for these Taylor series polynomials. However,
he does not discuss this model’s KL divergence.

This is a convenient model to test our methods on. Unlike tanh networks, its Taylor series converges
globally, so we don’t need to worry about its domain of convergence. Additionally, although sine
activation functions are quite niche, we will be able to quickly adapt the results from this model to
study tanh networks with two neurons.

The model is given by the regression function

f(x, a, b, c, d) = a sin(bx) + c sin(dx) ,

where x ∈ [−1, 1] is the input and w = (a, b, c, d) ∈ R4 is the weight.

If we set the input distribution, q(x) to be uniform on [−1, 1], and the true regression function fT to
be zero, the KL divergence for the model is

K(w) =
1

2

∫
[−1,1]

(f(x,w))2dx .
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While we didn’t discuss sine activation functions in Chapter 2, it is easy to see that the Taylor series
coefficients for f are polynomials of the weights. The Taylor series for f with respect to x about x = 0
is

f(x, a, b, c) =
∞∑
j=0

(−1)j

(2j + 1)!
x2j+1

(
ab2j+1 + cd2j+1

)
.

Defining ej(x) = (−1)j√
(2j+1)!

x2j+1 and fj(a, b, c, d) = 1√
(2j+1)!

(
ab2j+1 + cd2j+1

)
we have that

f(x,w) =

∞∑
j=0

fj(w)ej(x) , (4.1.1)

so the model satisfies (C1). There is clearly some choice in how the constants 1
(2j+1)! can be split

between ej(x) and fj(w), and we will examine this choice more closely for tanh networks in Section
4.2. For the meantime though, the choice we have made ensures that

∑∞
j=0 ‖ej‖2L2(X,q) <∞, since

∞∑
j=0

‖ej(x)‖2L2(X,q) =

∞∑
j=0

(∫ 1

−1

(−1)2j

(2j + 1)!
x4j+2dx

)

=
∞∑
j=0

1

(2j + 1)!

[
2

4j + 3

]
,

which converges by the ratio test. Hence this model satisfies condition (C2). Meanwhile,

‖(fj(w))j‖2`2 =

∞∑
j=0

1

(2j + 1)!
(ab2j+1 + cd2j+1)2 .

For any fixed value of (a, b, c, d), choose a constant M > max{|a|, |b|, |c|, |d|}, then

‖(fj(w))j‖2`2 ≤
∞∑
j=0

1

(2j + 1)!
2M4j+4 .

Using the ratio test, the series on the right converges for any value of M . Hence (fj(w))∞j=0 ∈ `2(R)
for any value of w and the model satisfies condition (C3).

4.1.1 Applying the generic division algorithm

Since the two neuron sine model satisfies conditions (C1)-(C3), we just need to prove its Taylor series
polynomials fj(a, b, c, d) satisfy condition (C4) to prove a polynomial upper bound on the model’s KL
divergence. Our strategy is to first find a finite basis for the ideal I = 〈{fj(w)}∞j=0〉, convert this to a
Gröbner basis, find quotients using the generic division algorithm, and finally check all the convergence
conditions using these quotients.

For the first step, Watanabe has shown that {f0, f1} is a basis for this ideal I [Wat09, p. 80].
Buchberger’s algorithm [CLO15, §2.7] converts this to the Gröbner basis G′ = {ab + cd, ab3 +
cd3, b2cd − cd3, acd3 + bc2d2} when using graded lexicographic order. Noting that LT(ab3 + cd3) ∈
〈LT(G′) \ {ab3 + cd3}〉, we can simplify the Gröbner basis to

G = {g1, g2, g3} = {ab+ cd, b2cd− cd3, acd3 + bc2d2} . (4.1.2)

The leading terms of this basis are LT(g1) = ab, LT(g2) = b2cd, and LT(g3) = acd3.
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Finding the division graph

The next step is to compute the division graph for the Gröbner basis G, specifically by finding the
τα,β values. This will let us compute the K(α, β) values and Ωk

α polynomials.

Let α > β be any two multi-indices in Z4
≥0. Then LT(g1)|wα ⇐⇒ α = (1, 1, 0, 0) + γ for some

γ ∈ Z4
≥0. Then

τα,β,1 =

(
wα

ab
(ab+ cd)

)
β

=

(
wα +

w(1,1,0,0)+γ

w(1,1,0,0)
cd

)
β

= (wγcd)β

=

{
1 , γ + (0, 0, 1, 1) = β

0 , otherwise

= δ(β = γ + (0, 0, 1, 1))

= δ(β = α+ (−1,−1, 1, 1))

= δ(α = β + (1, 1,−1,−1)) .

Meanwhile LT(g2)|wα ⇐⇒ α = γ + (0, 2, 1, 1) for some γ, so

τα,β,2 =

(
wα

b2cd
(b2cd− cd3)

)
β

=
(
wα − wγcd3

)
β

= −(wγ+(0,0,1,3))β

= −δ(β = γ + (0, 0, 1, 3))

= −δ(β = α+ (0,−2, 0, 2))

= −δ(α = β + (0, 2, 0,−2)) .

Lastly, LT(g3)|wα ⇐⇒ α = γ + (1, 0, 1, 3), so

τα,β,3 =

(
wα

acd3
(acd3 + bc2d2)

)
β

= δ(β = γ + (0, 1, 2, 2))

= δ(β = α+ (−1, 1, 1,−1))

= δ(α = β + (1,−1,−1, 1)) .

Adding these together, we get for α > β

τα,β =
∑
j∈Dα

τα,β,j

=δ1,αδ(α = β + (1, 1,−1,−1))

− δ2,αδ(α = β + (0, 2, 0,−2))

+ δ3,αδ(α = β + (1,−1,−1, 1)) , (4.1.3)

where δk,α equals 1 if LT(gk)|wα and 0 otherwise.

We can see that for each β ∈ Z4
≥0, there are at most three possible arrows originating from β in the

division graph. The only multi-indices α which can have arrows from β are β + v1, β + v2, and β + v3,
where v1 = (1, 1,−1,−1), v2 = (0, 2, 0,−2) and v3 = (1,−1,−1, 1). Figure 4.1 illustrates these three
possible arrows.
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Figure 4.1: In the division graph for the Gröbner basis G = {ab+ cd, b2cd− cd3, acd3 +
bc2d2}, there are at most three arrows stemming from a multi-index β. These are given
by the vectors v1 = (1, 1,−1,−1), v2 = (0, 2, 0,−2) and v3 = (1,−1,−1, 1).

Having found expressions for τα,β , the next step is to compute the Ωk
α polynomials, where k = 1, 2 or

3, and indexes over the Gröbner basis G = {g1, g2, g3}.

Computing Ω1
α

Because fj(w) ∝ ab2j+1 + cd2j+1, the set Hj = {α | (fj)α 6= 0} is just {(1, 2j+ 1, 0, 0), (0, 0, 1, 2j+ 1)},
so we only need to compute Ω1

(1,2j+1,0,0) and Ω1
(0,0,1,2j+1) for each j > 0. These are computed as sums

over all paths in the division graph terminating at (1, 2j + 1, 0, 0) and (0, 0, 1, 2j + 1) respectively. The
strategy is to use the expression for τα,β to find all possible paths leading to these points.

Case 1: α = (1, 2j + 1, 0, 0), wα = ab2j+1

K(α, α) =
1

dα
= 1

where dα = 1 since g1 is the only element of G whose leading term divides ab2j+1. The only indices
β < α which appear in the expression for Ω1

α (3.4.1) are those for which LT(g1)|wβ . Any such β will
equal β = γ + (1, 1, 0, 0) for some γ ∈ Z4

≥0.

Meanwhile the general expression for τα,β (4.1.3) tells us that there can only be a path from β to α in
the division graph if there exist n1, n2, n3 ∈ Z≥0 such that

α = β + n1(1, 1,−1,−1) + n2(0, 2, 0,−2) + n3(1,−1,−1, 1) .

Substituting α = (1, 2j + 1, 0, 0) and β = (1, 1, 0, 0) + γ gives

γ = (0, 2j, 0, 0) + n1(−1,−1, 1, 1) + n2(0,−2, 0, 2) + n3(−1, 1, 1,−1) .

As each component of γ must be non-negative, both n1 and n3 must be 0, so the possible values of γ
are

γ = (0, 2j − 2n2, 0, 2n2) ,

for n2 = 0, 1, ..., j. The indices β which can have paths to α = (1, 2j + 1, 0, 0) are then all of the form

β = (1, 2j + 1− 2n2, 0, 2n2)

= α− n2(0, 2, 0,−2) ,

for n2 = 1, 2, ..., j. The n2 = 0 case has been excluded as we are analysing cases where β < α.

From (4.1.3) we can see that the only possible path from β = (1, 2j+1−2n2, 0, 2n2) to α = (1, 2j+1, 0, 0)
is made up of n2 individual steps along (0, 2, 0,−2). No steps can be taken along (1, 1,−1,−1) or
(1,−1,−1, 1) as that would increase the first component with no way of decreasing it. Meanwhile, the
coefficient associated to a step along this possible path is

τ(1,2j+1−2l,0,2l),(1,2j+1−2(l+1),0,2(l+1)) = −δ2,(1,2j+1−2l,0,2l) ,
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but this is zero since LT(g2) = b2cd does not divide w(1,2j+1−2l,0,2l) = ab2j+1−2ld2l. We conclude

K((1, 2j + 1, 0, 0), β) = 0 ,

for all β < α. Hence only the β = α term is non-zero in Ω1
α, and so

Ω1
α = K(α, α)

wα

LT(g1)

=
ab2j+1

ab

= b2j .

Case 2: α = (0, 0, 1, 2j + 1), wα = cd2j+1

None of the leading terms of the Gröbner basis elements divide cd2j+1 so

K(α, α) = 0 .

If β < α, K(α, β) only appears in the expression for Ω1
α if LT(g1) = ab divides wβ. In other words,

we need to be able to write β = γ + (1, 1, 0, 0) for some γ ∈ Z4
>0. Additionally, for a path from β to

α = (0, 0, 1, 2j + 1) to exist in the division graph, there must be n1, n2, n3 ∈ Z≥0 so that

γ = (−1,−1, 1, 2j + 1) + n1(−1,−1, 1, 1) + n2(0,−2, 0, 2) + n3(−1, 1, 1,−1) .

The right hand side of the above equation always has a negative first component, implying that no
such γ exists. Every β which is divisible by LT(g1) is not connected by any paths to α. Since K(α, β)
is a sum over all paths from β to α, we conclude that K(α, β) = 0 for all β ≤ α with LT(g1)|wβ , so

Ω1
(0,0,1,2j+1) = 0 .

Convergence:We wish to show convergence of the series
∑∞

j=0

(∑
α∈Hj (fj)

2
α

)(∑
α∈Hj

(
Ω1
α

)2) which
in this case is given by

∞∑
j=0

(
2

(2j + 1)!

)(
(Ω1

(1,2j+1,0,0))
2 + (Ω1

(0,0,1,2j+1))
2
)

=
∞∑
j=0

2

(2j + 1)!
b4j .

It is straightforward to use the ratio test to check this converges for all values of b. In fact it converges
to a continuous function of w. Using the Weierstrass M test, the above series converges uniformly (as
a function of w) on any compact subset U ⊂ R4. Combining this with the uniform limit theorem tells
us that the limit is a continuous function on U , and since U was arbitrary, the limit is continuous on
all of R4.

Computing Ω2
α

Case 1: α = (1, 2j + 1, 0, 0)

The relevant indices β for computing Ω2
α are those which are divisible by LT(g2). That is, those of

the form β = γ + (0, 2, 1, 1). For there to be a path from γ + (0, 2, 1, 1) to α in the division graph, we
require

γ = (1, 2j − 1,−1,−1) + n1(−1,−1, 1, 1) + n2(0,−2, 0, 2) + n3(−1, 1, 1,−1) .

In order for both the first and third components to be non-negative, exactly one of n1 or n3 must
equal 1 and the other must equal 0. It appears that there are two types of points β which may have
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paths to α in the division graph. The first type of point has n1 = 1, n2 ∈ {0, 1, ..., j − 1}, and n3 = 0,
and would equal

β = α− v1 − n2v2 .

The other type of point has n1 = 0, n2 ∈ {1, ..., j}, and n3 = 1, equalling

β = α− n2v2 − v3 .

However
v1 + (n2 − 1)v2 = v3 + n2v2 ,

and so every point from the second case is also covered by the first case. Hence we may assume n1 = 1
and n3 = 0, and the values of β which have paths to α = (1, 2j + 1, 0, 0) are

βn2 = (1, 2j + 1, 0, 0)− 1(1, 1,−1,−1)− n2(0, 2, 0,−2)

= α− v1 − n2v2 ,

for n2 ∈ {0, ..., j − 1}.

To construct a path from βn2 to α, we need to take one step in the v1 direction and n2 steps in the v2
direction. At first glance, it appears that these steps could be taken in any order, and all the different
paths are illustrated in Figure 4.2a. It turns out that only one of these paths is valid.

(a) (b)

Figure 4.2: Figure (a) shows the potential paths from β to α in the division graph,
which consist of n2 steps in the v2 direction and one step in the v1 direction. Only one
of these paths is valid though. Figure (b) shows this valid path, which is n2 steps in
the v2 direction followed by a single step in the v1 direction.

