The University of Melbourne

A_{∞}-Categories and Matrix Factorisations over Hypersurface Singularities

Patrick Elliott

Supervisor: Daniel Murfet

A thesis submitted in partial fulfilment of the requirements of the degree of Master of Science

in the

School of Mathematics and Statistics
October 2017

Abstract

In this thesis we will give an exposition of the theory of matrix factorisations and $A_{\infty^{-}}$ categories, with applications to the study of hypersurface singularities and LandauGinzburg models in quantum field theory. The field suffers from a lack of non-trivial examples, and the primary aim of this thesis is to compute interesting new examples of A_{∞}-algebras, A_{∞}-modules, and A_{∞}-bimodules arising naturally in the geometry and physics of hypersurface singularities and matrix factorisations.

Acknowledgements

First and foremost I would like to give enormous thanks to my supervisor Daniel Murfet, whose guidance and endless patience has been invaluable throughout my research. It has been a pleasure and a thrill to work with someone with such energy and acuity for mathematics.

Thanks must also go to Marcy Robertson for sacrificing her time to read my thesis, and for providing advice throughout.

Next, I would also like to thank my fellow students in G90, without whom this thesis would have been finished much sooner. Special mention goes to Anson MacDonald, Ben Hines, Blake Cook, Mark Turner, and Zac Fehily.

I would also like to thank my family, without whom I would not have had any of the opportunities I have today.

Finally, I would like to thank Laura Giesen, who's love and support has has been boundless over the last two years.

Contents

1 Introduction 1
1.1 Hypersurface singularities and matrix factorisations 1
1.2 Deformations and A_{∞}-algebras 2
$1.3 \quad A_{\infty}$-categories and non-commutative geometry 3
1.4 Plan for thesis 3
1.5 Notation and Terminology 5
$2 A_{\infty}$-algebras 7
2.1 Introduction 7
2.2 Differential graded algebras 8
$2.3 \quad A_{\infty}$-algebras 9
$2.4 \quad A_{\infty}$-modules and A_{∞}-bimodules 16
$3 A_{\infty}$-Categories and the Minimal Model Theorem 23
3.1 Background 23
3.2 Sector decomposition 25
3.3 Minimal Models 27
4 Matrix factorisations 37
4.1 Preliminaries 37
4.2 Koszul factorisations 41
4.3 Compact generator of $\operatorname{hmf}(\mathrm{W})$ 43
4.4 Orlov's theorem 47
5 Minimal model construction 49
5.1 Introduction 49
5.2 Homological perturbation lemma 49
5.3 The construction 51
5.3.1 The deformation retract 53
5.4 Configurations and Feynman calculus 60
5.5 Bounds on the higher products 67
5.6 The A_{∞}-algebra associated to $W=x^{3}-y^{3}$. 68
$6 \quad A_{\infty}$-minimal models of modules and bimodules 73
$6.1 \quad A_{\infty}$-minimal models of modules 73
$6.2 A_{\infty}$-minimal models of bimodules 79
$6.3 \quad \mathcal{A}_{x^{d}} \mathcal{A}_{y^{e}}$-bimodules 83
A Trees 95
A. 1 Basic definitions 95
A. 2 Decorations and denotations 97
A. 3 Edge contraction and insertion 100

Chapter 1

Introduction

1.1 Hypersurface singularities and matrix factorisations

In this thesis we are interested in affine hypersurface singularities: singular affine schemes arising as the zero locus of a single polynomial W. In algebraic geometry, an important technique to study such singularities is to understand how they deform into other singularities. These deformations can be studied at the level of spaces, or at the level of categories, and it is the latter which is the point of view adopted in this thesis.

Just as we can study a group G by studying its category of representations, or a scheme Y by studying the category of quasi-coherent sheaves on Y, a category of interest in the study of isolated hypersurface singularities is the category of matrix factorisations. A matrix factorisation of a nonzerodivisor W in a commutative \mathbb{k} algebra R is an odd R-linear operator d on a free $\mathbb{Z} / 2 \mathbb{Z}$-graded R-module X satisfying the identity

$$
\begin{equation*}
d^{2}=W \cdot \mathrm{id} \tag{1.1}
\end{equation*}
$$

Equivalently, a matrix factorisation d of W is given by a square matrix

$$
d=\left[\begin{array}{cc}
0 & d_{1} \\
d_{0} & 0
\end{array}\right],
$$

such that $d_{0} d_{1}=d_{1} d_{0}=W$. We can understand a hypersurface singularity $\operatorname{Spec}(W)$ by understanding the set of all matrix factorisations of W and how they deform.

The concepts previewed above have direct parallels in mathematical physics, namely in the study of Landau-Ginzburg models. In this context one considers a superpotential
$W \in \mathbb{C}[\mathbf{x}]$ which gives rise to a two-dimensional topological field theory [36, 46]. In particular, the bulk sector corresponding to the bulk chiral primaries in the associated conformal field theory is given by the Jacobi ring $\operatorname{Jac}(W)=\mathbb{C}[\mathbf{x}] /(\partial W)[63]$, and the boundary conditions are described by matrix factorisations of W [5, 27, 36].

Moduli spaces are central to both the mathematical and physical setting. One example is the moduli space of D-branes in physics, which we model as the homotopy category of matrix factorisations over W [51]. It is therefore crucial to study deformations of matrix factorisations in order to understand the local structure of such moduli spaces.

1.2 Deformations and A_{∞}-algebras

A deformation of a matrix factorisation, (X, d), of W consists of a block off-diagonal matrix δ such that $(d+\delta)^{2}=W \cdot$ id. Since $d^{2}=W \cdot \mathrm{id}$, this is equivalent to

$$
\begin{equation*}
d \delta+\delta d+\delta^{2}=0 \tag{1.2}
\end{equation*}
$$

Viewing d as an endomorphism of a graded R-module, we see that δ must be a degree +1 operator, so we can rewrite the above expression as

$$
\begin{equation*}
[d, \delta]+\delta^{2}=0 \tag{1.3}
\end{equation*}
$$

where $[-,-]$ is the graded commutator. The space E of all matrices the same size as d forms a differential graded algebra (DG-algebra), with multiplication given by the matrix product, and differential $D=[d,-]$. For any DG-algebra with differential D, the equation $D(A)+A^{2}=0$ with $|A|=1$ is called the Maurer-Cartan equation. Hence, the deformation problem for matrix factorisations is equivalent to the problem of finding solutions to the corresponding Maurer-Cartan equation [7].

Calculating the space of solutions to the Maurer-Cartan quation of this DG-algebra is difficult, because E is infinite dimensional as a \mathbb{k}-vector space. We are led to seek a finite-dimensional object which encodes the same deformation theoretic information as E. Such an object can be obtained using techniques from algebraic topology, and is called the A_{∞}-minimal model of E.

A priori A_{∞}-algebras, which have their origins in Jim Stasheff's study of iterated loop spaces [59], have no immediate connection to the study of deformations in algebraic geometry. The link is provided by Kadeishvili's Minimal Model Theorem [25], which states that for any DG-algebra, A, one can construct a minimal A_{∞}-algebra \mathcal{A} which is quasi-isomorphic to A. We call \mathcal{A} the A_{∞}-minimal model of A. Since Maurer-Catan solution spaces are invariant under quasi-isomorphism [33,43], this result allows us to
use \mathcal{A}, which in many cases is finite dimensional, in place of E to solve our deformation problem. A major motivation of this thesis is to apply the techniques developed in $\left[10,11,49\right.$ to compute examples of A_{∞}-minimal models for some well known hypersurface singularities.

1.3 A_{∞}-categories and non-commutative geometry

This appearance of A_{∞}-algebras in physically relevant computations is not an isolated case, but an example of a series of such phenomena characterising the field of noncommutative algebraic geometry (NCAG), as developed in 28. Broadly, NCAG is inspired by the observation that the derived category of complexes of coherent sheaves over a given scheme Y is able to detect an uncanny amount of information about Y [3]. Just as the Grothendieck school of algebraic geometry took the step of studying arbitrary commutative rings as generalised algebras of functions, non-commutative algebraic geometry studies certain kinds of abelian and triangulated categories as chain complexes of coherent sheaves on some hypothetical non-commutative space \mathcal{X}.

Bondal and Kapranov [2] introduced DG-categories into the subject as an enhancement of derived categories. Although this step had technical advantages, it was hindered by the mapping spaces in question being infinite-dimensional. As a solution, the notion of an A_{∞}-category, a categorical generalisation of an A_{∞}-algebra, was introduced [16], and a categorical analogue of the Minimal Model Theorem was developed [34, 38]. Although this step was justified for mathematical reasons, it was not until more recent work, including that of Fukaya and Lazaroiu [18, 19, 37, that the structure of A_{∞}-categories found physical relevance. Insubsequent years, A_{∞}-categories have been indispensable in deformation quantisation [33], open string field theory [20, 22, 26], and, most famously, in the statement of the Homological Mirror Symmetry Conjecture [32].