The following condition lets us discard all but one of these potential paths. For a step to be taken
from an index η along the vi direction, LT(gi) must divide the end point η+ vi. We denote a potential
path by a sequence of indices η0 < η1 < ... < ηn2+1, where ηi is the index after i steps have been
taken, so η0 = βn2 and ηn2+1 = α. Taking a step along the v1 direction reduces the third component
by 1. The index βn2 starts with a third component of 1, and taking steps along the v2 direction leaves
this component unchanged. Hence if ηl → ηl+1 is the step taken along the v1 direction, then the
third component of ηl+1 will be 0. Taking a step along v2 would leave this component as zero and
LT(g2) = b2cd would not divide the end point of this step. Hence, no steps along v2 are allowed once
the step along v1 has been taken.

We conclude that the only path from β to α in the division graph consists of taking n2 steps in the
v2 direction followed by one step in the v1 direction. This path is illustrated in Figure 4.2b (it is
straightforward to check that each step in this path is in fact allowed.) We can write the lth index in
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the path as ηl = (0, 2j − 2n2 + 2l, 1, 1 + 2n2 − 2l) for l = 0, 1, ..., n2, and ηn2+1 = α = (1, 2j + 1, 0, 0).
We should note that there are no paths involving v3 since taking a step along this direction takes us
to an index whose third component is 0, which is not divisible by LT(g3) = acd3.

The coefficient τηn2+2,ηn2+1 from (4.1.3) associated to the step along v1 is 1, while the coefficient for a
step in the v2 direction τηl+1,ηl is −1. Of all the leading terms in the Gröbner basis, LT(g1), LT(g2),
and LT(g3), only one divides each index in the path ηl, so dηl = 1. We compute

K(α, βn2) =
(−1)n2+3

1
1(−1)n2

= −1 .

To summarise, we have found which β are both divisible by LT(g2) and have paths in the division
graph connecting them to α = (1, 2j+ 1, 0, 0). We’ve shown that each of these β’s has exactly one path
to α and the constant associated to this path is K(α, β) = −1. This lets us conclude that for j ≥ 1

Ω2
(1,2j+1,0,0) =

∑
β≤α
2∈Dβ

K((1, 2j + 1, 0, 0), β)
wβ

b2cd

=

j−1∑
n2=0

K((1, 2j + 1, 0, 0), (0, 2j − 2n2, 1, 1 + 2n2))
b2j−2n2cd1+2n2

b2cd

=

j−1∑
n2=0

−b2j−2(n2+1)d2n2 .

Case 2: α = (0, 0, 1, 2j + 1)

Any index β which is divisible by LT(g2) will equal β = γ + (0, 2, 1, 1), and for a path to exist from β
to α, we must also have

γ = (0,−2, 0, 2j)− n1(1, 1,−1,−1)− n2(0, 2, 0,−2)− n3(1,−1,−1, 1) ,

but this is impossible. The first or second component will be negative regardless of the values of n1,
n2, and n3, so there are no such β with paths to α. LT(g2) also doesn’t divide α, so K(α, α) doesn’t
appear in the expression for Ω2

α. Hence

Ω2
(0,0,1,2j+1) = 0 .

Convergence: We need to check that the following series converges

∞∑
j=0

2

(2j + 1)!

((
Ω2
(1,2j+1,0,0)

)2
+
(

Ω2
(0,0,1,2j+1)

)2)

=

∞∑
j=0

2

(2j + 1)!

(
j−1∑
n2=0

−b2j−2(n2+1)d2n2

)2

. (4.1.4)

Replacing both b and d with some s > 0 gives the series

∞∑
j=0

2

(2j + 1)!
j2s4j−4 .

Applying the ratio test, this converges for any value of s. It follows that (4.1.4) converges for all values
of b and d in R. The Weierstrass M test and uniform limit theorem again show that the limit is a
continuous function on all of R4.
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Computing Ω3
α

Case 1: α = (1, 2j + 1, 0, 0)

LT(g3) = acd3 does not divide α, so the K(α, α) term does not contribute. For LT(g3) to divide an
index β, we need that β = γ + (1, 0, 1, 3). For there to be a path from such β to α we must be able to
write

γ = (0, 2j + 1,−1,−3)− n1(1, 1,−1,−1)− n2(0, 2, 0,−2)− n3(1,−1,−1, 1) ,

but this isn’t possible. Both of n1 and n2 must be zero to prevent the first component from being
negative but this will leave the third component negative. We conclude that

Ω3
(1,2j+1,0,0) = 0 . (4.1.5)

Case 2: α = (0, 0, 1, 2j + 1)

Again the K(α, α) term doesn’t contribute. Following the same argument again, we need to be able to
write

γ = (−1, 0, 0, 2j − 2)− n1(1, 1,−1,−1)− n2(0, 2, 0,−2)− n3(1,−1,−1, 1) , (4.1.6)

which again is impossible due to the first component always being negative. We conclude that

Ω3
(0,0,1,2j+1) = 0 . (4.1.7)

Since both Ω3
(1,2j+1,0,0) and Ω3

(0,0,1,2j+1) equal 0, there are no series to check convergence for.

4.1.2 Example 1 satisfies (C4)

For each k = 1, 2, 3 the series
∑∞

j=0

(
akj (w)

)2
converges to a continuous function on R4. This function

is bounded on any given compact weight space W ⊂ R4, so this model will satisfy conditions (C1) -
(C4) on this weight space. Hence there exists C > 0 so that

K(w) ≤ C
(
g1(w)2 + g2(w)2 + g3(w)2

)
(4.1.8)

for all w ∈W .

4.2 Example 2: Two neuron tanh network

The previous example is simpler to study because the activation function sin(x) has a globally
convergent Taylor series. The tanh activation does not have this property, and care must be taken to
keep track of its domain of convergence. In this example, we study a two layer tanh network with two
neurons and no biases, given by

f(x, a, b, c, d) = a tanh(bx) + c tanh(dx) . (4.2.1)

In Section 2.3 we found that when |bx|, |dx| < π
2 , the Taylor series about x = 0 for the network f can

be written

f(x, a, b, c, d) =
∞∑
j=0

fj(a, b, c, d)ej(x) ,

where

fj(a, b, c, d) = γj(ab
2j+1 + cd2j+1) ,

ej(x) = ηjx
2j+1 ,
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and γj and ηj are real numbers satisfying γjηj =
22(j+1)(22(j+1)−1)B2(j+1)

(2(j+1))! . There is some choice available
in defining γj and ηj . However, we need to define them in a way which guarantees the convergence of
the following series

∞∑
j=0

‖ej(x)‖2 <∞ for (C2) , (4.2.2)

∞∑
j=0

fj(w)2 <∞ for (C3) , (4.2.3)

∞∑
j=0

∑
α∈Gi

(fj)
2
α

∑
α∈Gj

(Ωk
α)2

 <∞ for (C4) . (4.2.4)

In the third inequality (4.2.4), k indexes a Gröbner basis {g1, ..., gs} for the ideal generated by the
fj ’s.

Condition (C2)

We set the input distribution q(x) to be uniform on [−t, t], for some t > 0. We we will investigate
what values t, ηj , and γj may take while ensuring conditions (C2)-(C4) hold. There is an important
conceptial difference between these choices though. The choices of ηj and γj don’t alter the model
under consideration, while adjusting the value of t changes the input space, and hence also changes
the model.

To see that some care must be taken in the choice of γj and ηj , consider the following definitions
which shift “most” of the value in the Taylor series coefficients to the ej(x)’s

γj =
1√

(2(j + 1))!
and ηj =

22(j+1)(22(j+1) − 1)B2(j+1)√
(2(j + 1))!

.

Factoring the constants this way makes the fj(w)’s almost identical to the ones in the two neuron sine
network and condition (C3) automatically holds. Unfortunately this choice makes condition (C2) fail.
To see why, we check the convergence of

∞∑
j=0

‖ej(x)‖2L2(X,q) =

∞∑
j=0

∫
[−t,t]

η2jx
4j+2q(x)dx

=
∞∑
j=0

η2j
2t

2t4j+3

4j + 3
.

Setting qj =
η2j
2t

2t4j+3

4j+3 and using the ratio test we check

lim
j→∞

qj+1

qj
.

It’s well known that
|B2n| ∼ 4

√
πn
( n
πe

)2n
as n→∞ .

So

B2
2(j+2)

B2
2(j+1)

∼ (j + 2)4(j+2)(πe)4(j+1)

(j + 1)4(j+1)(πe)4(j+2)

∼ 1

(πe)4

j4j+8
(

1 + 2
j

)4j+8

j4j+4
(

1 + 1
j

)4j+4
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∼ j4

π4
.

Meanwhile

24(j+2)(22(j+2) − 1)2

24(j+1)(22(j+1) − 1)2
∼ 28 ,

and (
t4(j+1)+2

t4j+2

)(
4j + 3

4(j + 1) + 3

)(
(2(j + 1))!

(2(j + 2))!

)
∼ t4

(2j + 4)(2j + 3)
.

Combining the above results gives

lim
j→∞

qj+1

qj
= lim

j→∞

28t4j4

π4(2j + 4)(2j + 3)
, (4.2.5)

which diverges regardless of how small t is, and so for this choice of constants, condition (C2) isn’t
satisfied.

To have any hope of the ej(x)’s being square summable, we need to remove a factor of j2 from the
numerator of (4.2.5). One way to achieve this is by setting

γj =

√
|B2(j+1)|√

(2(j + 1))!
and ηj =

22(j+1)(22(j+1) − 1) sgn(B2(j+1))
√
|B2(j+1)|√

(2(j + 1))!
. (4.2.6)

Lemma 12. If the input distribution is the uniform distribution on [−t, t] for any t <
(
π2

26

) 1
4 , then

with ηj given in (4.2.6), and ej(x) = ηjx
2j+1

∞∑
j=0

‖ej(x)‖2L2(X,q) < ∞ .

This is to say, condition (C2) is satisfied.

Proof: Using these definitions we see that

qj+1

qj
∼ 28t4j2

π2(2j + 4)(2j + 3)

∼ 28t4

4π2

∼ 26t4

π2
. (4.2.7)

We can make t necessarily small to ensure convergence of
∑∞

j=0 ‖ej(x)‖2L2(X,q), in particular if t <
√
π

2
√
2
≈ 0.62, the ej(x)’s will be square summable. �

The fact that the input space must be sufficiently small in order for (C2) to hold is unsurprising.
Because we are using the Taylor series, it makes sense that its radius of convergence will impose some
restrictions on the input space.

Condition (C3)

Next we check if condition (C3) holds with fj(w) = γj(ab
2j+1 + cd2j+1), where γj is given in (4.2.6).

‖fj(a, b, c, d)‖2`2(R) =
∞∑
j=0

|B2(j+1)|
(2(j + 1))!

(
ab2j+1 + cd2j+1

)2
.
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Suppose we restrict the weight (a, b, c, d) so that |a|, |c| < s and |b|, |d| < r for some s, r > 0. Then

|ab2j+1 + cd2j+1| ≤ |ab2j+1|+ |cd2j+1|
≤ 2sr2j+1 .

It follows that

‖fj(a, b, c, d)‖`2(R)2 ≤ 4s2
∞∑
j=0

|B2(j+1)|
(2(j + 1))!

r4j+2 .

Lemma 13. If |r| <
√

2π then
∞∑
j=0

|B2(j+1)|
(2(j + 1))!

r4j+2 <∞ .

Proof: We prove this using the ratio test. Setting hj =
|B2(j+1)|
(2(j+1))!r

4j+2, we have that

lim
j→∞

hj+1

hj
= lim

j→∞

j2

π2
2

(2j + 4)(2j + 3)
r4

= lim
j→∞

r4

4π2
,

which is less than one precisely when r <
√

2π. �

Hence ‖fj(a, b, c, d)‖`2(R) < ∞ as long as |b|, |d| <
√

2π. The other weights a and c may take any
values.

Condition (C4)

Since the fj ’s are rescaled versions of the ones in Section 4.1, the set G = {g1, g2, g3} = {ab+cd, b2cd−
cd3, acd3 + bc2d2} still works as a Gröbner basis for this example. The Ωk

α polynomials depend only
on the choice of Gröbner basis, and hence are exactly the same as the ones for the two neuron sine
network.

Using the values of the Ωk
α’s from Section 4.1, proving condition (C4) reduces to showing the two

following series converge and are bounded on the weight space

∞∑
j=0

2γ2j b
4j , (4.2.8)

∞∑
j=1

2γ2j

(
j−1∑
n=0

−b2j−2(n+1)d2n

)2

. (4.2.9)

For the first series, (4.2.8), we check the convergence of

∞∑
j=0

2
|B(2(j+1))|
(2(j + 1))!

b4j .

By Lemma 13, this converges when |b| <
√

2π.

For the second series (4.2.9) we set b = d = s and check the convergence of

∞∑
j=1

2γ2j j
2s4j−4 .
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Using the ratio test we let pj = 2γ2j j
2s4j−4, then

pj+1

pj
∼ (j + 1)2s4j

4π2j2s4j−4

∼ s4

4π2
,

so we can conclude (4.2.9) converges for all (b, d) ∈ (−
√

2π,
√

2π)×(−
√

2π,
√

2π). Using the Weierstrass
M test, both series converge to continuous functions on (−

√
2π,
√

2π) × (−
√

2π,
√

2π), and so are
bounded on any compact subsets.

We lastly must check for which values of x and w the original Taylor of f converges. Inputs and weights
must be restricted to ensure |bx| < π

2 and |dx| < π
2 . This turns out to add no further restrictions.

Since we already require |x| < t <
(
π2

26

)( 1
4
)
and |b|, |d| <

√
2π, it follows

|bx|, |dx| <
√

2π

(
π2

26

)( 1
4
)

=
π

2
.

Definition: A working set for the neural network f is a subset of the form U × (−t, t) ⊂ W × R
satisfying:

1. |bx|, |dx| < π
2 for all (a, b, c, d) ∈ U and x in (−t, t).

2. The ej ’s are square summable when the input distribution q(x) is defined to be uniform on
(−t, t).

3. The two series (4.2.8) and (4.2.9) are bounded as functions on U .

The first condition ensures that the Taylor series of the network converges, while the second and third
guarantee conditions (C3) and (C4) respectively.

Roughly speaking a working set is a set on which we can be confident all our methods work and the
upper bound obtained is valid. Specifically, if U × (−t, t) is a working set for the two neuron network
f and if the true regression function is fT = 0, then there exists C > 0 such that

K(a, b, c, d) ≤ C
(
(ab+ cd)2 + (b2cd− cd3)2

)
(4.2.10)

for all (a, b, c, d) ∈ U .

Remark: We have shown that

(R× [−s, s]× R× [−s, s])× [−t, t] (4.2.11)

is a working set for f , for any 0 < s <
√

2π and 0 < t <
√
π

2
√
2
.

4.3 Gröbner methods are too difficult for bigger networks

Having used the generic division algorithm to prove the upper bound for a two neuron network, we would
like to advance to more complicated examples. However, for this simple example though, computing
the quotients akj (w) with the generic division algorithm was not straightforward. Unfortunately this
gets much too complicated for larger networks.

Take the two layer tanh network with three neurons

g(x, a, , c, d, e, f) = a tanh(bx) + c tanh(dx) + e tanh(fx)
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which has Taylor series polynomials proportional to

gj(w) = ab2j+1 + cd2j+1 + ef2j+1 .

Using the computer algebra system Singular [DGPS21] with graded lexicographic monomial order we
find the following Gröbner basis for the ideal I = 〈{gj}∞j=0〉

G =

{
ab+ cd+ ef, b2cd+ b2ef − cd3 − ef3, acd3 + aef3 + bc2d2 + 2bcdef + be2f2,

b2d2ef − b2ef3 − d2ef3 + ef5, b2cef3 + b2de2f2 − cd4ef + cd2ef3 − cef5 − de2f4,
ad2ef3 − aef5 + bcd3ef − bcdef3 + bd2e2f2 − be2f4, cd5ef − 2cd3ef3 + cdef5,

acdef5 + ae2f6 − bc2d4ef + 2bc2d2ef3 − bcd3e2f2 + 3bcde2f4 + be3f5,

acef7 + ade2f6 − bc2d3ef3 + 2bc2def5 − bcd4e2f2 + 2bcd2e2f4 + bce2f6 + bde3f5
}
.

Not only does this basis have nine elements, but several of these elements contain many terms. For each
basis element gk, we have to check the convergence of the associated series of quotients

∑∞
j=0 a

k
j (w)2,

so the larger the basis, the longer the computation. Additionally, if a basis polynomial gk has many
terms then so will

wα

LT(gk)
gk ,

for each wα divisible by LT(gk). This makes more of the τα,β ’s in the division graph non-zero, resulting
in a division graph containing many more arrows. As a result, there are many more paths between
each pair of indices α and β, making the calculation much more difficult.

For us, the division graph method was too difficult for any network with three neurons or more. This
leaves few options for finding quotients for larger networks. One possibility is to take each Taylor
series polynomial fj and divide it by the basis G using the standard division algorithm. This can
be done using a computational algebra package, albeit with one large obstacle: there are infinitely
many polynomials fj to divide. Unless there is some pattern in the definition of the fj ’s allowing you
to perform a finite number of divisions and extrapolate their results to the rest of the sequence of
polynomials, this approach will not work.

We should note that generic Gröbner basis methods of the previous examples cannot avoid this problem
either. The calculation was only possible because the fj ’s followed a simple pattern, which allowed us
to do a single calculation for an arbitrary fj .

At present then, our best option for studying other examples is to hope we are lucky enough to find a
pattern in the quotients. Admittedly this approach is somewhat inelegant and not very generalisable.

4.4 Example 3: n neuron tanh networks

In this example we find polynomial upper bounds for the KL divergence for two layer networks with
arbitrarily many neurons. The network to be analysed is given by the function

f(x,w) =
n∑
i=1

ai tanh(bix) . (4.4.1)

In Section 2.3 we saw that when |bix| < π
2 for all i, the Taylor series of f gives

f(x,w) =
∞∑
j=0

fj(w)ej(x) ,

where fj(w) = γj

(∑n
i=1 aib

2j+1
i

)
, ej(x) = ηjx

2j+1, and γj , ηj are any real numbers satisfying

γjηj =
22(j+1)(22(j+1)−1)B2(j+1)

(2(j+1))! .
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We use the same choice of γj and ηj from the two neuron example, setting

γj =

√
|B2(j+1)|√

(2(j + 1))!
and ηj =

22(j+1)(22(j+1) − 1) sgn(B2(j+1))
√
|B2(j+1)|√

(2(j + 1))!
.

To prove a polynomial upper bound for the KL divergence of this model, we first check conditions
(C2) and (C3).

Condition (C2)

The ej(x)’s for the n neuron network are exactly the same as in the two neuron network. Hence the
proof of condition (C2) for the two neuron network carries over to this example as long as the input

distribution q(x) is the uniform distribution on [−t, t] where t <
(
π2

26

) 1
4 .

Condition (C3)

To check condition (C3), we need to show

∞∑
j=0

|B2(j+1)|
(2(j + 1))!

(
n∑
i=1

aib
2j+1
i

)2

<∞.

We will use a similar technique as from the two neuron example. Suppose |a1|, |a2|, ..., |an| ≤ s and
|b1|, ..., |bn| ≤ r for some s, r > 0. Then(

n∑
i=1

aib
2j+1
i

)2

≤

(
n∑
i=1

|ai||bi|2j+1

)2

≤
(
nsr2j+1

)2
.

Hence
∞∑
j=0

fj(w)2 ≤ n2s2
∞∑
j=0

|B2(j+1)|
(2(j + 1))!

r4j+2 .

By Lemma 13, the series on the right converges as long as r <
√

2π. Hence condition (C3) holds
provided |b1|, ..., |bn| <

√
2π.

The final part of the calculation is condition (C4), which we will split into two sections. The first step
is to find a basis for the ideal I = 〈{fj(w)}∞j=0〉 and compute the quotients akj (w) for this basis. The
second step is to show that the sum of squares of these quotients form a bounded series.

4.4.1 Condition (C4): Finding a basis and quotients

For the purpose of finding a basis of the ideal I = 〈{fj(w)2}∞j=0〉, we can rescale the fj ’s so that each
term has coefficent 1. For this section, we drop γj and set

fj(w) =

n∑
i=1

aib
2j+1
i .

When we reach the final step of checking convergence, we will reincorporate the γj ’s.

The problem of finding a basis for the ideal I = 〈{fj(w)}∞j=0〉 ⊂ R[a1, ..., an, b1, ..., bn] has been solved
by Takahashi and Washino. They found a recursive expression for the fj ’s, to show that

B = {f0, f1, ..., fn−1}
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is a basis for I [TW20]. In particular, they derived the expression

fj+n−1 =fn−1

(
n∑
i=1

b2ji

)
+ fn−2

 n∑
i=1

∑
k 6=i

b2ji b
2
k

+ fn−3

 n∑
i=1

∑
k 6=i

∑
l>k,l 6=i

b2ji b
2
kb

2
l

+

...+ f0

∑
i=1n

b2ji
∏
k 6=i

b2k



+ fj+n−3

 ∑
i1,i2

it 6=iq for t6=q

b2i1b
2
i2

− 2fj+n−4

 ∑
i1,i2,i3

it 6=iq for t6=q

b2i1b
2
i2b

2
i3

+

...+ (−1)n(n− 1)fj−1
(
b21b

2
2...b

2
n

)
.

We first tried to “unravel” this recursive statement to find expressions for each fj in terms of only
f0, ..., fn−1 but this was too difficult even for small three neuron networks.

Instead, we used a computer algebra package to compute quotients for three and four neurons, before
generalising the results to networks with arbitrarily many neurons.

Three Neurons

The Taylor series polynomials for a two layer three neuron network are

pj(w) = ab2j+1 + cd2j+1 + ef2j+1 .

By Takahashi and Washino’s result, 〈p0, p1, p2〉 = 〈{pj}∞j=0〉. We used Singular to divide the first few
pj polynomials by the basis (p0, p1, p2) with graded lexicographic order. This output the following
expressions

p3 =
(
b2d2f2

)
p0 −

(
b2d2 + b2f2 + d2f2

)
p1 +

(
b2 + d2 + f2

)
p2

p4 =
(
b4d2f2 + b2d4f2 + b2d2f4

)
p0 −

(
b4d2 + b4f2 + b2d4 + 2b2d2f2 + b2f4 + d4f2 + d2f4

)
p1

+
(
b4 + b2d2 + b2f2 + d4 + d2f2 + f4

)
p2

p5 =
(
b6d2f2 + b4d4f2 + b4d2f4 + b2d6f2 + b2d4f4 + b2d2f6

)
p0

−
(
b6d2 + b6f2 + b4d4 + 2b4d2f2 + b4f4 + b2d6 + 2b2d4f2 + 2b2d2f4 + b2f6 + d6f2+

d4f4 + d2f6
)
p1

+
(
b6 + b4d2 + b4f2 + b2d4 + b2d2f2 + b2f4 + d6 + d4f2 + d2f4 + f6

)
p2 .

A pattern begins to emerge. The quotient of p0 in the expression for pj is made up of monomials
containing all three of the variables b, d, and f . Each of these variables is put to an even power and the
total degree of each of these monomials equals 2j. The quotient of p1 consists of monomials containing
either 2 or 3 of the variables b, d, and e, again each with even powers, and the total degree of each
monomial is 2j − 2. When one of these monomials contains all three of the variables b, d, and f , it is
paired with a coefficient of 2, while the monomials in only two variables have coefficient 1. Lastly, the
quotient of p2 contains all monomials in 1, 2, or 3 of the variables, again made up of even powers,
with total degree 2j − 4. The coefficients of each monomial in this expression is just 1. This suggests
that an arbitrary pj can be written in the following form.

Proposition 4. For j > 2, pj can be written as

pj =

 ∑
|i|=j−2
n0(i)=2

(
bi1di2f i3

)2
+

∑
|i|=j−2
n0(i)=1

(
bi1di2f i3

)2
+

∑
|i|=j−2
n0(i)=0

(
bi1di2f i3

)2
(ab5 + cd5 + ef5

)
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−

 ∑
|i|=j−1
n0(i)=1

(
bi1di2f i3

)2
+ 2

∑
|i|=j−1
n0(i)=0

(
bi1di2f i3

)2
(ab3 + cd3 + ef3

)
∑

i1+i2+i3=j
n0(i1,i2,i3)=0

(
bi1di2f i3

)2
(ab+ cd+ ef) , (4.4.2)

where i = (i1, i2, i3) is a multi-index and n0(i) counts the number of zero components in i.

This proposition can be proven directly, however we omit this to focus on the equivalent result for
networks with more neurons.

Four Neurons

The Taylor series polynomials for a two layer four neuron network are

pj = ab2j+1 + cd2j+1 + ef2j+1 + gh2j+1

and (p0, p1, p2, p3) is a basis for the ideal I = 〈p0, p1, p2, p3〉. Using Singular to divide a few of the pj ’s
by this basis, the following pattern emerges.

Proposition 5. Each pj = ab2j+1 + cd2j+1 + ef2j+1 + gh2j+1 can be written as

pj =

 ∑
|i|=j−3
n0(i)=3

(
bi1di2f i3hi4

)2
+

∑
|i|=j−3
n0(i)=2

(
bi1di2f i3hi4

)2
+

∑
|i|=j−3
n0(i)=1

(
bi1di2f i3hi4

)2
+

∑
|i|=j−3
n0(i)=0

(
bi1di2f i3hi4

)2
 p3

−

 ∑
|i|=j−2
n0(i)=2

(
bi1di2f i3hi4

)2
+ 2

∑
|i|=j−2
n0(i)=1

(
bi1di2f i3hi4

)2
+ 3

∑
|i|=j−2
n0(i)=0

(
bi1di2f i3hi4

)2
 p2

+

 ∑
|i|=j−1
n0(i)=1

(
bi1di2f i3hi4

)2
+ 3

∑
|i|=j−1
n0(i)=0

(
bi1di2f i3hi4

)2
 p1

−

 ∑
|i|=j

n0(i)=0

(
bi1di2f i3hi4

)2
 p0 , (4.4.3)

where i = (i1, i2, i3, i4) and |i| = i1 + i2 + i3 + i4.

In the above expression for pj , the basis element pk is multiplied by the sum of the squares of all
monomials of degree j − k in the variables b, d, f , and h, where each monomial contains 4, 3, ..., 4− k
of the variables. Each monomial is paired with an integer coefficient, dependent on how how many of
the variables it contains. When these monomials are arranged into a grid as in (4.4.3), the pattern for
these coefficients becomes clear. The coefficients in the first row are all equal to 1, while the coefficient
in the lth row and rth column is given by the sum of the coefficients in previous row (l − 1), from the
first to the rth column. An alternating sign is then applied to each row.

The expression for pj in the 3 neuron case (4.4.2) follows the same pattern, suggesting that this
construction may work for a general n neuron network.
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n Neurons

The Taylor series polynomials for a two layer n neuron network up to some constants are

fj(w) = a1b
2j+1
1 + a2b

2j+1
2 + · · ·+ anb

2j+1
n ,

and Takahashi and Washino’s result tells us that {f0, ..., fn−1} is a basis for the ideal generated by all
these polynomials.