Despite the pace of research in the last two decades centered on A_{∞}-categories and A_{∞}-algebras, there have only been a handful of explicit examples computed in the literature (12, 41, 45].

1.4 Plan for thesis

In recent years Murfet [11, 49], Dyckerhoff [10], and others have built on the work of Seidel [57] and Efimov [12] to develop the techniques and machinery needed to make explicit calculations feasible. This thesis aims to present a detailed and unified survey of this work, and to compute new explicit examples of A_{∞}-structures arising from hypersurface singularities.

In Chapters 2 and 3 we recall the theory of A_{∞}-algebras, A_{∞}-modules, A_{∞} bimodules, and A_{∞}-categories, incorporating basic examples. The main contribution of these two
chapters is a complete presentation of the generalised Minimal Model Theorem for A_{∞}-categories, providing perhaps the first fully detailed proof in the literature which carefully accounts for signs.

In Chapter 4 we review the basic theory of matrix factorisations. We provide a new proof, due to Murfet, that $\mathbb{k}_{W}^{s t a b}$ generates the DG-category $\operatorname{mf}(W)$. We also present Orlov's theorem in the context of modules, showing that the derived category of singularities over $\operatorname{Spec}(R / W)$ is equivalent to the homotopy category of matrix factorisations of W.

In Chapter 5 we construct a strong deformation retract of the DG-algebra $\operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right)$, to which we apply the Minimal Model Theorem. We then motivate and develop the formalism of configurations and Feynman calculus to compute concrete examples. This section culminates in a formula for the A_{∞}-products on the A_{∞}-minimal model of $\operatorname{End}\left(\mathbb{k}_{W}^{s t a b}\right)$ together with a basic example of the A_{∞}-minimal model of the A_{d} singularity $W=x^{d}$. We end the chapter more involved example of the A_{∞}-minimal model associated to $W=x^{3}-y^{3}$.

In Chapter 6 we extend the construction in 5 to the context of A_{∞}-modules, providing a method to compute the minimal model of $\operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right)$-modules. We give an example of a family of A_{∞}-modules over the A_{∞}-algebra associated to $W=x^{d}$. We then apply this construction to give a method of computing the A_{∞}-minimal model of an $\operatorname{End}\left(\mathbb{K}_{V}^{s t a b}\right)-\operatorname{End}\left(\mathbb{k}_{W}^{s t a b}\right)$-DG-bimodule by computing the equivalent $\operatorname{End}\left(\mathbb{K}_{W-V}^{s t a b}\right)$ module minimal model. This provides a way to construct examples of A_{∞}-bimodules, including examples arising from permutation defects. These are important examples in the physics literature [4, 15].

We also include an appendix covering the basic theory of rooted trees, fixing the notation for the thesis.

1.5 Notation and Terminology

Throughout the thesis \mathbb{k} denotes a field of characteristic 0 . When we refer to a ring R mean a commutative, unital ring. Throughout we will write $\otimes=\otimes_{\mathfrak{k}}$ unless otherwise stated. We use the following notation:

```
\(\operatorname{mf}(W) \quad\) The DG-category of matrix factorisations.
\(\operatorname{hmf}(W) \quad\) The homotopy category of matrix factorisations
\(\operatorname{Perf}(S) \quad\) The category of perfect complexes of \(S\) modules.
\(\operatorname{Perf}_{\infty}(A)\) The category of perfect complexes of \(A_{\infty}\)-modules over \(A\).
    \(F_{\theta} \quad\) The \(\mathbb{Z} / 2 \mathbb{Z}\)-graded \(\mathbb{k}\)-vector space \(\mathbb{k} \theta_{1} \oplus \cdots \oplus \mathbb{k} \theta_{n}\)
    \(F_{\psi} \quad\) The \(\mathbb{Z} / 2 \mathbb{Z}\)-graded \(\mathbb{k}\)-vector space \(\mathbb{k} \psi_{1} \oplus \cdots \oplus \mathbb{k} \psi_{n}\)
    \(F_{\psi^{*}} \quad\) The \(\mathbb{Z} / 2 \mathbb{Z}\)-graded \(\mathbb{k}\)-vector space \(\mathbb{k} \psi_{1}^{*} \oplus \cdots \oplus \mathbb{k} \psi_{n}^{*}\)
```

We also work with a number of different A_{∞}-structures in this thesis, so to avoid confusion we will outline the different notations below:
$(A, m) \quad A_{\infty}$-algebra with standard higher products.
$(A, b) \quad A_{\infty}$-algebra with shifted higher products.
$(M, \nu) \quad A_{\infty}$-module or A_{∞}-bimodule with shifted higher products.
$\mu \quad$ Standard A_{∞}-category composition products.
$m \quad$ Forward A_{∞}-category composition products.
$r \quad$ Forward suspended A_{∞}-category composition products.

Chapter 2

A_{∞}-algebras

2.1 Introduction

Consider a pointed topological space $(X, *)$, and let ΩX denote the loop space of X. A point of ΩX is a continuous map $g:[0,1] \rightarrow X$ such that $g(0)=g(1)=*$. There is a composition map $m_{2}: \Omega X \times \Omega X \rightarrow \Omega X$ sending two loops, g_{1} and g_{2}, to the loop $m_{2}\left(g_{1}, g_{2}\right)$, which runs through g_{1} on the first half of the interval and g_{2} on the second half:

This almost gives the loop space a group structure, with the exception being that m_{2} is not associative. For three loops, g_{1}, g_{2}, and g_{3}, the composition $m_{2}\left(m_{2}\left(g_{1}, g_{2}\right), g_{3}\right)$ runs through g_{3} on the second half of the interval, whereas $m_{2}\left(g_{1}, m_{2}\left(g_{2}, g_{3}\right)\right)$ runs through g_{3} on the last quarter of the interval.

Figure 2.1: The two ways of composing three loops are not equal.
However, the two ways of composing three loops are equal up to homotopy

$$
\begin{equation*}
m_{3}:[0,1] \times(\Omega X)^{3} \rightarrow \Omega X \tag{2.1}
\end{equation*}
$$

Observe now that the number of ways of composing n loops is in bijection with the number of binary rooted trees with n leaves, so there are five ways of composing four loops, 14 ways to compose five loops, and so on. In the case of four loops, there are two paths of homotopies joining the nested composition $m_{2}\left(m_{2}\left(m_{2}\left(g_{1}, g_{2}\right), g_{3}\right) g_{4}\right)$ to $m_{2}\left(g_{1}, m_{2}\left(g_{2}, m_{2}\left(g_{3}, g_{4}\right)\right)\right)$, and these two paths are related by a homotopy

$$
\begin{equation*}
m_{4}: K_{4} \times(\Omega X)^{4} \rightarrow \Omega X \tag{2.2}
\end{equation*}
$$

where K_{4} denotes the pentagon bounded by the two paths. More generally, in 59 Stasheff defined polytopes K_{n} of dimension $n-2$ for all $n \geq 2$, and showed that there are higher homotopies $m_{n}: K_{n} \times(\Omega X)^{n} \rightarrow \Omega X$ of all orders. This is the first example of a structure which is associative up to higher homotopies, called an A_{∞}-space.

The notion of an A_{∞}-algebra is the natural analogue of this structure on a graded vector space. In the decades following their construction, the use of A_{∞}-algebras was mostly limited to abstract homotopy theory. It wasn't until the early $1990 s$ that the relevance of A_{∞}-algebras and related structures spread to the broader fields of algebra, geometry, and mathematical physics. In subsequent years the theory has demonstrated wide utility, being used by Kontsevich in his homological mirror symmetry program [32, 35], and Polishchuk in the study of the moduli space of curves [53,54].

2.2 Differential graded algebras

We begin by recalling the definition of a differential graded algebra over a ring R. Let A be an associative R-algebra, and let I be either \mathbb{Z} or $\mathbb{Z} / 2 \mathbb{Z}$. An I-grading on A is a decomposition $A=\bigoplus_{p \in I} A_{p}$ such that $A_{p} A_{q} \subset A_{p+q}$. In this section, when we say that an algebra or module is graded we mean it is I-graded. Given a homogeneous element
$a \in A_{p}$ we will write $|a|=p$.

Definition 2.2.1. A differential graded algebra (DG-algebra) A is a graded algebra equipped with a degree +1 map $d: A \rightarrow A$ which satisfies the following conditions:

1. $d \circ d=0$.
2. (Graded Leibniz) $d(a b)=d(a) b+(-1)^{|a|} a d(b)$.

A morphism of DG-algebras A and B is a morphism of the underlying cochain complexes which is compatible with the multiplication and units.

Example 2.2.1. Let $\left(C, d_{C}\right)$ be a chain complex. We define the endomorphism algebra of C as

$$
\operatorname{End}(C):=\operatorname{Hom}(C, C),
$$

with multiplication given by composition of functions, and grading

$$
\operatorname{End}(C)=\bigoplus_{p \in I} \operatorname{Hom}\left(C^{q}, C^{q+p}\right)
$$

inherited from C. We define a differential d on $\operatorname{End}(C)$ by

$$
d(f)=d_{C} \circ f+(-1)^{|f|} f \circ d_{C}
$$

which makes $\operatorname{End}(C)$ into a DG-algebra.
Definition 2.2.2. Let $\left(A, d_{A}\right)$ be a DG-algebra. A (left) graded module over A is an A module M such that, for all $p, q \in I, A^{q} M^{p} \subset M^{p+q}$. A $D G$-module over A is a graded A-module M equipped with a degree +1 map $d: M \rightarrow M$ satisfying the following conditions:

1. $d \circ d=0$,
2. If $a \in A$ and $m \in M, d(m a)=d(m) a+(-1)^{|m|} d_{A}$.

$2.3 \quad A_{\infty}$-algebras

In many areas of mathematics a natural problem is to transfer certain algebraic structures along appropriate equivalences of objects. This is a very straightforward process when we are dealing with isomorphisms of abelian groups and algebraic structures:
given an isomorphism $f: A \xrightarrow{\cong} A^{\prime}$ of abelian groups we can transfer the multiplication on A to one on A^{\prime} by defining $m_{A^{\prime}}(a, b)=m\left(f^{-1}(A), f^{-1}(B)\right)$.

The situation becomes more complicated when we attempt to transfer algebraic structures along homotopy equivalences rather than isomorphisms. Consider a homotopy equivalence $g: A \rightarrow B$ of complexes, where A is a DG-algebra. We could again try to transfer the multiplication from from A to B, but we run into difficulties. In particular, any multiplication induced on B will fail to be associative in general.

It turns out that when working with a special kind of homotopy equivalence called a deformation retract we may transfer a multiplicative structure on A to one which is associative up to higher homotopies on B. It is this last notion which is is encoded precisely in the definition of an A_{∞}-algebra. There are several different conventions in the literature regarding signs, so for the sake of consistency we will follow the treatment of Keller [29].

Definition 2.3.1. Let \mathbb{k} be a field. An A_{∞}-algebra over \mathbb{k} is a \mathbb{Z} (or \mathbb{Z}_{2})-graded vector space A together with a collection of homogeneous \mathbb{k}-linear maps

$$
m_{n}: A^{\otimes n} \rightarrow A, \quad n \geq 1
$$

of degree $2-n$ satisfying the following A_{∞}-relations

$$
\begin{equation*}
\sum_{n=r+s+t}(-1)^{r+s t} m_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)=0 \tag{2.3}
\end{equation*}
$$

It is instructive to unpack the A_{∞}-relations for small n :

- $n=1$: We have $m_{1} m_{1}=0$, so $\left(A, m_{1}\right)$ is the data of a cochain complex.
- $n=2$: We have

$$
m_{1} m_{2}=m_{2}\left(m_{1} \otimes \mathrm{id}+\mathrm{id} \otimes m_{1}\right)
$$

as maps $A^{\otimes 2} \rightarrow A$, where id here denotes the identity map on A. This says that m_{1} is a (graded) derivation with respect to the multiplication m_{2}.

- $n=3$: We have

$$
m_{2}\left(\mathrm{id} \otimes m_{2}+m_{2} \otimes \mathrm{id}\right)=m_{1} m_{3}+m_{3}\left(m_{1} \otimes \mathrm{id} \otimes \mathrm{id}+\mathrm{id} \otimes m_{1} \otimes \mathrm{id} \otimes \mathrm{id} \otimes m_{1}\right)
$$

as maps $A^{\otimes 3} \rightarrow A$. The left hand side is the associator for m_{2} and the right hand side is the differential of m_{3} in the complex $\operatorname{Hom}_{\mathfrak{k}}\left(A^{\otimes 3}, A\right)$. This says that m_{2} is associative up to homotopy m_{3}.

We will refer to the maps m_{n} as higher products or A_{∞}-products interchangeably.

Example 2.3.1. When $m_{n}=0$ for $n \geq 3$, the A_{∞} relations make m_{2} into an associative multiplication with m_{1} a compatible derivation, so such an A_{∞}-algebra is precisely a DG-algebra.

Example 2.3.2. If $A^{p}=0$ for all $p \neq 0$ then an A_{∞}-structure on A is the same as an associative algebra structure.

Lemma 2.3.1. Let V be a graded R module and write $\bar{T} V=\bigoplus_{n \geq 1} V^{\otimes n}$ for the reduced tensor coalgebra. If we are given a family of maps $m_{n}: V^{\otimes n} \rightarrow V, n \geq 0$ then it can be lifted uniquely to a coderivation $M: \bar{T} V \rightarrow \bar{T} V$ such that the following diagram commutes

where $M_{n, m}: V^{\otimes n} \rightarrow V^{\otimes m}$ is given by

$$
\begin{equation*}
\sum_{r+s+t=n} \mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t} \tag{2.4}
\end{equation*}
$$

Moreover, any coderivation $M^{\prime}: \bar{T} V \rightarrow T V$ restricts to a family of maps $m_{n}^{\prime}: V^{\otimes n} \rightarrow$ $V, n \geq 1$ given by

$$
\begin{equation*}
m_{n}^{\prime}: V^{\otimes n} \subset \bar{T} V \xrightarrow{m^{\prime}} \bar{T} V \rightarrow V \tag{2.5}
\end{equation*}
$$

where the last map is the natural projection.
To avoid signs it is convenient to work with maps $b_{n}: A[1]^{\otimes n} \rightarrow A[1]$ of degree +1 . Write $S: A \rightarrow A[1]$ for the suspension map which is the identity on elements, and shifts the degree by +1 . There is a bijection between degree 1 maps $b_{n}: A[1]^{\otimes n} \rightarrow A[1]$ and degree $2-n$ maps $m_{n}: A^{\otimes n} \rightarrow A, n \geq 1$ given by the square

where $S^{\otimes n}$ has Koszul signs

$$
\begin{equation*}
S^{\otimes n}\left(a_{1} \otimes \cdots \otimes a_{n}\right)=(-1)^{(n-1)\left|a_{n}\right|+(n-2)\left|a_{n-1}\right|+\cdots+\left|a_{n}\right|} a_{1} \otimes \cdots \otimes a_{n} \tag{2.6}
\end{equation*}
$$

We call the maps $\left\{b_{n}\right\}$ the suspended products. This grading shift allows us to write the definition of an A_{∞}-algebra without signs. Going forward, it is our convention to use m to always refer to the higher products as above, and b for the suspended higher products.

Lemma 2.3.2. (Keller [29]) Let $A=\bigoplus A^{p}$ be a graded \mathbb{k}-vector space, and let m_{n} : $A^{\otimes n} \rightarrow A, n \geq 1$, be a family of linear maps. The following are equivalent:

1. The maps $\left\{m_{n}\right\}_{n \geq 1}$ define an A_{∞}-algebra structure on A.
2. The coderivation $B: \bar{T} A[1] \rightarrow \bar{T} A[1]$ associated to the family of maps $\left\{b_{n}\right\}$ satisfies $B^{2}=0$.
3. For each $n \geq 1$,

$$
\begin{equation*}
\sum_{r+s+t=n} b_{r+1+t} \circ\left(\mathrm{id}^{\otimes r} \otimes b_{s} \otimes \mathrm{id}^{\otimes t}\right)=0 \tag{2.7}
\end{equation*}
$$

Proof. Write $\mathbf{v}=v_{1} \otimes \cdots \otimes v_{n}$. To show that the first and third items are equivalent we just have to account for signs. First, note that $m_{n}=s^{-1} \circ b_{n} \circ s^{\otimes n}$, so

$$
\begin{equation*}
m_{s}\left(v_{r+1} \otimes \cdots \otimes v_{r+s}\right)=(-1)^{(s-1)\left|v_{r+1}\right|+\cdots+\left|v_{r+s-1}\right|} b_{s}\left(v_{r+1} \otimes \cdots \otimes v_{r+s}\right) \tag{2.8}
\end{equation*}
$$