Definition 25. Define B1,t = 1 for t = 0, 1, ..., n− 1, and then define recursively Br,t =
∑t

k=0 Br−1,k
for t = 0, ..., n− r. These integers can be arranged in a grid as shown below in Figure 4.3a, so that the
first row consists of 1’s, the second row is constructed by summing up elements of the first row, the
third row from sums of elements in the second row, and so on. Notably the diagonals of the figure
form the rows of Pascal’s triangle.

We then define Ar,t = (−1)rBr,t. So the Ar,t’s can be represented by alternating the sign on each row
of diagram for the Br,t values, as shown in Figure 4.3b.

(a) Grid of Br,t values for 6 neu-
rons

(b) Grid of Ar,t values for 6 neu-
rons

Figure 4.3

The following lemma generalises the pattern from the three and four neuron networks to show how
any fj can be written in terms of the basis {f0, ..., fn−1}.

Lemma 14. When j ≥ n, fj can be written in terms of f0,..., fn−1 as follows

fj(w) =

n−1∑
t=0

A1,t

∑
|α|=j−(n−1)
n0(α)=n−1−t

(bα1
1 ...bαnn )2

 fn−1(w)

+

n−2∑
t=0

A2,t

∑
|α|=j−(n−2)
n0(α)=n−2−t

(bα1
1 ...bαnn )2

 fn−2(w)

...

+

 0∑
t=0

An,t
∑
|α|=j

n0(α)=0

(bα1
1 ...bαnn )2

 f0(w) , (4.4.4)

54



or, more compactly

fj(w) =
n∑
r=1


n−r∑
t=0

Ar,t
∑

|α|=j−(n−r)
n0(α)=n−r−t

(bα1
1 ...bαnn )2

 fn−r(w)

 , (4.4.5)

where the sum
∑
|α|=j−(n−r)
n0(α)=n−r−t

is taken over all multi-indices α which satisfy the listed conditions.

In other words, the quotient of the basis element fk(w) (0 ≤ k ≤ n − 1) in the expression for the
Taylor series polynomial fj (j ≥ 0) consists of a sum of squares of several monomials. Specifically,
these are the squares of every monomial in the variables b1, ..., bn of total degree j − k, which contain
between n − k and n of the variables. Each monomial is paired with an integer coefficient, which
depends on how many of the variables it contains.

Proof: We will use the following notation frequently in this proof. Given a multi-index α = (α1, ..., αn),
write α̂ := (α2, ..., αn) for the projection onto all but the first component.

Each of the quotients in equation (4.4.5) are invariant under any transposition of the variables of the
form σkl : R[a1, ..., an, b1, ..., bn] which sends ak 7→ al, al 7→ ak, bk 7→ bl and bl 7→ bk, while leaving all
the other variables unchanged. It follows that if

a1b
2j+1
1 =

n∑
r=1


n−r∑
t=0

Ar,t
∑

|α|=j−(n−r)
n0(α)=n−r−t

(bα1
1 ...bαnn )2

 a1b
2(n−r)+1
1

 (4.4.6)

is true, then applying σ1k for each k = 2, ..., n to both sides is sufficient to prove equation (4.4.5).

The overall strategy of the proof is to bring the factors b2(n−r)+1
1 in the expressions

n−r∑
t=0

Ar,t
∑

|α|=j−(n−r)
n0(α)=n−r−t

(bα1
1 ...bαnn )2

 a1b
2(n−r)+1
1


into the sums. This lets us change the summation variables, and after doing so, we will see that nearly
every term on the right of (4.4.6) cancels out, leaving only a1b

2j+1
1 .

Let’s consider the expression∑
|α|=j−(n−r)
n0(α)=n−r−t

(bα1
1 ...bαnn )2a1b

2(n−r)+1
1 =

∑
|α|=j−(n−r)
n0(α)=n−r−t

(b
α1+(n−r)
1 bα2

2 ...bαnn )2a1b1 (4.4.7)

for some choice of r and t, which appears in the right hand side of (4.4.6). To change the summation
variable, there are two cases to consider based on the value of n− r − t.

The first case is when n− r − t = 0, so that n0(α) = 0, or in other words, each multi-index α in the
sum has no components equal to zero. Since the following sets of monomials are equal{
b
α1+(n−r)
1 bα2

2 ...bαnn
∣∣ |α| = j − (n− r) , n0(α) = 0

}
=

{
bα1
1 ...bαnn

∣∣ |α| = j, α1 ≥ n− r + 1, n0(α̂) = 0

}
,

we can rewrite the polynomial in (4.4.7) as∑
|α|=j−(n−r)
n0(α)=n−r−t

(b
α1+(n−r)
1 bα2

2 ...bαnn )2a1b1 =
∑
|α|=j

α1≥n−r+1
n0(α̂)=0

(bα1
1 ...bαnn )2a1b1 . (4.4.8)

55



The second case is when n0(α) = n− r − t > 0, meaning that the first component of each multi-index
being summed over, α1, is allowed to be zero or non-zero. In this case,∑

|α|=j−(n−r)
n0(α)=n−r−t

(b
α1+(n−r)
1 bα2

2 ...bαnn )2a1b1 =
∑

|α|=j−(n−r)
α1=0

n0(α̂)=n−r−t−1

(b
α1+(n−r)
1 bα2

2 ...bαnn )2a1b1

+
∑

|α|=j−(n−r)
α1≥1

n0(α̂)=n−r−t

(b
α1+(n−r)
1 bα2

2 ...bαnn )2a1b1 .

The first term on the right adds up over all the multi-indices α whose first component α1 is zero, while
the second sum contains all the multi-indices whose first component is non-zero. Applying a change of
variables to the summation indices shows that this equals∑

|α|=j
α1=n−r

n0(α̂)=n−r−t−1

(bα1
1 ...bαnn )2a1b1 +

∑
|α|=j

α1≥n−r+1
n0(α̂)=n−r−t

(bα1
1 ...bαnn )2a1b1 . (4.4.9)

We can rewrite the right hand side of the proposed equation (4.4.6) by substituting in (4.4.8) and
(4.4.9). Doing so gives

n∑
r=1

Ar,n−r
∑
|α|=j

α1≥n−r+1
n0(α̂)=0

(bα1
1 ...bαnn )2a1b1

+
r∑

n=1

n−r−1∑
t=0

Ar,t


∑
|α|=j

α1=n−r
n0(α̂)=n−r−t−1

(bα1
1 ...bαnn )2 +

∑
|α|=j

α1≥n−r+1
n0(α̂)=n−r−t

(bα1
1 ...bαnn )2

 a1b1 . (4.4.10)

We define the polynomials
pl,k =

∑
|α|=j
α1=l

n0(α̂)=k

(bα1
1 ...bαnn )2a1b1 (4.4.11)

for 0 ≤ l ≤ j and 0 ≤ k ≤ n − 1, and note that {pl,k | 0 ≤ l ≤ j, 0 ≤ k ≤ n − 1} is a linearly
independent set in R[a1, b1, ..., an, bn]. The expression (4.4.10) can then be written in terms of these
polynomials as

n∑
r=1

Ar,n−r
∑

n−r+1≤l≤j
pl,0 +

n∑
r=1

n−r−1∑
t=0

Ar,t

pn−r,n−r−t−1 +
∑

n−r+1≤l≤j
pl,n−r−t

 . (4.4.12)

We begin by finding the coefficients of ps,0 in the above expression for a given value of s. The polynomial
ps,0 appears in

∑
n−r+1≤l≤j pl,0 whenever s ≥ n− r+ 1, while it never appears in

∑
n−r+1≤l≤j pl,n−r−t,

as n− r − t is always greater than or equal to 1. Hence the coefficient is(
n∑

r=n−s+1

Ar,n−r

)
+An−s,s−1 . (4.4.13)

Meanwhile, for 0 ≤ s < j and 0 < h < n− 1, the coefficient of ps,h takes the same form(
n∑

r=n−s+1

Ar,n−r−h

)
+An−s,s−h−1 , (4.4.14)
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where Al,q is taken to be zero if l < 1 or q < 0.

In either case, the sums (4.4.13) and (4.4.14) equal zero. To see why, consider the diagram of Pascal’s
triangle used to construct the Ar,t’s, Figure 4.3b. The sum

∑n
r=n−s+1Ar,n−r−h adds up the entries

of several boxes in the diagram, starting at the box in row n− s+ 1, column s− h− 1 and moving
diagonally downwards to the left, until column 0 is reached. The box associated to the extra term
An−s,s−h−1 lies directly above the starting point of this diagonal line. There are two possible cases of
the shape drawn out in the diagram by these sums.

In the first case, n−s < 1 so that the extra An−s,s−h−1 term lies outside the diagram and is zero. Then
the expression (4.4.14) is a sum along a whole diagonal of the associated diagram. This corresponds to
adding up a row of Pascals triangle but with alternating signs on each term, which just equals (1− 1)i

for some i > 0, and hence is 0.

In the second case, n− s ≥ 1 and the extra term An−s,s−h−1 is non-zero. The type of path summed
over in this case is illustrated in Figure 4.4b.

(a) The first type of summation
path is a whole diagonal in the
diagram

(b) An example of the second type
of summation path

Figure 4.4

To show that the expression in (4.4.14) is zero in this case, we prove the following claim.

Claim: For any l, q

Al,q =

l∑
r=1

Ar,l−r+q+1 ,

or in other words, a single box can be replaced by the box directly to it’s right and the diagonal
stemming from it going upwards to the right.
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Figure 4.5: The claim says that the two shaded regions are equal. This is clearly true
for this example.

Proof of claim: Via induction on l. When l = 1, A1,q = A1,q+1 = 1, proving the base case.

Suppose the claim holds for some l > 1 and all values of q. Then since the |Ai,j |’s form pascals triangle,
|Al+1,q+1| = |Al+1,q|+ |Al,q+1|. Meanwhile sgn(Al+1,q) = sgn(Al+1,q+1) = − sgn(Al,q+1) and it follows
that either Al+1,q+1 = Al+1,q −Al,q+1 or −Al+1,q+1 = −Al+1,q +Al,q+1. In either case

Al+1,q = Al+1,q+1 +Al,q+1 .

Applying the induction case to Al,q+1 results in

Al+1,q =

l+1∑
r=1

Ar,l+2−r+q .

�

This implies the type of path summed over in the second case is equivalent to summing over a whole
diagonal of the diagram, again resulting in 0.

We’ve found that the coefficient of each of the polynomials ps,h in (4.4.12) is 0 when 0 ≤ s < j and
0 < h < n− 1. The only remaining polynomial is pj,n−1, which has coefficient A1,0 and this equals 1.

Hence, the right hand side of (4.4.6) equals pjn−1 , but

pj,n−1 =
∑
|α|=j
α1=j

n0(α̂)=n−1

(bα1
1 ...bαnn )2a1b1

= a1b
2j+1
1 ,

which proves the lemma. �

4.4.2 Condition (C4): Convergence

For an n neuron network, we’ve found a way of writing each Taylor series polynomial fj in terms of
the basis {f0, ..., fn−1}. Specifically we’ve found quotients akj (w) ∈ R[w] so that

fj(w) =
n−1∑
k=0

akj (w)fk(w) .

To show the polynomial upper bound of the KL divergence, we now need to show these quotients
satisfy condition (C4). We first need to reintroduce the constants from the Taylor series to the fj(w)’s
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and ej(x)’s. We set

fj(w) =

n∑
i=1

aib
2j+1
i and ej(x) = γjηjx

2j+1

for 0 ≤ j ≤ n− 1. For values of j greater than n− 1 we define

fj(w) = γj

n∑
i=1

aib
2j+1
i and ej(x) = ηjx

2j+1 ,

where

γj =

√
|B2(j+1)|√

(2(j + 1))!
and ηj =

22(j+1)(22(j+1) − 1) sgn(B2(j+1))
√
|B2(j+1)|√

(2(j + 1))!
.

We’ve allocated the constants differently between the two cases 0 ≤ j ≤ n− 1 and j ≥ n so that the
only adjustment we need to make to the akj ’s of (4.4.5) is to multiply them by γj . This choice ensures
that

f(x,w) =
∞∑
j=0

fj(w)ej(x) ,

whenever |b1x|, |b2x|, ..., |bnx| < π
2 .

With this choice of constants, we can show condition (C4) holds to prove the following upper bound.

Lemma 15. (Bound for n neuron networks) Let f be a two layer tanh network with n neurons and
no biases. Suppose the weight space is restricted to

W = (R× [−s, s])n

and the input distribution q(x) is the uniform distribution on [−t, t], for some fixed 0 < s <
√

2π and
0 < t <

√
π

2
√
2
. If the true regression function is fT (x) = 0, then there exists c > 0 such that

K(w) ≤ c
(
f0(w)2 + ...+ fn−1(w)2

)
for all w ∈W .

Proof: To prove the upper bound on a set W ⊂ R2n, we need to show that for each 0 ≤ k ≤ n− 1

∞∑
j=1

(akj (w))2

converges and is bounded on W . Adjusting for the choice of scaling factors, Lemma 14 tells us that
the akj ’s can be written as

akj (w) = γj

k∑
t=0

An−k,t
∑
|α|=j−k
n0(α)=k−t

(bα1
1 ...bαnn )2 ,

where importantly, the Ar,t’s don’t depend on j. Set

A = max
r,t
|Ar,t| .

Then if |b1|, ...|bn| < s for some s > 0,

(akj (w))2 ≤ γ2j

 k∑
t=0

A
∑
|α|=j−k
n0(α)=k−t

(bα1
1 ...bαnn )2


2
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≤ γ2j

 k∑
t=0

A
∑
|α|=j−k
n0(α)=k−t

s2(j−k)


2

.