It follows, after applying the Koszul sign convention, that

$$
\begin{aligned}
& \quad\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)(\mathbf{v}) \\
& \quad=(-1)^{(2-s+1)\left(\left|v_{1}\right|+\cdots+\left|v_{r}\right|+(s-1)\left|v_{r+1}\right|+\cdots+\left|v_{r+s-1}\right|\right.}\left(\mathrm{id}^{\otimes r} \otimes b_{s} \otimes \mathrm{id}^{\otimes t}\right)(\mathbf{v})
\end{aligned}
$$

and finally, since $\left|m_{s}\left(v_{r+1} \otimes \cdots \otimes v_{r+s}\right)\right|=\left|v_{r+1}\right|+\cdots+\left|v_{r+s}\right|-2+s$, we have

$$
\begin{aligned}
&(-1)^{r+s t} m_{r+1+s}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)(\mathbf{v}) \\
&=(-1)^{r+s t}(-1)^{(r+t)\left|v_{1}\right|+\cdots+t\left(\left|v_{r+1}\right|+\ldots| | v_{r+s} \mid-2+s\right)+\cdots+\left|v_{n-1}\right|} \\
& \quad(-1)^{(2-s+1)\left(\left|v_{1}\right|+\cdots+\left|v_{r}\right|\right)+(s-1)\left|v_{r+1}\right|+\cdots+\left|v_{r+s-1}\right|} b_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes b_{s} \otimes \mathrm{id}^{\otimes t}\right)(\mathbf{v})
\end{aligned}
$$

To determine the sign on the right hand side we will write down the coefficients of each $\left|v_{i}\right|$ in the exponent.

- $i \leq r: r+t+2-s-i \equiv r+t-s-i \equiv r+t-s+2 s-i \equiv=n-i$.
- $r+1 \leq t \leq r+s-1: t+s-i+r \equiv n-i$.
- $i=r-s: t \equiv n-i$.
- $r+s+1 \leq i \leq n-2: r+1+t-i+s-1 \equiv n-i$.

Hence, after including the extra term $t(2-s)+r+r+s t \equiv 0$, we have

$$
\begin{aligned}
& \sum_{r+s+t}(-1)^{r+s t} m_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes m_{s} \otimes \mathrm{id}^{\otimes t}\right)(\mathbf{v}) \\
&=(-1)^{\sum_{i=1}^{n-1}(n-i)\left|v_{i}\right|} \sum_{r+s+t} b_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes b_{s} \otimes \mathrm{id}^{\otimes t}\right)(\mathbf{v})
\end{aligned}
$$

so the family $\left\{m_{n}\right\}$ defines an A_{∞}-structure if and only if the sum on the right vanishes.
To show the second and third statements are equivalent, observe that B^{2} is a coderivation. Thus, $B^{2}=0$ if and only if the composition

$$
A[1]^{\otimes n} \subset \bar{T} A[1] \xrightarrow{B^{2}} \bar{T} A[1] \rightarrow A[1]
$$

vanishes for all $n \geq 1$. But this is simply the A_{∞}-relation

$$
\sum_{r+s+t=n} b_{r+1+t} \circ\left(\mathrm{id}^{\otimes r} \otimes b_{s} \otimes \mathrm{id}^{\otimes t}\right)=0
$$

Example 2.3.3. Let $A=\mathbb{k}[\varepsilon] / \varepsilon^{2} \cong \mathbb{k} \oplus \mathbb{k} \varepsilon$, with $|\varepsilon|=1$, and consider the products

$$
\begin{aligned}
b_{2}\left(x_{1} \otimes x_{2}\right) & =(-1)^{\left|x_{1}\right|+1} x_{1} x_{2}, \\
b_{d}(\varepsilon \otimes \cdots \otimes \varepsilon) & =1 .
\end{aligned}
$$

We will show that $\left(A, b_{2}, b_{d}\right)$ has the structure of an A_{∞}-algebra. We need to check that the A_{∞}-relations

$$
\sum_{r+s+t=n} b_{r+1+t} \circ\left(\mathrm{id}^{\otimes r} \otimes b_{s} \otimes \mathrm{id}^{\otimes s}\right)=0
$$

hold for all $n>0$. Since there are only two higher products, the cases to check are reduced to $n \in\{3, d+1,2 d-1\}$.

- $n=3$: We need to check that

$$
b_{2} \circ\left(b_{2}\left(x_{1} \otimes x_{2}\right) \otimes x_{3}\right)+(-1)^{|x|+1} b_{2} \circ\left(x_{1} \otimes b_{2}\left(x_{2} \otimes x_{3}\right)\right)=0
$$

If any two x_{i} are equal to ε then the relation above is immediate, since $\varepsilon^{2}=0$.

Suppose that only $x_{i}=\varepsilon$. Then

$$
\begin{aligned}
b_{2} \circ & \left(b_{2}\left(x_{1} \otimes x_{2}\right) \otimes x_{3}\right)+(-1)^{\left|x_{1}\right|+1} b_{2} \circ\left(x_{1} \otimes b_{2}\left(x_{2} \otimes x_{3}\right)\right) \\
& =\left((-1)^{\left|x_{1}\right|+1+\left|x_{1} x_{2}\right|+1}+(-1)^{\left|x_{2}\right|+1}\right) x_{1} x_{2} x_{3} \\
& =\left((-1)^{\left|x_{2}\right|}-(-1)^{\left|x_{2}\right|}\right) x_{1} x_{2} x_{3}=0 .
\end{aligned}
$$

- $n=d+1:$ In this case, the A_{∞}-relations reduce to

$$
b_{2} \circ\left(b_{d} \otimes \mathrm{id}\right)+b_{2} \circ\left(\mathrm{id} \otimes b_{d}\right)+\sum_{r+s=d-1} b_{d}\left(\mathrm{id}^{\otimes r} \otimes b_{2} \otimes \mathrm{id}^{\otimes s}\right)=0 .
$$

Because all terms contain b_{d}, any input which doesn't vanish trivially must have at least d inputs equal to ε. First we check the inputs which preserve one of the first two terms. For $\varepsilon^{\otimes d} \otimes x_{d+1}$

$$
\begin{aligned}
L H S & =b_{2}\left(1 \otimes x_{d+1}\right)+0+b_{d}\left(\varepsilon^{\otimes(d-1)} \otimes(-1) \varepsilon x_{d+1}\right) \\
& =-x_{d+1}+x_{d+1}=0 .
\end{aligned}
$$

Likewise, for $x_{1} \otimes \varepsilon^{\otimes d}$

$$
\begin{aligned}
L H S & =0-b_{2}\left(x_{1} \otimes 1\right)+b_{d}\left(x_{1} \varepsilon \otimes \varepsilon^{\otimes(d-1)}\right) \\
& =x_{1}-x_{1}=0 .
\end{aligned}
$$

Next consider the input $\varepsilon^{\otimes(d-i)} \otimes x_{i+1} \otimes \varepsilon^{\otimes i}$ with $0<i<d$. The first two terms will vanish and the only two terms surviving from the sum will have opposite signs, causing them to vanish.

- $n=2 d-1$: The A_{∞}-relations become

$$
\sum_{r+s=d-1} b_{d}\left(\mathrm{id}^{\otimes r} \otimes b_{d} \otimes \mathrm{id}^{\otimes s}\right)=0
$$

This is the simplest case. For each summand, if the inner b_{d} vanishes then the whole summand vanishes, and if the inner b_{d} doesn't vanish then the outer b_{d} does vanish because its input is not ε^{d}. Hence the sum will vanish for all inputs.

We have shown above that for all $n \in\{3, d+1,2 d-1\}$ the A_{∞}-relations are satisfied, and hence $\left(A, b_{2}, b_{d}\right)$ is an A_{∞}-algebra.

There are two different types of morphisms of A_{∞}-algebras that are used in the literature: strict and weak morphisms, the latter being more useful for our purposes. We will omit the word weak when referring to morphisms.

Definition 2.3.2. Given A_{∞}-algebras $\left(A, b^{A}\right)$ and $\left(B, b^{B}\right)$, a morphism of A_{∞}-algebras $f: A \rightarrow B$ is a collection of homogeneous \mathbb{k}-linear maps

$$
f_{n}: A^{\otimes n} \rightarrow B, \quad n \geq 1
$$

of degree zero which satisfy the following identity

$$
\begin{equation*}
\sum_{r+s+t=n} f_{r+1+t}\left(\mathrm{id}^{\otimes r} \otimes b_{s}^{A} \otimes \mathrm{id}^{\otimes t}\right)=\sum_{i_{1}+\cdots+i_{p}=n} b_{p}^{B}\left(f_{i_{1}} \otimes \cdots \otimes f_{i_{p}}\right) . \tag{2.9}
\end{equation*}
$$

Remark 2.3.1. One can show that there is a bijection between morphisms of A_{∞}-algebras $f: A \rightarrow B$ and morphisms of differential coalgebras $F: \bar{T} A[1] \rightarrow \bar{T} A[1]$.