Now, the number of terms in the sum
∑
|α|=j−k
n0(α)=k−t

s2(j−k) is less than the number of monomials in n

variables of degree j − k, which is (n+j−k−1)!
(j−k)!(n−1)! , so(

akj (w)
)2
≤ γ2j k2A2

(
(n+ j − k − 1)!

(j − k)!(n− 1)!

)2

s4(j−k)

=: T kj (s) .

We now apply the ratio test to the series
∑∞

j=0 T
k
j (s) to check for which values of s it converges.

Previously we saw that

lim
j→∞

γ2j+1

γ2j
=

1

4π2
.

Meanwhile

lim
j→∞

(
(n+ j − k)!

(j + 1− k)!(n− 1)!

)2( (j − k)!(n− 1)!

(n+ j − k − 1)!

)2

= lim
j→∞

(
(n+ j − k)

(j + 1− k)

)2

= 1 ,

and hence

lim
j→∞

T kj+1(s)

T kj (s)
=

s4

4π2
.

Combining the ratio test with the Weierstrass M test tells us that the series
∑∞

j=0 a
k
j (w)2 converges

and is bounded provided |b1|, ...|bn| < s for some fixed s <
√

2π. Combining this with the result on
the square summability of the ej(x)’s (Lemma 12) proves the upper bound. �

4.5 Non-zero true parameters

The previous upper bounds for the KL divergence apply when the true function fT equals zero (or
equivalently, the true parameter can be written as w0 = 0). However, most learning problems involve
true functions which are non-zero and it is important to understand their KL divergence. Fortunately,
the methods we have developed allow us to gain some insight into such models. Specifically, they let
us find polynomial bounds for the KL divergence for models where the true function is given by a
neural network with a non-zero true parameter.

Starting with a parameterised model whose regression function can be written in the form from the
Replacement Strategy,

f(x,w) =

∞∑
j=0

fj(w)ej(x) ,

if the true function is given by f(x,w0) for some true parameter w0, the difference between the model
and true function can be written

f(x,w)− f(x,w0) =
∞∑
j=0

(fj(w)− fj(w0))ej(x) .

There are two methods we could use for finding a polynomial bound for this KL divergence:
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Method 1: Repeat the process from Sections 4.1 - 4.4. That is, find a finite basis for the ideal
generated by {fj(w)− fj(w0)}∞j=0 and check convergence conditions (C2)-(C4). The downside of this
method is that it only tells us about the specific choice of w0, and we would need to repeat the whole
process if we changed the true parameter. This process can be very involved to complete and isn’t
guaranteed to succeed, so having to repeat it many times is not ideal.

Method 2: It would be better if we could work in the opposite direction, first finding a basis which
works for any choice of true parameter, showing the convergence conditions, and then substituting in
the value of the true parameter w0. The idea is to consider the “extended” function

F : X ×W ×W −→ R
(x,w,w′) 7−→ f(x,w)− f(x,w′) .

This function can be written as

F (x,w,w′) =
∞∑
j=0

Fj(w,w
′)ej(x) ,

where Fj(w,w′) = fj(w) − fj(w′). If we can find an N so that {F0, ..., FN} is a basis for the ideal
generated by the Fj ’s in R[w,w′], we can try to find quotients Akj (w,w

′) in R[w,w′] such that
Fj(w,w

′) =
∑N

k=0A
k
j (w,w

′)Fk(w,w
′). If

∑∞
j=0A

k
j (w,w

′)2 converges and is bounded on W ×W for
each k, it follows from Lemma 9 that there is C > 0 such that

1

2

∫
X

(f(x,w)− f(x,w′))2q(x)dx ≤ C
N∑
j=0

Fj(w,w
′)2 (4.5.1)

for all (w,w′) ∈W ×W . Then for any choice of true parameter w0 ∈W , (4.5.1) gives us the polynomial
bound on K(w)

K(w) ≤ C
N∑
j=1

(fj(w)− fj(w0))
2 , (4.5.2)

and this is equivalent to the bound that would be produced in Method 1 due to the following lemma.

Lemma 16. For any fixed choice of true parameter w0 ∈W , {Fj(w,w0)}Nj=1 is a basis for the ideal
generated by {fj(w)− fj(w0)}∞j=0 in R[w].

Proof: We can write

Fj(w,w
′) =

N∑
k=0

Akj (w,w
′)Fk(w,w

′)

as elements of R[w,w′], where Akj (w,w
′) is also a polynomial in R[w,w′]. Then

fj(w)− fj(w0) =Fj(w,w0)

=
N∑
k=0

Akj (w,w0)Fk(w,w0) .

�

Combining the above with the basis independence of equivalence (Lemma 10) shows that Methods 1
and 2 would provide equivalent upper bounds.

4.5.1 Main theorem: two layer networks with non-zero true parameter

Applying Method 2 to two layer networks with arbitrarily many neurons results in our Main Theorem.
Consider the network with n neurons given by

f(x, a1, ..., an, b1, ..., bn) =

n∑
l=1

al tanh(blx) , (4.5.3)
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which has Taylor series polynomials (up to some constants)

fj(a1, ..., an, b1, ..., bn) =

n∑
l=1

alb
2j+1
l .

Theorem 1 (Main theorem). Given the network f as in (4.5.3) with input space X = [−t, t] for
some 0 < t <

√
π

2
√
2
and weight space W = Rn × [−s, s]n where 0 < s <

√
2π, then for any given true

parameter w0 = (a0,1, ..., a0,n, b0,1, ..., b0,n) ∈W

K(w) ≤ C
2n−1∑
j=0

(
n∑
l=1

alb
2j+1
l − a0,lb2j+1

0,l

)2

(4.5.4)

as functions on W for some constant C > 0.

Proof: The extended function for this model is

F (x, a1, ..., bn, a
′
1, ..., b

′
n) = f(x, a1, ...bn)− f(x, a′1, ...b

′
n) .

For convenience write a = (a1, ...an), b = (b1, ...bn), a′ = (a′1, ..., a
′
n) and b′ = (b1, ..., b

′
n). The extended

function has Taylor series polynomials

Fj(a, b, a
′, b′) =

n∑
l=1

alb
2j+1
l −

n∑
k=1

a′kb
′2j+1
k .

First consider the polynomials

F̃j(a, b, a
′, b′) =

n∑
l=1

alb
2j+1
l +

n∑
k=1

a′kb
′2j+1
k ,

which are the Taylor series polynomials for a network with 2n hidden neurons. From Section 4.4,
{F̃0, ..., F̃2n−1} is a basis for the ideal generated by the F̃j ’s. By Lemma 15, if the input space is
X = [−t, t] for some 0 < t <

√
π

2
√
2
and the input distribution q(x) is uniform, then

1

2

∫
X

(
n∑
l=1

al tanh(blx) +

n∑
k=1

a′k tanh(b′kx)

)2

q(x)dx ≤ C
2n−1∑
j=1

F̃j(a, b, a
′, b′)2

as functions on the weight space Rn × [−s, s]n × Rn × [−s, s]n for any 0 < s <
√

2π. Because
{F̃0, ..., F̃2n−1} is a basis for the ideal generated by all the F̃j ’s and Fj(a, b, a′, b′) = F̃j(a, b,−a′, b′), it
follows that {F0, F1, ..., F2n−1} is a basis for the ideal generated by the Fj ’s and that

1

2

∫
X

(
n∑
l=1

al tanh(blx)−
n∑
k=1

a′k tanh(b′kx)

)2

q(x)dx ≤ C
2n−1∑
j=0

Fj(a, b, a
′, b′)2 (4.5.5)

as functions on Rn × [−s, s]n × Rn × [−s, s]n. �

While equivalence requires both lower and upper bounds, as discussed in Lemma 3, upper bounds on
the KL divergence can provide upper bounds on the RLCT, and this in turn can provide an upper
bound on the generalisation error for a model.

Remark. This result backs up statements made by Aoyagi and Watanabe in their paper The Zeta
Function for Learning Theory and Resolution of Singularities [AW09]. In this paper they replace K(w)
with the same polynomial in the Main Theorem to calculate the RLCT. In justifying this step, they
cite a lemma in an earlier paper [Wat99b, Lemma 5], however we have not yet been able to reconstruct
a proof of equivalence from that lemma.

The proof of Theorem 1 also pays close attention to convergence of each of the series involved, producing
a domain where the polynomial upper bound is guaranteed to hold.
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Chapter 5

Zero sets

One of the key points of Singular Learning Theory is that there is a “fundamental relation between
algebraic geometry and statistical learning theory” [Wat09, p. vii]. In particular, the geometry of a
model’s KL divergence determines its generalisation performance. In this Chapter we will illustrate
the geometry of the set of true parameters

W0 = {w ∈W | K(w) = 0}

in some simple examples.

Studying this geometry can be greatly simplified using an equivalent polynomial, because such a
polynomial would automatically have the same zero set as K(w). However, we have not proven both
the lower bound and upper bound parts of equivalence: we were only able to prove the upper bound
in Chapter 4. Despite this, the process we used to find these upper bounds is sufficient to show they
have the same zero sets. In Section 2.4, we saw that if a model satisfies the Replacement Strategy’s
conditions, then K(w) is zero if and only if all the model’s Taylor series polynomials {fj(w)}∞j=0 are
zero at w. Further, this will occur precisely when each polynomial in a basis for I = 〈{fj(w)}Jj=0〉
equals zero. Since our upper bounds are comprised of these basis polynomials, their zero sets are the
same as that of the KL divergence.

In this Chapter, we turn to a simple application of these basis polynomials, using them to find irreducible
decompositions for the sets of true parameters for small neural networks. These decompositions make
it easy to plot the sets, and doing so will illustrate interesting phenomena where the geometry of
the zero set changes drastically as the true function changes. This behaviour will be reflected in the
models’ RLCTs, which we will compute using a formula from Aoyagi and Watanabe [AW09].

This Chapter also be helps to develop an intuitive picture of the types of singularities appearing in
singular models. Currently the literature contains only sketches of general singularities which appear
in algebraic geometry, and these don’t accurately represent the zero sets of neural networks.

To find the zero sets, we will start by studying the smallest and simplest models, before slowly
increasing their size. First, we look at the zero sets for two layer tanh networks with one, two, and
three neurons in the case where the true parameter is zero. We then use the results from this case to
study the zero sets for one and two neuron networks when the true parameter is non-zero.

5.1 Zero true parameter

5.1.1 Single neuron

For a network with a single neuron, f(x, a, b) = a tanh(bx), the KL divergence is bounded by the
polynomial f0(a, b) = ab. Hence the zero set of the KL divergence is

W0 = {a, b | ab = 0}
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= Z(a) ∪ Z(b) ,

where given an ideal I ⊂ R[w], Z(I) = {w ∈W | f(w) = 0 ∀f ∈ I}. The ideals 〈a〉 and 〈b〉 are both
prime, so this gives the irreducible decomposition for W0.

5.1.2 Two neurons

For the tanh network with two neurons f(x, a, b, c, d) = a tanh(bx) + c tanh(dx) with zero true
parameter, the set of true parameters is given by solutions to the equations

ab+ cd = 0 , (5.1.1)

ab3 + cd3 = 0 . (5.1.2)

For the first equation ab+ cd = 0 to hold, we must have that ab = −cd. If we substitute this into the
second equation, ab3 + cd3 = 0, we get −cdb2 + cd3 = 0, so

cd(d+ b)(d− b) = 0 .

From this, we have several cases.

Case 1: c = 0

In this case, equation (5.1.1) implies that ab = 0, so that either

• Case 1(a): a = 0 while b and d are free,

• Case 1(b): b = 0 while a and d are free.

Case 2: d = 0

Again equation (5.1.1) implies that ab = 0, so that either

• Case 2(a): a = 0 while b and c are free,

• Case 2(b): b = 0 while a and c are free.

Case 3: d− b = 0

In this case, equation (5.1.1) gives ab+ cb = 0, so b(a+ c) = 0. If b = 0, automatically then d = 0, so
this reduces to case 2. If b 6= 0, it follows that a+ c = 0.

Case 4: b+ d = 0

Equation (5.1.1) becomes ab− cb = 0, so either b = 0 reducing to case 1, or a− c = 0.

From these four cases we conclude that the zero set for a two neuron network’s KL divergence is

W0 =Z(a, c) ∪ Z(b, c) (case 1)
∪ Z(a, d) ∪ Z(b, d) (case 2)
∪ Z(b− d, a+ c) (case 3)
∪ Z(b+ d, a− c) . (case 4)

Each of the above sets is clearly a variety, and none of them are contained in any other, so this gives
the irreducible decomposition of W0.

Each of the above irreducible components is a plane in R4. We can visualise these planes in 3 dimensions
by sketching their image under the projection onto the first three variables (a, b, c, d) 7→ (a, b, c). This
projection is sketched in Figure 5.1.

The zero set is a union of planes in R4 which all intersect at the origin. The singularities of this set
are the intersections between these planes.
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Figure 5.1: The zero set for the KL divergence of a two neuron tanh network when
the true parameter is zero. The zero set in R4 has been projected into R3. Each plane
represents a different irreducible component of the zero set. The red and blue lines are
seperate irreducible components, and also represent planes in R4 but appear as lines
when projected into R3.

5.1.3 Three Neurons

In this Section, we find the irreducible decomposition for the zero set of a three neuron network. Doing
so will help us study the zero set for two neuron networks when the true function is given by a single
neuron.