When $n=1$ the A_{∞}-relations dictate that $f_{1} \circ b_{1}^{A}=b_{1}^{B} \circ f_{1}$, so $f_{1}:\left(A, b_{1}^{A}\right) \rightarrow\left(B, b_{1}^{B}\right)$ is a morphism of cochain complexes. When $n=2$ the A_{∞}-relations are

$$
f_{1} \circ b_{2}^{A}+f_{2} \circ\left(b_{1}^{A} \otimes \mathrm{id}\right)+f_{2} \circ\left(\mathrm{id} \otimes b_{1}^{A}\right)=b_{1}^{B} \circ f_{2}+b_{2}^{B} \circ\left(f_{1} \otimes f_{1}\right)
$$

so f_{1} is compatible with b_{2}^{A} up to a homotopy given by f_{2}.
Definition 2.3.3. A quasi-isomorphism of A_{∞}-algebras is an A_{∞}-algebra morphism $f: A \rightarrow B$ such that f_{1} induces an isomorphism $H^{*}(A) \rightarrow H^{*}(B)$, with cohomology taken with respect to the differential b_{1}.

Definition 2.3.4 (Keller [29]). Two A_{∞}-algebra morphisms $f, g: A \rightarrow B$ are homotopic if there is a homogeneous map $H: \bar{T} A[1] \rightarrow \bar{T} B[1]$ of degree -1 such that

$$
\begin{equation*}
\Delta \circ H=F \otimes H+H \otimes G \quad \text { and } \quad F-G=m^{B} \circ H+H \circ m^{A} \tag{2.10}
\end{equation*}
$$

the homotopy category of A_{∞}-algebras has objects A_{∞}-algebras and morphisms homotpy classes of weak A_{∞}-morphisms.

Theorem 2.3.1 (Prouté [55], Corollary 4.23). Let A and B be A_{∞}-algebras.

1. Homotopy is an equivalence relation on the set of A_{∞}-algebra morphisms $A \rightarrow B$.
2. A morphism of A_{∞}-algebras $A \rightarrow B$ is a quasi-isomorphism if and only if it is a homotopy equivalence.

Definition 2.3.5. An A_{∞}-algebra is (A, b) called minimal if $m_{1}=0$.

Theorem 2.3.2 (Minimal Model Theorem, Kadeishvili [24]). Let (A, m) be an $A_{\infty^{-}}$ algebra. The cohomology $H^{*} A$ has a minimal A_{∞}-structure $b^{H^{*} A}$ such that $b_{2}^{H^{*} A}$ is induced by b_{2}^{A} and there is a quasi-isomorphism of A_{∞}-algebras $H^{*} A \rightarrow A$ which extends the identity morphism on $H^{*} A$. Moreover, this structure is unique up to (non-unique) isomorphism of A_{∞}-algebras.

Proof. We will delay the proof until we give the generalised version of The Minimal Model Theorem for DG-categories in the next chapter.

$2.4 \quad A_{\infty}$-modules and A_{∞}-bimodules

It is a ubiquitous theme in algebra that to understand an object like a group or a ring, it is fruitful to understand its actions on sets or abelian groups. The appropriate notion for A_{∞}-modules is the following:

Definition 2.4.1 (Keller [29]). Let (A, b) be an A_{∞}-algebra. A left A_{∞}-module over A is a graded \mathbb{k}-vector space equipped with homogeneous \mathbb{k}-linear maps

$$
\nu_{n}: A[1]^{\otimes(n-1)} \otimes M[1] \rightarrow M[1], n \geq 1
$$

of degree +1 satisfying

$$
\begin{equation*}
\sum_{r+s+t=n} \nu_{r+1+t} \circ\left(\mathrm{id}^{\otimes r} \otimes \nu_{s} \otimes \mathrm{id}^{\otimes t}\right)=0 \tag{2.11}
\end{equation*}
$$

Here we need to interpret the inner ν_{s} as b_{s} when $t>0$. Right A_{∞}-modules are defined similarly.

For example, an A_{∞}-algebra A can be viewed as a module over itself, with all higher products simply being given by the A_{∞}-algebra products. We call this the free A-module of rank one.

Example 2.4.1. Recall the A_{∞}-algebra $\left(A, b_{2}, b_{d}\right)$ of Example 2.2.3, and consider the $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space $M=\mathbb{k} \oplus \mathbb{k} \eta,|\eta|=1$, and the higher products $\nu_{n}: A[1]^{\otimes n-1} \otimes$ $M[1] \rightarrow M[1]$ with $\nu_{n}=0$ for $m \notin\{2, i+1, d-i+1\}, 2<i<d-1$, given by

$$
\begin{aligned}
\nu_{2}(1, m) & =-x, \\
\nu_{i+1}(\varepsilon \otimes \cdots \otimes \varepsilon \otimes x) & \left.=\eta^{*}\right\lrcorner x, \\
\nu_{d-i+1}(\varepsilon \otimes \cdots \otimes \varepsilon \otimes x) & =\eta \wedge x,
\end{aligned}
$$

where $\left.\eta^{*}\right\lrcorner(-)$ is the contraction operator on the exterior algebra.

We will show that this defines an A_{∞}-module over A. To do so, we need to check that the relation (2.11) holds when $n \in\{3, i+2, d-i+2,2 i+1, d+1,2 d-2 i+1\}$. Throughout we will let $x \in M$ be an arbitrary element.

- $n=3$: We need to check that

$$
\nu_{2}\left(\mathrm{id} \otimes \nu_{2}\right)+\nu_{2}\left(b_{2} \otimes \mathrm{id}\right)=0
$$

If either of the first two inputs are ε then this vanishes instantly since $\nu_{2}(\varepsilon,-)=0$ and $b_{2}(\varepsilon, \varepsilon)=0$, so consider $1 \otimes 1 \otimes x$. Then

$$
L H S=-\nu_{2}\left(1 \otimes \nu_{2}(1 \otimes x)\right)+\nu_{2}((-1) \otimes x)=0
$$

- $n=i+2$: In this case, the A_{∞}-relation reduces to

$$
\sum_{j+k=i} \nu_{i+1} \circ\left(\mathrm{id}^{\otimes j} \otimes \nu_{2} \otimes \mathrm{id}^{\otimes k}\right)+\nu_{2} \circ\left(\mathrm{id} \otimes \nu_{i+1}\right)=0
$$

The only input which doesn't immediately vanish is $1 \otimes \varepsilon^{\otimes i} \otimes x$, in which case

$$
\begin{aligned}
L H S & \left.=\nu_{i+1}\left(\nu_{2}(1 \otimes \varepsilon) \otimes \varepsilon \otimes \cdots \otimes \varepsilon \otimes x\right)+\nu_{2}^{M}\left(1 \otimes\left(\eta^{*}\right\lrcorner x\right)\right) \\
& \left.\left.=\eta^{*}\right\lrcorner x-\eta^{*}\right\lrcorner x=0 .
\end{aligned}
$$

- $n=d-i+2$: We must check that

$$
\sum_{j+k=d-i} \nu_{d-i+1} \circ\left(\mathrm{id}^{\otimes j} \otimes b_{2} \otimes \mathrm{id}^{\otimes k}\right)+\nu_{2} \circ\left(\mathrm{id} \otimes \nu_{d-i+1}\right)=0 .
$$

The inputs which don't trivially vanish are those of the form $\varepsilon^{\otimes p} \otimes 1 \otimes \varepsilon^{\otimes q} \otimes x$ with $p+q=i$. When $p \neq 0$ the last term vanishes, and the sum reduces to

$$
\nu_{d-i+1} \circ\left(\varepsilon^{\otimes p-1} \otimes b_{2}(\varepsilon \otimes 1) \otimes \varepsilon^{\otimes q} \otimes x\right)+\nu_{d-i+1} \circ\left(\varepsilon^{\otimes p} \otimes b_{2}(1 \otimes \varepsilon) \otimes \varepsilon^{\otimes q-1} \otimes x\right)
$$

and this vanishes because $b_{2}(1 \otimes \varepsilon)=-b_{2}(\varepsilon \otimes 1)$. When $p=0$ we have

$$
\begin{aligned}
L H S & =\nu_{d-i+1}\left(-\varepsilon^{\otimes(d-i)} \otimes x\right)+\nu_{2}(1 \otimes \eta \wedge x) \\
& =\eta \wedge x-\eta \wedge x=0
\end{aligned}
$$

- $n=2 i+1$: The relations reduce to

$$
\nu_{i+1} \circ\left(\mathrm{id}^{\otimes i} \otimes \nu_{i+1}\right)=0
$$

which is immediately satisfied because $\eta \wedge \eta=0$.