For the three neuron network f(x, a1, b1, a2, b2, a3, b3) =
∑3

i=1 ai tanh(bix), the zero set of the KL
divergence is given by the solutions of the following three equations

f0(a1, b1, a2, b2, a3, b3) = a1b1 + a2b2 + a3b3 = 0 , (5.1.3)

f1(a1, b1, a2, b2, a3, b3) = a1b
3
1 + a2b

3
2 + a3b

3
3 = 0 , (5.1.4)

f2(a1, b1, a2, b2, a3, b3) = a1b
5
1 + a2b

5
2 + a3b

5
3 = 0 . (5.1.5)

In these three equations, it is harder to notice any obvious substitutions or factorisations that make it
easy to find the zero set, partly because each of the generators f0, f1 and f2 contain all six of the
variables. Instead of working with these polynomials directly, we will find polynomials in the ideal
I = 〈f0, f1, f2〉 which contain fewer variables, and use these to find the structure of the zero set.

Since f0, f1, and f2 generate the ideal I, they are all zero at a point w if and only if g(w) = 0 for all
g ∈ I. If we can find a g ∈ I which involves for example only two or three of the variables, we can find
conditions on these variables which must hold for f0, f1, and f2 to be zero. For example, we could
find that for some g ∈ I to be zero, it must be true that b1 = b2. It would follow that for f0, f1, and
f2 to be zero, b1 must equal b2, and we could use this substitution to simplify the three polynmials.

To find elements of the ideal I which contain fewer variables, we use the Elimination Theorem.

Theorem. (Elimination Theorem) Suppose I ⊂ R[x1, ..., xn] is an ideal and G is a Gröbner basis for
I using lexicographic order, then for each 0 ≤ l < n

G ∩ R[xl+1, ..., xn]

is a Gröbner basis for the ideal I ∩ R[xl+1, ..., xn].

A proof of this theorem appears in Theorem 2 of Chapter 3 in [CLO15].
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The Elimination Theorem lets us find elements of the ideal I which contain fewer of the variables.
Suppose we wish to find every polynomial in I involving only the variables xi1 , ..., xi,r (r < n). If we
use a modified lexicographic order, where xi1 , ..., xi,r are smaller than the other variables, finding a
Gröbner basis for I with this order will provide all such polynomials.

Remark. Washino and Takahashi use this theorem to study zero sets of neural networks, using it to
find a parameterisation for the zero set of a two layer tanh network [WT21].

Using Singular, a Gröbner basis with standard lexicographic order for the ideal 〈f0, f1, f2〉 has nine
polynomials. We don’t need all nine of them though, as the first one is enough for us to progress with
the calculation of the zero set. The first polynomial in this Gröbner basis is

g1 = a2b
5
2a3b3 − 2a2b

3
2a3b

3
3 + a2b2a3b

5
3 .

This factors as
g1 = a2b2a3b3(b

2
2 − b23)2 ,

so for f0, f1 and f2 to all be zero, it must be true that either one of a2, b2, a3, and b3 is zero, or
b22 = b23.

In the case where ai = 0 or bi = 0 (where i ∈ {1, 2, 3}), f1, f2 and f3 become

fj =
∑
l=1,2,3
l 6=i

alb
2j+1
l ,

which equal the Taylor series polynomials of a two neuron network with ar tanh(brx) and at tanh(btx)
as the neurons, where we write {r, t} for {1, 2, 3}\{i}. When this occurs, we know by Lemma 14 that
f2 ∈ 〈f0, f1〉.

Case 0: ai = 0 or bi = 0 (i ∈ {1, 2, 3})

Using the results of the two neuron example in the previous section, when ai = 0 or bi = 0, f0, f1,
and f2 are all zero if and only if

• ar = 0 and at = 0, or

• br = 0 and at = 0, or

• ar = 0 and bt = 0, or

• br = 0 and bt = 0, or

• ar + at = 0 and br − bt = 0, or

• ar − at = 0 and br + bt = 0.

If none of a1, a2, a3, b1, b2, b3 are zero, the equation for g1 tells us that we must have b3 = ±b2.

Case 1: b3 = b2

With this substitution, the Taylor series polynomials become f ′0 = a1b1+a2b2+a3b2, f ′1 = a1b
3
1+a2b

3
2+

a3b
3
2, and f ′3 = a1b

5
1 + a2b

5
2 + a3b

5
2. Using Singular, a Gröbner basis for their ideal with lexicographic

order is

h1 = b21a2b2 + b21b2a3 − a2b32 − b32a3 ,
h2 = a1a2b

3
2 + a1b

3
2a3 + b1a

2
2b

2
2 + 2b1a2b

2
2a3 + b1b

2
2a

2
3 ,

h3 = a1b1 + a2b2 + b2a3 ,

but it’s not clear that these can be factored in a way which helps to calculate the zero sets. Instead,
if we use lexicographic order but with the remaining variables ordered by b2 > a3 > a2 > b1 > a1, a
Gröbner basis for 〈f0, f1, f2〉 is

p1 = a23b
3
1a1 + 2a3a2b

3
1a1 + a22b

3
1a1 − b31a31 ,

66



p2 = b2b
2
1a

2
1 + a3b

3
1a1 + a2b

3
1a1 ,

p3 = b2a3 + b2a2 + b1a1 ,

p4 = b22b1a1 − b31a1 .

The polynomial p4 then factors as p4 = b1a1(b22− b21), so for p4 to equal 0, either b1 or a1 must be zero
or b2 must equal ±b1. If b1 = 0 or a1 = 0, we are brought back to the situation in Case 0.

Case 1a: b2 = b1

In this case, the polynomials become f ′′0 = a1b1 + a2b1 + a3b1, f ′′1 = a1b
3
1 + a2b

3
1 + a3b

3
1 and f ′′2 =

a1b
5
1 + a2b

5
1 + a3b

5
1. These are all zero when either b1 = 0 (which has already been covered by Case 0)

or a1 + a2 + a3 = 0.

Case 1b: b2 = −b1

The polynomials become f ′′′0 = a1b1−a2b1−a3b1, f ′′′1 = a1b
3
1−a2b31−a3b31 and f ′′′2 = a1b

5
1−a2b51−a3b51,

which are zero when either b1 = 0 (already covered by Case 0) or a1 − a2 − a3 = 0.

Case 2: b3 = −b2

We can use Case 1 to find the zero sets when b3 = −b2. Plugging b3 = −b2 into f0, f1, and f2 results
in the polynomials f̃0 = a1b1 + a2b2− a3b2, f̃1 = a1b

3
1 + a2b

3
2− a3b32, and f̃2 = a1b

5
1 + a2b

5
2− a3b53. Now,

f̃i(a1, b1, a2, b2, a3) = f ′i(a1, b1, a2, b2,−a3) for i = 0, 1, 2. This implies that f̃0, f̃1 and f̃2 are all zero
at a point (a1, b1, a2, b2, a3) if and only if (a1, b1, a2, b2,−a3) lies in the zero set of f ′0, f ′1 and f ′2.

Case 2a: b2 = b1 (as in case 1a)

In this case, the polynomials are zero when b1 = 0 or a1 + a2 − a3 = 0.

Case 2b: b2 = −b1 (as in case 1b)

In this case, the polynomials are zero when b1 = 0 or a1 − a2 + a3 = 0.

Putting together the results of each case, we find that the zero set for the KL divergence of a 3 neuron
network is

W3 =Z(a1, a2, a3) ∪ Z(a1, a3, b2) ∪ Z(a1, a2, b3) ∪ Z(a1, b2, b3)

∪ Z(a2, b1, a3) ∪ (a2, b1, b3) ∪ Z(a3, b1, b2) ∪ Z(b1, b2, b3)

∪ Z(a1, a2 + a3, b2 − b3) ∪ Z(a1, a2 − a3, b2 + b3)

∪ Z(a2, a1 + a3, b1 − b3) ∪ Z(a2, a1 − a3, b1 + b3)

∪ Z(a3, a1 + a2, b1 − b2) ∪ Z(a3, a1 − a2, b1 + b2)

∪ Z(b1, a2 + a3, b2 − b3) ∪ Z(b1, a2 − a3, b2 + b3)

∪ Z(b2, a1 + a3, b1 − b3) ∪ Z(b2, a1 − a3, b1 + b3)

∪ Z(b3, a1 + a2, b1 − b2) ∪ Z(b3, a1 − a2, b1 + b2)

∪ Z(b2 − b3, b1 − b2, a1 + a2 + a3)

∪ Z(b2 − b3, b1 + b2, a1 − a2 − a3)
∪ Z(b2 + b3, b1 − b2, a1 + a2 − a3)
∪ Z(b2 + b3, b1 + b2, a1 − a2 + a3) , (5.1.6)

which is a union of many 3 dimensional subspaces of R6.

Remark. By writing the tanh’s in a network in terms of exponentials, and using their linear indepen-
dence, it’s possible to find the same decomposition of W3 without using the equivalent polynomials.
However, this method seems like it would only work for two layer networks, and not generalise well to
other models.
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5.2 Non-zero true parameters and RLCTs

Having found the irreducible decompositions of the zero sets for single neuron, two neuron, and three
neuron networks, we can use the results of Section 5.1 to study this decomposition for networks where
the true function is non-zero. This will reveal surprising properties of the structure of the zero set as
we change the value of the true parameter.

When searching for polynomial upper bounds in Chapter 4, the main technique for studying the case
with a non-zero true parameter was to invent a network with extra neurons, find a polynomial upper
bound for the KL divergence for this larger network, and then substitute the true parameters into this
polynomial. A similar approach works here, where we can use the irreducible decompositions in the
last section to find decompositions for the case with non-zero true parameters. More specifically, we
can study the zero sets for a network with n neurons and true function with m neurons (m ≤ n) by
using the irreducible decomposition of the zero set for a network with n+m neurons and a zero true
function.

5.2.1 Single neuron model with one true neuron

Consider the single neuron network from Section 5.1.1, f(x, a, b) = a tanh(bx), but now with a true
function given by a single neuron network

fT (x) = aT tanh(bTx) ,

where wT = (aT , bT ) is some fixed true parameter. We write W1,1 ⊂ R2 for the zero set for this model
and true parameter.

The KL divergence for this model, K(w), is zero if and only if the polynomials ab−aT bT and ab3−aT b3T
are both zero. This occurs whenever f0(a, b,−aT , bT ) = f1(a, b,−aT , bT ) = 0, where

f0(a, b, c, d) = ab+ cd ,

f1(a, b, c, d) = ab3 + cd3 ,

are the polynomials from the two neuron network with zero true parameter. Writing W2 ⊂ R4 for the
zero sets of these polynomials, in Section 5.1.2 we saw that

W2 =Z(a, c) ∪ Z(b, c) ∪ Z(a, d) ∪ Z(b, d)

∪ Z(b− d, a+ c) ∪ Z(b+ d, a− c) .

Hence, for the single neuron network with a single true neuron, K(w) = 0 at a point w = (a, b) if and
only if (a, b,−aT , bT ) ∈W2. This occurs only when

(a, b) ∈ Z(a,−aT ) ∪ Z(b,−aT ) ∪ Z(a, bT ) ∪ Z(b, bT )

Z(b− bT , a− aT ) ∪ Z(b+ bT , a+ aT ) . (5.2.1)

In the above notation we treat a and b as variables, and aT and bT as fixed real numbers. We define
the set Z(a,−aT ) to be Z(a) ⊂ R2 if aT = 0, and define it to be empty if aT 6= 0. We define the sets
Z(b,−aT ) and Z(a, bT ) similarly.

The expression in (5.2.1) shows that the structure of the zero set for this model and true function,
W1,1, is strongly influenced by the value of the true parameter (aT , bT ). For example if aT 6= 0 the set
Z(a,−aT ) is empty, while if aT is zero, this set is the line along the b axis. We can see all the possible
forms of W1,1 using the following cases.

Case 1: aT = 0 or bT =0

In this case the true function fT is zero, so the zero set is just that of a single neuron network with
zero true parameter.

W1,1 = Z(a) ∪ Z(b) ,
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which is two lines along the axes, intersecting at the origin.

Case 2: aT 6= 0 and bT 6= 0

In this case, the sets Z(a,−aT ), Z(b,−aT ), Z(a, bT ), and Z(b, bT ) are all empty. Meanwhile, the set
Z(b− bT , a− aT ) is just the point (aT , bT ), and Z(b+ bT , a+ aT ) is the point (−aT ,−bT ).

In this case W1,1 is just a pair of points in R2

W1,1 = {(aT , bT ), (−aT ,−bT )} .

The way W1,1 changes as either true parameter approaches zero is quite interesting. If bT → 0, the
two points in the zero set (aT , bT ) and (−aT ,−bT ), approach the a axis. As soon as they reach the
axis though, the whole of the a and b axes become the zero set. Figure 5.2 illustrates this change in
the structure of W1,1.

At first it’s surprising that this set suddenly changes from a pair of points to an unbounded set. It is
hard to picture how the KL divergence must behave for this to happen. But this becomes clearer by
looking at the integral which defines K(w). The KL divergence is given by the integral

K(w) =

∫
q(x) (a tanh(bx)− aT tanh(bTx))2 dx .

When either a or b equal 0, this reduces to

K(w) =

∫
q(x)a2T tanh2(bTx)dx ,

which is a non-negative constant. The axes are therefore always a level set of K(w), regardless of the
value of the true parameter (aT , bT ). As aT or bT approach zero, this level set lowers as a whole and
approaches zero.

(a) (b) (c)

Figure 5.2: The set of true parameters W1,1 for the single neuron network with single
true neuron are shown in (a), (b), and (c) for different values of the true parameter
(aT , bT ). (a) shows W1,1 when aT , bT = 0.5, (b) shows the set when aT = 0.5 and
bT = 0.05, and (c) shows the set when bT = 0.

Figure 5.2 shows clearly how the geometry of K(w) changes as the true parameter (aT , bT ) changes.
Using Aoyagi and Watanabe’s formula for the RLCT of a two layer model [AW09], we can see how
the RLCT (and hence the generalisation error) of a two layer model changes with this geometry.