- $n=d+1$: The relations reduce to

$$
\nu_{i+1} \circ\left(\mathrm{id}^{\otimes i} \otimes \nu_{d-i+1}\right)+\nu_{d-i+1} \circ\left(\mathrm{id}^{\otimes(d-i)} \otimes \nu_{i+1}\right) .
$$

The only input which doesn't cause both terms to vanish is $\varepsilon^{\otimes d} \otimes x$, in which case

$$
\begin{aligned}
L H S & \left.=\nu_{i+1}\left(\varepsilon^{\otimes i} \otimes \eta \wedge x\right)+\nu_{d-i+1}\left(\varepsilon^{\otimes(d-i)} \otimes \eta^{*}\right\lrcorner x\right) \\
& \left.\left.=\eta^{*}\right\lrcorner(\eta \wedge a)+\eta \wedge\left(\eta^{*}\right\lrcorner a\right) \\
& =a-a=0 .
\end{aligned}
$$

- $n=2 d-2 i+1$: We must check that

$$
\nu_{d-i+1} \circ\left(\mathrm{id}^{\otimes(d-i)} \otimes \nu_{d-i+1}\right)=0
$$

which is immediately satisfied because $\left.\left.\left.\eta^{*}\right\lrcorner\left(\eta^{*}\right\lrcorner x\right)=(\eta \wedge \eta)^{*}\right\lrcorner x=0$.
The above calculations show that the A_{∞}-relations hold for $\left(M, \nu_{2}, \nu_{i+1}, \nu_{d-i+1}\right)$ over (A, b_{2}, b_{d}), and M is an A_{∞}-module as claimed.

Definition 2.4.2. Let (A, b) be an A_{∞}-algebra and let $\left(M, \nu^{M}\right)$ and $\left(N, \nu^{N}\right)$ be $A_{\infty^{-}}$ modules over (A, b). A morphism of A_{∞}-modules $f: M \rightarrow N$ consists of a family of graded maps

$$
f_{n}: A[1]^{\otimes n-1} \otimes M[1] \rightarrow N[1], \quad n \geq 1
$$

of degree +1 satisfying

$$
\begin{equation*}
\sum_{\substack{n=r+s+t \\ s \geq 1, r, t \geq 0}} f_{r+1+t} \circ\left(\mathrm{id}^{\otimes r} \otimes \nu_{s} \otimes \mathrm{id}^{\otimes t}\right)=\sum_{\substack{n=r+s \\ r \geq 1, s \geq 0}} \nu_{1+s}^{M} \circ\left(f_{r} \otimes \mathrm{id}^{s}\right), \tag{2.12}
\end{equation*}
$$

where ν_{s} in the left-hand sum is interpreted as either ν_{s}^{M} or b_{s} where appropriate.

A morphism of A_{∞}-modules is called a quasi-isomorphism if f_{1} is a quasi-isomorphism. The identity morphism is given by $f_{1}=\operatorname{id}_{M}$ and $f_{i}=0$ for all $i>1$.

Definition 2.4.3. A morphism of $f: M \rightarrow N$ of A_{∞}-modules over A is nullhomotopic if there is a family of graded maps

$$
\begin{equation*}
h_{n}: A^{\otimes(n-1)} \otimes M \rightarrow N, \tag{2.13}
\end{equation*}
$$

homogeneous of degree 0 such that

$$
\begin{equation*}
f_{n}=\sum_{\substack{n=r+s+t \\ s \geq 1, r, t \geq 0}} h_{r+1+t} \circ\left(\mathrm{id}^{\otimes r} \otimes \nu_{s} \otimes \mathrm{id}^{\otimes t}\right)=\sum_{\substack{n=r+s \\ r \geq 1, s \geq 0}} \nu_{1+s}^{M} \circ\left(h_{r} \otimes \mathrm{id}^{s}\right) . \tag{2.14}
\end{equation*}
$$

Two morphisms f, g of A_{∞}-modules are called homotopy equivalent if $f-g$ is nullhomotopic. The homotopy category $H_{\infty}(A)$ of A_{∞}-modules has objects all A_{∞}-modules over A with morphisms given by morphisms of A_{∞}-modules modulo nullhomotopic morphisms.

Definition 2.4.4 (Keller). Let A be an A_{∞}-algebra. The derived category $D_{\infty} A$ is defined as the localisation of the category of right A_{∞}-modules over A (with degree 0 morphisms) with respect to the class of quasi-isomorphisms.

More concretely, the derived category has objects all right A_{∞}-modules over A and morphisms are obtained from morphisms of A_{∞}-modules by formally inverting all quasi-isomorphism (for instance via Verdier localisation [50]). It turns out that $D_{\infty} A$ is naturally a triangulated category.

Theorem 2.4.1 (Keller [31]). Every quasi-isomorphism of A_{∞}-modules is a homotopy equivalence.

Corollary 2.4.1. The derived category $D_{\infty}(A)$ is equivalent to the homotopy category $H_{\infty}(A)$.

Definition 2.4.5. Let A be an A_{∞}-algebra. The category of perfect A_{∞}-modules $\operatorname{Perf}_{\infty}(A)$ is the triangulated subcategory of $D_{\infty} A$ generated by the free A-module of rank one.

Following Hovey [23] we will call a triangulated category \mathcal{T} algebraic if it is the homotopy category of a stable \mathbb{k}-linear Quillen model category. The class of such categories is closed under passage to triangulated subcategories and Verdier quotients, so it contains in particular the derived category of modules over a ring, and the homotopy category of matrix factorisations over a hypersurface singularity.

Theorem 2.4.2 (Lefevre-Hasegawa, [39], Section 7.6). Let \mathcal{T} be $a \mathbb{k}$-linear algebraic triangulated category with split idempotents and a generator G. Then there exists the
structure of a minimal A_{∞}-algebra on

$$
A=\bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(G, G[n])
$$

such that b_{2} is given by composition and the functor

$$
\mathcal{T} \rightarrow \operatorname{GrMod}\left(A, b_{2}\right), \quad X \mapsto \bigoplus_{n \in \mathbb{Z}} \operatorname{Hom}_{\mathcal{T}}(G, X[n])
$$

lifts to a triangulated equivalence

$$
\mathcal{T} \rightarrow \operatorname{Perf}_{\infty}(A)
$$

Remark 2.4.1. This theorem says that we can encode all of the information in \mathcal{T} in a lossless way in an A_{∞}-algebra A.

In ring theory, the Eillenberg-Watt Theorem [13, 64 states that there is a bijection between the set of colimit preserving functors $\operatorname{Mod} A \rightarrow \operatorname{Mod} B$ and the set of $A-B$ bimodules. The correspondence sends an A - B-bimodule N to the functor

$$
-\otimes_{A} N: \operatorname{Mod} A \rightarrow \operatorname{Mod} B
$$

With this example as motivation, we will define A_{∞}-bimodules and show that they are a natural source of functors between categories of A_{∞}-modules. In light of Theorem 2.4.2, this gives a way to study the functor category $\operatorname{Fun}(\mathcal{T}, \mathcal{S})$ between well-behaved triangulated categories.

Definition 2.4.6 (Tradler, Keller [29, 61]). Let $\left(A, b^{A}\right)$ and $\left(B, b^{B}\right)$ be A_{∞}-algebras. An $A_{\infty}-A$ - B-bimodule is a graded \mathbb{k}-vector space M equipped with homogeneous linear maps

$$
\nu_{m, n}: A[1]^{n-1} \otimes M[1] \otimes B[1]^{m-1} \rightarrow M[1], i, j \geq 1
$$

of degree +1 satisfying

$$
\begin{equation*}
\sum_{r+a+b+t=n+m-1} \nu_{r+1, t+1} \circ\left(\mathrm{id}^{\otimes r} \otimes \nu_{a, b} \otimes \mathrm{id}^{\otimes t}\right)=0 \tag{2.15}
\end{equation*}
$$

Here we should interpret $\nu_{a, 0}$ as ν_{a}^{A} if $r+a \leq n-1$ and $\nu_{0, b}$ as ν_{b}^{B} if $r>n-1$.