The formula which Aoyagi and Watanabe found for the RLCT of two layer networks with non-zero
true parameters is quite complicated. The value of the RLCT splits along many cases, based on how
many of the true parameter’s components are zero or equal another of its components. In Section
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5.2.2, we will discuss how the formula works in general. However, for a single neuron network with
true function also given by a single neuron, the RLCT is simple to describe.

For this model and true function, the RLCT λ, is

λ =

{
1, if (aT , bT ) 6= (0, 0)
1
2 , if aT = 0 or bT = 0

. (5.2.2)

In situations like Figure 5.2a, and Figure 5.2b, where the set of true parameters is just a pair of points,
the RLCT is larger than when the set of true parameters is the a and b axes, as in Figure 5.2c.

5.2.2 Two neuron model with one true neuron

Having observed interesting behaviour in zero sets for a single neuron, we will perform a similar
analysis for a network with two neurons.

The largest network we were able to analyse in the previous section had three neurons. Hence we’re
able to study a two neuron network with a single true neuron. Consider the two neuron network from
Section 5.1.2, but now with a true function given by fT (x) = aT tanh(bTx), where aT and bT ∈ R are
a fixed choice of true parameter.

Denoting the zero set for the KL divergence of this model and true function by W2,1, the Taylor series
implies that this set equals the zero set of the following three polynomials

f0(a, b, c, d) = ab+ cd− aT bT ,
f1(a, b, c, d) = ab3 + cd3 − aT b3T ,
f2(a, b, c, d) = ab5 + cd5 − aT b5T .

We can write these polynomials as fj(a, b, c, d) = Fj(a, b, c, d,−aT , bT ) for j = 0, 1, 2, where

Fj(a1, b1, a2, b2, a3, b3) = a1b
2j+1
1 + a2b

2j+1
2 + a3b

2j+1
3

are the first three Taylor series polynomials for a three neuron network. Hence

(a, b, c, d) ∈W2,1 ⇐⇒ Fj(a, b, c, d,−aT , bT ) = 0, j = 0, 1, 2

⇐⇒ (a, b, c, d,−aT , bT ) ∈W3 , (5.2.3)

where W3 ⊂ R6 is the zero set for the three polynomials F0, F1 and F2. The irreducible decomposition
of W3 is written in equation (5.1.6). Using this decomposition, (5.2.3) implies that

W2,1 =Z(a, c,−aT ) ∪ Z(a,−aT , d) ∪ Z(a, c, bT ) ∪ Z(a, d, bT ) (5.2.4)
∪ Z(c, b,−aT ) ∪ (c, b, bT ) ∪ Z(−aT , b, d) ∪ Z(b, d, bT )

∪ Z(a, c− aT , d− bT ) ∪ Z(a, c+ aT , d+ bT )

∪ Z(c, a− aT , b− bT ) ∪ Z(c, a+ aT , b+ bT )

∪ Z(−aT , a+ c, b− d) ∪ Z(−aT , a− c, b+ d)

∪ Z(b, c− aT , d− bT ) ∪ Z(b, c+ aT , d+ bT )

∪ Z(d, a− aT , b− bT ) ∪ Z(d, a+ aT , b+ bT )

∪ Z(bT , a+ c, b− d) ∪ Z(bT , a− c, b+ d)

∪ Z(d− bT , b− d, a+ c− aT )

∪ Z(d− bT , b+ d, a− c+ aT )

∪ Z(d+ bT , b− d, a+ c+ aT )

∪ Z(d+ bT , b+ d, a− c− aT ) .
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In the above notation, the variables a, b, c, and d are treated as functions, while aT and bT are fixed
real numbers. We interpret a set like Z(a, c, aT ) to equal Z(a, c) ⊂ R4 if aT = 0, and define it to be
the empty set if aT 6= 0.

As in the single neuron example there are two cases based on the value of the true parameter. In each
case we can just read off the irreducible decomposition of W2,1 from the above equation.

Case 1: aT = 0 or bT = 0

In this case

W2,1 =Z(a, c) ∪ Z(a, d) ∪ Z(c, b) ∪ Z(b, d)

∪ Z(a+ c, b− d) ∪ Z(a− c, b+ d) .

Several of the components disappeared when setting aT or bT to zero because they become subsets
of other components. For example Z(d − bT , b − d, a + c − aT ) equals Z(d − bT , b − d, a + c) when
aT = 0, which is a subset of Z(a + c, b − d). Likewise, when bT = 0, Z(d − bT , b − d, a + c) equals
Z(d, b− d, a+ c) which is also contained in Z(b− d, a+ c).

Note that in this case W2,1 equals the zero set from the two neuron network with zero true function
that we found in Section 5.1.2. This is to be expected, as it is the exact same model and true function.
In our sketch we saw that this is a union of 6 planes in R4 which all intersect at the origin.

Case 2: aT 6= 0 and bT 6= 0

In this case several of the sets in (5.2.4) are empty, leaving

W2,1 =Z(a, c− aT , d− bT ) ∪ Z(a, c+ aT , d+ bT )

∪ Z(c, a− aT , b− bT ) ∪ Z(c, a+ aT , b+ bT )

∪ Z(b, c− aT , d− bT ) ∪ Z(b, c+ aT , d+ bT )

∪ Z(d, a− aT , b− bT ) ∪ Z(d, a+ aT , b+ bT )

∪ Z(d− bT , b− d, a+ c− aT )

∪ Z(d− bT , b+ d, a− c+ aT )

∪ Z(d+ bT , b− d, a+ c+ aT )

∪ Z(d+ bT , b+ d, a− c− aT ) .

Each set in the above decomposition is a line in R4, rather than a plane as seen in Case 1.

Using this decomposition, we can plot the image of W2,1 under the projection (a, b, c, d) 7→ (a, b, c) in
R3, which is shown for different values of the true parameter (aT , bT ) in Figure 5.3.
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(a) (b) (c)

Figure 5.3: The zero sets for a two neuron network with true function given by a
single neuron with different values of the true parameter. (a) shows the zero set with
aT = bT = 2, while in (b) aT = 0.5, bT = 2, and in (c) aT = 0. Figure (c) is the same
zero set as in Figure 5.1

The zero set behaves similarly to the single neuron case when we vary the true parameter. When the
true parameter is non-zero, W2,1 is a collection of 1D lines in R4, but as soon as either component of
the true parameter equals zero, W2,1 turns into a collection of 2D planes.

This raises the question of whether the zero set for the two neuron network with zero true parameter,
W2, is always a level set of the KL divergence for the two neuron network even when the true parameter
is non-zero. This is true as a consequence of the following general lemma.

Lemma 17. If a model is given by a parametric function f(x,w), and the true distribution is given
by some true function fT (x), then the KL divergence K(w) is constant on the set

W ′ = {w ∈W | f(x,w) = 0 ∀x ∈ supp{q(x)}} .

Proof: This lemma follows imediately from writing K(w) =
∫
X (f(x,w)− fT (x))2 q(x)dx.

Formula for the RLCT

In Section 5.2.1 we used Aoyagi and Watanabe’s formula, which is outlined in [AW09], to compute
the RLCT of a single neuron network with true function given by a single neuron. Here we apply the
same formula to a network with two neurons and a single true neuron, but first we will explain how
the formula works for a general network with n neurons.

Consider the n neuron network f(x, a1, b1, ..., an, bn) =
∑n

i=1 ai tanh(bix), with true function fT (x) =
f(x, a∗T,1, b

∗
T,1, ..., a

∗
T,n, b

∗
T,n), where w∗T = (a∗T,1, b

∗
T,1, ..., a

∗
T,n, b

∗
T,n) is a choice of true parameter.

Let
W0 = {w ∈W | f(x,w) = f(x,w∗T ) ∀x ∈ R}

be the set of true parameters. The formula for the RLCT works by computing a local RLCT for each
w ∈W0, and minimising over each of these constants.

Aoyagi and Watanabe derived the formula for the RLCT by replacing K(w) with the polynomial

P∑
j=0

(
n∑
i=1

aib
2j+1
i − aT,ib2j+1

T,i

)2

,

“where P is a sufficiently large integer”, and wT = (aT,1, bT,1, ..., aT,n, bT,n) ∈ W0 [AW09]. Note that
our upper bound in the Main Theorem is precisely this polynomial with P = n− 1.
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For a given choice of true parameter wT = (aT,1, bT,1, ..., aT,n, bT,n), the first step in calculating the
RLCT is to take all of the true weights appearing inside the tanhs, bT,1, ..., bT,n, and form a set
containing the non-zero ones B = {bT,i | 1 ≤ i ≤ n s.t bT,i 6= 0}. Define an equivalence relation on B
by

bT,i ∼ bT,j ⇐⇒ b2T,i = b2T,j .

Let b̂1, ..., b̂r be representatives of distinct equivalence classes of elements in B, so 0 ≤ r ≤ n.

For each 1 ≤ i ≤ r, define

âi = − 1

b̂i

 ∑
{1≤m≤n | b2T,m=b̂2i }

aT,mbT,m

 ,

and define r̃ to be the number of non-zero âi’s. Reordering these variables, we can assume â1, â2, ..., âr̃
are non-zero, while âr̃+1, ..., âr all are zero.

Definition 26. We call â1, â2, ..., âr̃ and b̂1, ..., b̂r the modified true parameters.

Aoyagi and Watanabe note that these modified true parameters satisfy

n∑
i=1

aT,ib
2j+1
T,i = −

r̃∑
i=1

âib̂
2j+1
i

for all j ∈ N≥0.

With these modified true parameters, define the set Bτ = {i | b2T,i = b̂2i } for each 1 ≤ τ ≤ r, and
record its size as sτ = #Bτ . Also let B0 = {i | bT,i = 0} and s0 = #B0.

With these definitions, they compute the following integers. These depend on the number of unique
components of the true parameter which are non-zero.

n0 = max{i ∈ Z | i2 ≤ s0} ,
nτ1 = 1 + max{i ∈ Z |i2 + i ≤ 2sτ1 } for 1 ≤ τ1 ≤ r̃ ,
nτ2 = 1 + max{i ∈ Z | i2 + i ≤ 2(sτ2 − 1)} for r̃ < τ2 ≤ r ,

which are used to calculate

λ0 =
n20 + n0 + s0

4n0 + 2
,

λτ1 =
nτ1 + n2τ1 + 2sτ1

4nτ1
for 1 ≤ τ1 ≤ r̃ ,

λτ2 =
nτ2 + n2τ2 + 2(sτ2 − 1)

4nτ2
for r̃ < τ2 ≤ r .

They then compute the local RLCT

λwT =

r∑
τ=0

λτ .

The final step in computing the RLCT, is to minimise over all the true parameters

λ = min
wT∈W0

{λwT } .

Remark. The formula for the RLCT works by finding the modified true parameters âi for 1 ≤ i ≤ r̃
and b̂i for 1 ≤ i ≤ r (recall r̃ ≤ r), and counting several related quantities. Calling (â1, ..., âr̃, b̂1, ..., b̂r̃)
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the cut modified true parameter (since we’ve cut out b̂r̃+1, ..., b̂r), the following equality between the
original and cut modified true parameters holds for all j ∈ N≥0

n∑
i=1

aT,ib
2j+1
T,i = −

r̃∑
i=1

âib̂
2j+1
i .

In fact, it’s also true that

n∑
i=1

aT,i tanh
(
b2j+1
T,i x

)
= −

r̃∑
i=1

âi tanh
(
b̂ix
)

for all x ∈ R. This says that the cut modified true parameter gives the same function as the original
true parameter (with a sign difference).

The cut modified true parameter gives what is known as a minimal version of the true network.

Sussman defined minimal networks while studying how different parameters in two layer tanh networks
can give rise to the same function [Sus92]. A minimal network is a neural network which is not equal
(as a function) to any network with fewer neurons. In the case of biasless two layer tanh networks,
f(x,w) =

∑N
l=1 cl tanh(dlx) is minimal for the specific choice of parameter w = (c1, ..., cN , d1, ..., dN )

if the following three conditions hold

• cl 6= 0 for all l,

• d2l 6= d2k for all l 6= k,

• dl 6= 0 for all l.

By construction, these conditions hold for the cut modified true parameter. Hence, the first step in
using the RLCT formula is to find a minimal version of the true network.

We should note that this minimal network does not alone determine the RLCT, since the parameters
which are cut out (b̂r̃+1, ..., b̂r) also affect the expressions for the nτ2 ’s and λτ2 ’s.

The RLCT for a two neuron network with single true neuron

We can use this formula to calculate the RLCT of the two neuron network where the true function is
a network with a single neuron. Since the formula requires the true network to have the same number
of neurons as the model, we will view the true function as a two neuron network, where the second
neuron outputs zero. That is, the true network is given by

fT (x) = aT,1 tanh(bT,1) + aT,2 tanh(bT,2) ,

where we choose aT,2 and bT,2 so that aT,2 tanh(bT,2x) = 0. We can then vary the parameters for
the remaining neuron aT,1 tanh(bT,1x) and see how the RLCT changes. There are two cases for the
behaviour of this remaining neuron which affect the RLCT.

Case 1: aT,1 tanh(bT,1x) 6= 0

For the true function to be non-zero, both of aT,1 and bT,1 must be non-zero. However, there are
several ways that the second neuron aT,2 tanh(bT,2x) can be made to equal zero. In other words, there
are several types of points in the set of true parameters, wT ∈W0, and we need to calculate the local
RLCT for each type of point. For example aT,2 could be zero while bT,2 is non-zero and vice-versa, or
otherwise both aT,2 and bT,2 could be zero.

The complete list of cases to check is

• (a) aT,2 = 0 and bT,2 = 0,

• (b) aT,2 6= 0 and bT,2 = 0,
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• (c) aT,2 = 0 and b2T,2 = b2T,1,

• (d) aT,2 = 0 and bT,2 6= 0 and b2T,2 6= b2T,1.

In the third case, for example, the set B = {1} so r = 1. Since b2T,2 = b2T,1, it follows that s1 = 2.
Meanwhile, r̃ = 1 and additionally s0 = 0. With these numbers we compute that n0 = 0, n1 = 2 and
hence

λwT = λ1

=
5

4
.

The following table shows the local RLCT in each of the four cases

Case 1 Case 2 Case 3 Case 4

3
2

3
2

5
4

3
2

The minimum is 5
4 and so the RLCT of the two neuron network with true function given by a single

non-zero neuron is
λ =

5

4
.

Case 2: aT,1 tanh(bT,1x) = 0

Here the true function fT (x) is zero. There are ten types of points in the set of true parameters which we
need to calculate local RLCTs for. Each case depends on which of the components aT,1, bT,1, aT,2, bT,2
are zero, and which are non-zero, and whether bT,1 = ±bT,2.

We’ll only include the calculation for the case wT = (0, 0, 0, 0). In this case, the set B is empty, and
r = 0. Likewise, r̃ = 0. There are no Bτ sets or sτ values for τ ≥ 1, while B0 = {1, 2} and s0 = 2.

Hence, n0 = 1 and nτ does not exist for τ ≥ 1. It follows

λwT = λ0

=
2

3
.

The calculation for every other true parameter yields a local RLCT of either 2
3 or 1. Taking the

minimum, the RLCT of the two neuron network with zero true function is

λ =
2

3
.

As we saw in the single neuron network, the geometry of the zero set changes at the same points as
the RLCT. Whenever the true parameter is non-zero, the zero set is a union of lines as in Figure 5.3a
and 5.3b, and the RLCT is 5

4 . As soon as the true parameter equals zero though, the zero set turns
into the union of planes shown in Figure 5.3c, and the RLCT decreases to 2

3 .
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Chapter 6

Conclusion

In this thesis, we have studied how the KL divergence for neural networks can be bounded by a
polynomial. This led to Theorem 1, which provides a polynomial bound in the case of two layer tanh
networks. Our approach to proving this theorem was based on [Wat09, Remark 7.6], primarly through
the use of the network’s Taylor series and the Hilbert basis theorem. In Chapter 2, we showed that the
Taylor series of a biasless tanh network of any depth is a sum of products of polynomials of the network
weights and functions of the input. Using this form of the Taylor series, in Chapter 3 we derived a set
of conditions based around the Hilbert basis theorem which guarantee a polynomial upper bound for
K. Checking these conditions though was far from straightforward. To deal with these difficulties we
introduced Gröbner bases and the generic division algorithm. Using these techniques, we checked the
conditions for a two neuron network in Chapter 4. However, for larger networks, the generic division
algorithm was too complicated. Instead, to prove the Main Theorem for a network with arbitrarily
many neurons, we had to search for and use a pattern in the Taylor series polynomials to check all of
the convergence conditions. Finally, we used the polynomials we found to visually examine the zero
sets for the KL divergence of simple two layer networks in Chapter 5.

We began this project aiming to develop a general method for finding equivalent polynomials based
on [Wat09, Remark 7.6]. This quickly proved out of reach, and instead we focused on understanding
the specific example of two layer tanh networks which appear throughout the literature. While an
important problem is to find equivalent polynomials for other types of networks, there may be several
obstacles to generalising the methods from this thesis. For example, the generic division algorithm
was already too difficult for models with more than two neurons, making it unlikely to work for
deeper networks with even more parameters. The second method, which led to our result for two layer
networks with arbitrarily many neurons, essentially involved being lucky enough to notice a pattern in
the quotients. Hoping that the Taylor series polynomials are sufficiently “nice” for such a pattern to
exist and be visible is not an ideal approach to rely on in general.

These limitations however, suggest interesting open problems and directions for future work. It would
be worth trying some the methods in this thesis on other models, in order to confirm if they are in
fact too difficult to generalise. By Lemma 5, we know that deeper tanh networks have polynomial
Taylor series coefficients, so one option would be to try and prove a polynomial upper bound for a
simple three layer network.

What caught our attention in [Wat09, Remark 7.6] though, is its purported generality. In its stated
form, none of the detailed algebra and the conditions we had to check matter. Understanding whether
such a general result is possible would be a fruitful problem to solve. For example, if one could prove
that

∞∑
j=0

fj(w)2 < C for all w ∈W
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automatically implied the existence of quotients akj (w) and a constant C ′ > 0 such that

∞∑
j=0

akj (w)2 < C ′ ,

then all the calculations in this thesis could be avoided. It would be much simpler to find polynomial
upper bounds for any network whose Taylor series satisfy the conditions of the Replacement Strategy,
potentially leading the way to calculations of the RLCTs for a much wider class of models than
currently in the literature. At present though, we have no indication or intuition of whether such a
statement is true.
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Appendix A

Appendix

A.1 Other activation functions

In Chapter 2 we saw that biasless tanh networks have Taylor series coefficients which are polynomials
of the weights and we proved that this holds for any network whose activation function satisfies
the conditions in Lemma 4. In this Appendix, we examine which other activation functions have
these properties, and show that Swish neural networks also satisfy the condition of the Replacement
Strategy.

Sigmoid:

The logistic function

σ(x) =
1

1 + e−x

has derivative
σ′(x) = σ(x)(1− σ(x)) ,

and so σ satisfies property 2 of Lemma 4. However σ(0) = 1
2 and so this activation doesn’t satisfy

property 1 of that lemma.

If we want, we can shift this downwards to invent a new activation that satisfies both properties 1 and
2. Define τ(x) = σ(x)− 1

2 . Clearly τ(0) = 0, and

τ ′(x) = σ(x)(1− σ(x))

=

(
1

2
+ τ(x)

)(
1

2
− τ(x)

)
=

1

4
− τ(x)2 ,

so both properties hold. However τ(x) = 1
2 tanh(12x), so this doesn’t really add anything new.

Swish:

The Swish activation function is
s(x) =

x

1 + e−βx
,

for some fixed β ∈ R. This activation satisfies property 1, and its derivative is

s′(x) =
(1 + e−βx)− x(−βe−βx)

(1 + e−βx)2

=
1

1 + e−βx
+
βx(1 + e−βx)− βx

(1 + e−βx)2
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= σ(βx) + βs(x)− βs(x)σ(βx)

= σ(βx) (1− βs(x)) + βs(x) , (A.1.1)

which is not a polynomial of s(x) so property 2 does not hold. Despite this, the Taylor series coefficients
for Swish networks are in fact polynomials of the weights. The derivative (A.1.1) is still a polynomial,
but of both s(x) and σ(βx), which turns out to be sufficient.

We can replace σ by τ in (A.1.1), giving

s′(x) =

(
τ(βx) +

1

2

)
(1− βs(x)) + βs(x)

= Q(s(x), τ(βx)) ,

where Q(x1, x2) =
(
x2 + 1

2

)
(1− βx1) + βx1.

To prove that Swish neural networks do in fact have polynomial Taylor series coefficients, we introduce
some definitions and preliminary lemmas.

Definition 27. Given a neural network F with Swish activations, we can write the output of F as

F (x,w) = s(z(n)) ,

where z(n) is the nth layer’s weighted input. Define the TauNet of F to be the neural network T which
has the same structure and weights as F but replaces the final layer activation function with τ(β(−)),
so that

T (x,w) = τ(βz(n))

= τ(β

k∑
j=1

w
(n)
1j a

(n−1)
j ) .

The TauNet for F has the following property:

∂T

∂xi
=

(
1

4
− τ(βz(n))2

)
β

 k∑
j=1

w
(n)
1j

∂a
(n−1)
j

∂xi


= β

(
1

4
− T (x)2

) k∑
j=1

w
(n)
1j

∂a
(n−1)
j

∂xi


= G(T )

 k∑
j=1

w
(n)
1j

∂a
(n−1)
j

∂xi

 , (A.1.2)

where G(T ) = β(14 − T
2).

Definition 28. We say that a function is an SP-function for F if it is a polynomial of F , the TauNet
for F , T , the network weights, w(l)

ij , and the partial derivatives of the activations of the second last

layer
∂|α|a

(n−1)
j

∂xα . Equation (A.1.2) says that any first order partial derivative of the TauNet T is an SP
function for F .

Lemma 18. Any partial derivative of an SP function for F with respect to an input xi is itself an SP
function for F .

Proof: It is sufficient to prove this is true for an SP “monomial”

wαF aT b
r∏
l=1

fl , (A.1.3)
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where each fl is a partial derivative of a second last layer neuron. Then

∂

∂xi

(
wαF aT b

r∏
l=1

fl

)
= wα

(
r∏
l=1

fl

)[
aF a−1T bQ(F, T ) + bF aT b−1G(T )

] k∑
j=1

w
(n)
1j

∂a
(n−1)
j

∂xi


+ wαF aT b

r∑
l=1

 ∂fl
∂xi

∏
j 6=l

fj

 ,

which is an SP-function for F . �.

This lets us prove the polynomial coefficient property for Swish neural networks.

Lemma 19. Given a biasless neural network F : Rm×W → R of depth n which uses Swish activation
functions, the partial derivatives of F evaluated at x = 0 are polynomials of the weights.

Proof: We follow a similar strategy to Lemma 5, using induction on the network depth. First we
prove the claim for 2 layer Swish networks of the form

F (x,w) = s

 m∑
j=1

w
(2)
1,jxj

 . (A.1.4)

This is an SP-function for F , so by Lemma 18, any partial derivative of F (up to any order) is again
an SP-function for F and is a linear combination of terms of the form

wαF aT bxβ ,

where α and β are multi-indices. The xβ factor appears since the activations of the second last layer
(ie: layer 1) are just the inputs to the network. Then since F |x=0 = 0, T |x=0 = 0, and x|x=0 = 0, the
above monomial restricted to x = 0 is a polynomial of the weights (which can be non-zero if a, b, and
β are all zero). This proves the claim for two layer Swish networks.

As in the proof of Lemma 5, we use induction to prove the claim for networks of any depth. Suppose
that the claim held for all Swish networks with n layers. If F is a swish network with n+ 1 layers, any
partial derivative of F is an SP-function for F , meaning it is a linear combination of terms of the form

wαF aT b
r∏
l=1

fl ,

where each fl is a partial derivative of an nth layer’s activation. By the induction hypothesis, each
fl|x=0 is a polynomial of the network weights. It follows that any partial derivative of F evaluated at
x = 0 is a polynomial of the weights. �.

A.2 Revisiting biases

In Lemma 5 we found that the Taylor series coeficients for biasless networks with certain activation
functions are polynomials of the weights. We noted that including biases can make this result false.
This causes a significant restriction, and understanding networks which have biases is an important
problem which has not yet been studied in SLT.

The issue was that biases made a network’s Taylor series coefficents be analytic functions of the
weights, rather than just polynomials. In this Appendix we introduce a workaround which may help
find a polynomial upper bound on the KL divergence of two layer tanh networks which have biases.

Suppose that we wish to find a polynomial upper bound for the KL divergence of the two layer tanh
network with biases

f(x1, a1, b1, c1, ...., an, bn, cn) =

n∑
i=1

ai tanh (bix1 + ci) ,
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where the input distribution is q(x1), and we assume the true function fT (x1) is zero.

We can turn f into a biasless network by defining a modified network f̂ , which has an extra input
dimension

f̂(x1, x2, a1, b1, c1, ...., an, bn, cn) =

n∑
i=1

ai tanh (bix1 + cix2) . (A.2.1)

When x2 is restricted to equal 1, f̂ becomes the original network f . If we set the modified input
distribution q̂(x1, x2) to equal q(x1)δ(x2 − 1), the KL divergence of the modified network is

K̂(a1, b1, c1, ..., an, bn, cn) =

∫
R2
f̂(x1, x2, a1, b1, c1, ...., an, bn, cn)2δ(x2)q(x1)dx2dx1

=

∫
R
f(x1, a1, b1, c1, ...., an, bn, cn)2q(x1)dx1

= K(a1, b1, c1, ..., an, bn, cn) ,

where K(a1, b1, c1, ..., an, bn, cn) is the KL divergence of the unmodified network f .

The modified network is a two layer biasless tanh network which has two inputs. By Lemma 5,
the Taylor series coefficients for the modified network are polynomials of the weights. A worthwile
future exercise, would be to check conditions (C1)-(C4) for these polynomials, hopefully resulting in a
polynomial upper bound for a network with biases.

Remark. This is clearly related to finding a polynomial upper bound for the KL divergence of two
layer tanh networks with multiple inputs.

In the paper [Wat01c], Watanabe uses this same construction to include networks with biases into his
analysis. In the paper, he finds upper bounds on the RLCT of multidimensional networks based on
the input and output dimensions, and number of neurons in the true function. His technique appears
similar to the paper [Wat00c], where he replaces terms in the KL divergence with polynomials, but
does not appear to resolve singularities.

Aoyagi and Watanabe have studied the RLCTs of two layer networks with both multiple inputs and
outputs in [AW06], and their method relied on replacing the KL divergence with a polynomial. If we
use their result to focus on networks with 1D outputs, their method would replace the KL divergence
of the network with N inputs and H tanh units

f(x1, ..., xN , w) =
H∑
i=1

ai tanh

 N∑
j=1

bijxj


with the polynomial

H∑
n=1

N∑
j=1

(
H∑
i=1

aib
2(n−1)+1
ij

)2

.
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