If A and B are A_{∞}-algebras and N is an $A_{\infty}-A$ - B-bimodule, the derived tensor product as a triangulated functor [29]

$$
\begin{equation*}
N \widehat{\otimes}_{B}(-): D_{\infty} B \rightarrow D_{\infty} A, \quad M \mapsto \bigoplus_{i \geq 0} N \otimes B[1]^{\otimes i} \otimes M \tag{2.16}
\end{equation*}
$$

It follows that A_{∞}-bimodules are a canonical source of functors of A_{∞}-modules.

Chapter 3

A_{∞}-Categories and the Minimal Model Theorem

3.1 Background

The algebraic objects of interest to us in connection to the geometry of hypersurface singularities are DG-categories and A_{∞}-categories, which are categorifications of DGalgebras and A_{∞}-algebras. There are many excellent surveys on DG-categories in the literature, including [30, 42, 60, 62], although we will only use them in a strictly elementary way in this thesis. For A_{∞}-categories we will follow the exposition of Lazaroiu [38].

Definition 3.1.1. A differential graded category, or DG-category, \mathcal{D}, consists of a set of objects ob \mathcal{D} and, for each pair of objects $a, b \in \mathrm{ob} \mathcal{D}$, a DG-module $\operatorname{Hom}_{\mathcal{D}}(a, b)$.

By choosing a grading on the Hom-modules we can write $\operatorname{Hom}_{\mathcal{D}}(a, b)=\bigoplus \operatorname{Hom}_{\mathcal{D}}^{n}(a, b)$ with a degree +1 linear map $d: \operatorname{Hom}_{\mathcal{D}}^{n}(a, b) \rightarrow \operatorname{Hom}_{\mathcal{D}}^{n+1}(a, b)$ satisfying $d \circ d=0$. Hence, $\operatorname{Hom}_{\mathcal{D}}^{n}(a, b)$ is required to be a cochain complex. Furthermore, the composition of morphisms $\operatorname{Hom}_{\mathcal{D}}(b, c) \otimes \operatorname{Hom}_{\mathcal{D}}(a, b) \rightarrow \operatorname{Hom}_{\mathcal{D}}(a, c)$ is required to be a map of cochain complexes.

Example 3.1.1. The category Ch_{R} of cochain complexes of modules over a ring R is the prototypical example of a DG-category. Given two cochain complexes $\left(A, d^{A}\right)$ and $\left(B, d^{B}\right)$, the mapping complex $\operatorname{Hom}_{\mathcal{D}}(A, B)$ has the differential

$$
d(f)=f \circ d^{A}+(-1)^{|f|} f \circ d^{B}
$$

Example 3.1.2. A DG-category with one object is the same as a DG-algebra.

Definition 3.1.2. An A_{∞}-category \mathcal{A} consists of a class of objects ob \mathcal{A} together with graded modules $\operatorname{Hom}_{\mathcal{A}}(a, b)$ for all $a, b \in \operatorname{ob} \mathcal{A}$, such that, for every finite collection a_{0}, \ldots, a_{n}, there is a linear map

$$
\mu_{a_{n}, \ldots, a_{0}}: \operatorname{Hom}_{\mathcal{A}}\left(a_{n-1}, a_{n}\right) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{A}}\left(a_{0}, a_{1}\right) \rightarrow \operatorname{Hom}_{\mathcal{A}}\left(a_{0}, a_{n}\right)
$$

of degree $2-n$ which satisfies the A_{∞}-relations

$$
\begin{equation*}
\sum_{r+s+t=n}(-1)^{r+s t} \mu_{a_{0}, \ldots a_{r}, a_{r+s}, \ldots, a_{n}}\left(\mathrm{id}^{\otimes r} \otimes \mu_{a_{r}, \ldots, a_{r+s}} \otimes \mathrm{id}^{\otimes t}\right)=0, \quad n \geq 1 \tag{3.1}
\end{equation*}
$$

It is immediate from the definition that an A_{∞}-category with one object is an A_{∞} -algebra.

Definition 3.1.3. For any pair of objects $a, b \in \mathrm{ob} \mathcal{A}$ in an A_{∞}-category there is a linear map

$$
\begin{equation*}
S_{a b}: \operatorname{Hom}_{\mathcal{A}}(a, b) \rightarrow \operatorname{Hom}_{\mathcal{A}}(a, b)[1], \tag{3.2}
\end{equation*}
$$

called the shift operator, which is the identity on objects and shifts the degree by +1 .
We write $\tilde{x}:=|x|-1$ for the degree of elements $x \in \operatorname{Hom}_{\mathcal{A}}(a, b)[1]$. This shifted grading is referred to as the tilde grading. We also write $S_{a b}^{n}:=S_{a b} \circ \ldots \circ S_{a b}$ with n factors. As with A_{∞}-algebras, the main reason we work with the shift operator is to simplify the notoriously troublesome signs in the A_{∞}-relations. To this end, we introduce the forward composition

$$
\begin{equation*}
m_{a_{0}, \ldots, a_{n}}\left(x_{1} \otimes \cdots \otimes x_{n}\right)=(-1)^{\sum_{1 \leq i \leq j \leq n}\left|x_{i}\right|\left|x_{j}\right|} \mu_{a_{n}, \ldots, a_{0}}\left(x_{n} \otimes \cdots \otimes x_{1}\right), \tag{3.3}
\end{equation*}
$$

and the forward suspended composition

$$
\begin{equation*}
r_{a_{0}, \ldots, a_{n}}=s_{a_{0} a_{n}} \circ m_{a_{0}, \ldots, a_{n}} \circ\left(s_{a_{0} a_{1}}^{-1} \circ \cdots \circ s_{a_{n-1} a_{n}}^{-1}\right) . \tag{3.4}
\end{equation*}
$$

The latter is a map $\operatorname{Hom}_{\mathcal{A}}\left(a_{n-1}, a_{n}\right)[1] \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{A}}\left(a_{0}, a_{1}\right)[1] \rightarrow \operatorname{Hom}_{\mathcal{A}}\left(a_{0}, a_{n}\right)[1]$.
Lemma 3.1.1. The A_{∞} relations can be rewritten in terms of the forward suspended compositions as

$$
\begin{equation*}
\sum_{r+s+t=n} r_{a_{0}, \ldots a_{r}, a_{r+s}, \ldots, a_{n}}\left(\mathrm{id}^{\otimes r} \otimes r_{a_{r}, \ldots, a_{r+s}} \otimes \mathrm{id}^{\otimes t}\right)=0 \tag{3.5}
\end{equation*}
$$

with no signs.
Proof. This follows by the same reasoning as the proof of Lemma 2.3.2.

Definition 3.1.4. Let \mathcal{A} be an A_{∞}-category. The cohomology category $H(\mathcal{A})$ is the (possibly non-unital) associative graded category with the same objects as \mathcal{A}, morphisms

$$
\begin{equation*}
\operatorname{Hom}_{H(\mathcal{A})}(a, b)=H_{\mu_{a b}}^{*}\left(\operatorname{Hom}_{\mathcal{A}}(a, b)\right), \tag{3.6}
\end{equation*}
$$

and morphism compositions

$$
\operatorname{Hom}_{H(\mathcal{A})}(b, c) \otimes \operatorname{Hom}_{H(\mathcal{A})}(a, b) \rightarrow \operatorname{Hom}_{H(\mathcal{A})}(a, c)
$$

given by $[x] \circ[y]=\left[\mu_{a b c}(x \otimes y)\right]$. We denote by $H^{0}(\mathcal{A})$ the full subcategory with only degree zero morphisms.

Definition 3.1.5. Given A_{∞}-categories \mathcal{A} and \mathcal{B}, an A_{∞}-functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is a map $F: \mathrm{ob}(\mathcal{A}) \rightarrow \mathrm{ob}(\mathcal{B})$ together with linear maps

$$
F_{a_{0} \ldots a_{n}}: \operatorname{Hom}_{\mathcal{A}}\left(a_{0}, a_{1}\right) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{A}}\left(a_{n-1}, a_{n}\right) \rightarrow \operatorname{Hom}_{\mathcal{B}}\left(F\left(a_{0}\right), F\left(a_{n}\right)\right),
$$

of degree $1-n$, such that the forward suspended maps

$$
\begin{equation*}
F_{a_{0} \ldots a_{n}}^{S}=s_{F\left(a_{0}\right) F\left(a_{n}\right)} \circ F_{a_{0} \ldots a_{n}} \circ\left(s_{a_{0} s_{1}}^{-1} \otimes \cdots \otimes s_{a_{n-1} a_{n}}^{-1}\right) \tag{3.7}
\end{equation*}
$$

satisfy, for all $n \geq 1$, the following condition:

$$
\begin{gathered}
\sum_{p=1}^{n} \sum_{0<i_{1}<\cdots<i_{p-1}<n} r_{F\left(a_{0}\right) \ldots F\left(a_{n}\right)}^{\mathcal{B}} \circ\left(F_{a_{0} \ldots a_{i_{1}}}^{S} \otimes \cdots \otimes F_{a_{i_{p-1} \ldots a_{n}}^{S}}^{S}\right) \\
=\sum_{0 \leq i<j \leq n} F_{a_{0} \ldots a_{i} a_{j} \ldots a_{n}}^{S} \circ\left(\operatorname{id}_{a_{0} a_{1}} \otimes \cdots \otimes \operatorname{id}_{a_{i-1} a_{i}} \otimes r_{a_{i} \ldots a_{j}}^{\mathcal{A}} \otimes \mathrm{id}_{a_{j} a_{j+1}} \otimes \cdots \otimes \mathrm{id}_{a_{n-1} a_{n}}\right) .
\end{gathered}
$$

By using the map $F_{a b}$ on morphisms, the map on objects induces a functor $H(F)$: $H(\mathcal{A}) \rightarrow H(\mathcal{B})$ of associative graded categories. We say that F is a quasi-isomorphism if $H(F)$ is an isomorphism. An A_{∞}-functor F is called strict if $F_{a_{0} \ldots a_{n}}=0$ for all $n>1$. In this case the condition above reduces to

$$
\begin{equation*}
r_{F\left(a_{0}\right) \ldots F\left(a_{n}\right)}^{\mathcal{B}} \circ\left(F_{a_{0} a_{1}}^{S} \otimes \cdots \otimes F_{a_{n-1} a_{n}}^{S}\right)=F_{a_{0} a_{n}}^{S} \circ r_{a_{0} \ldots a_{n}}^{\mathcal{A}} . \tag{3.8}
\end{equation*}
$$

3.2 Sector decomposition

When performing calculations on A_{∞}-categories it is often convenient to repackage the data using the following trick [37]. Let \mathcal{A} be an A_{∞}-category, let $R_{\mathcal{A}}$ be the commuta-
tive associative \mathbb{k}-algebra generated by $\left\{\varepsilon_{a}\right\}_{a \in \mathrm{ob} \mathcal{A}}$ with relations $\varepsilon_{a} \varepsilon_{b}=\delta_{a b} \varepsilon_{a}$.

Remark 3.2.1. Note that $R_{\mathcal{A}}$ is not necessarily unital. In fact, $R_{\mathcal{A}}$ is unital if and only if \mathcal{A} has a finite number of objects. Indeed, if $r=\sum_{k=1}^{n} r_{k} \varepsilon_{a_{k}} \in R_{\mathcal{A}}$, and $\iota=\sum_{k=1}^{m} i_{k} \varepsilon_{b_{k}}$, then

$$
\iota r=r \iota=\sum b_{j} r_{j} \varepsilon_{a_{j}} .
$$

Therefore ι is a unit if and only if $b_{j}=1$ for all j, and $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq\left\{b_{1}, \ldots b_{m}\right\}$. The only option is to take $\iota=\sum_{a \in \mathrm{ob} \mathcal{A}} \varepsilon_{a}$, which is an element of $R_{\mathcal{A}}$ only when \mathcal{A} has a finite number of objects.
Definition 3.2.1. (Lazaroiu, [38]) Consider the graded \mathbb{k}-module

$$
\mathcal{H}_{\mathcal{A}}=\bigoplus_{a, b \in \mathrm{ob} \mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(a, b)
$$

with grading taken by degree. We call $\mathcal{H}_{\mathcal{A}}$ the sector decomposition of \mathcal{A}. Write $p_{a b}: \mathcal{H}_{\mathcal{A}} \rightarrow \operatorname{Hom}_{\mathcal{A}}(a, b)$ for the projections. There is an $R_{\mathcal{A}}$-bimodule structure on $\mathcal{H}_{\mathcal{A}}$. Namely, ε_{a} acts on the left by the projection of $\mathcal{H}_{\mathcal{A}}$ onto

$$
\varepsilon_{a} \cdot \mathcal{H}:=\bigoplus_{b \in \mathrm{ob} \mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(a, b),
$$

and ε_{b} acts on the right by the projection of $\mathcal{H}_{\mathcal{A}}$ onto

$$
\mathcal{H} \cdot \varepsilon_{b}:=\bigoplus_{a \in \mathrm{ob} \mathcal{A}} \operatorname{Hom}_{\mathcal{A}}(a, b)
$$

In the following we will suppress \mathcal{A} from the notation and write $R=R_{\mathcal{A}}$ and $\mathcal{H}=\mathcal{H}_{\mathcal{A}}$.

Lemma 3.2.1. The \mathbb{k}-module $\mathcal{H}^{\otimes_{R} n}=\mathcal{H} \otimes_{R} \cdots \otimes_{R} \mathcal{H}$ is given by

$$
\begin{equation*}
\mathcal{H}^{\otimes_{R^{n}}} \cong \bigoplus_{a_{0}, \ldots, a_{n} \in \mathrm{ob} \mathcal{A}} \operatorname{Hom}_{\mathcal{A}}\left(a_{0}, a_{1}\right) \otimes \cdots \otimes \operatorname{Hom}_{\mathcal{A}}\left(a_{n-1}, a_{n}\right), \tag{3.9}
\end{equation*}
$$

with the obvious R-bimodule structure.
Proof. It suffices to show the case where $n=2$. The relation imposed by the tensor product is

$$
\begin{equation*}
\mathcal{H} \otimes_{R} \mathcal{H}=\left(\mathcal{H} \otimes_{\mathbb{k}} \mathcal{H}\right) /\left(x \varepsilon_{b} \otimes_{\mathfrak{k}} y-x \otimes_{\mathbb{k}} \varepsilon_{b} y\right) \tag{3.10}
\end{equation*}
$$

where x and y are any homogeneous elements. From this fact the claim is clear.

Definition 3.2.2. The total A_{∞}-products $r_{n}: \mathcal{H}[1]^{\otimes_{R} n} \rightarrow \mathcal{H}[1]$ are given by

$$
\begin{equation*}
r_{n}\left(x^{(1)} \otimes \cdots \otimes x^{(n)}\right):=\bigoplus_{a_{0}, a_{n} \in \mathrm{ob} \mathcal{A}} \sum_{a_{1}, \ldots, a_{n-1} \in \mathrm{ob} \mathcal{A}} r_{a_{0}, \ldots, a_{n}}\left(x_{a_{0} a_{1}}^{(1)} \otimes \cdots \otimes x_{a_{n-1} a_{n}}^{(n)}\right) \tag{3.11}
\end{equation*}
$$

where $x^{(j)}=\bigoplus_{a, b \in \mathrm{ob} \mathcal{A}} x_{a b}^{(j)}$ and $x_{a b}^{(j)} \in \operatorname{Hom}_{\mathcal{A}}(a, b)[1]$. Observe that these maps are R bilinear.

Lemma 3.2.2. The maps $\left\{r_{n}\right\}_{n>0}$ satisfy the A_{∞}-relations

$$
\begin{equation*}
\sum_{q+s+t=n} r_{q+1+t}\left(\mathrm{id}_{\mathcal{H}[1]}^{\otimes q} \otimes r_{s} \otimes \mathrm{id}_{\mathcal{H}[1]}^{t}\right)=0 \tag{3.12}
\end{equation*}
$$

Proof. These are the same relations satisfied by the maps $r_{a_{0} \ldots a_{n}}$ so the claim follows from bilinearity of the maps r_{n}.

This lemma implies that we can recover the categorical A_{∞}-products $r_{a_{0} \ldots a_{n}}$ from the r_{n}, using R-linearity. By pre-compositing with the quotient $\mathcal{H}[1]^{\otimes n} \rightarrow \mathcal{H}[1]^{\otimes_{R} n}$ we can define the r_{n} on $\mathcal{H}[1]^{\otimes n}$, and $\left(\mathcal{H}[1],\left\{r_{n}\right\}_{n>0}\right)$ is therefore an A_{∞}-algebra over \mathbb{k}.

Remark 3.2.2. This is not an A_{∞}-algebra over R in general, because \mathcal{H} is an R bimodule with left and right actions which do not necessarily agree.

3.3 Minimal Models

Let \mathcal{A} be an A_{∞}-category, and R, \mathcal{H} as in Section 3.4. For simplicity of notation, we will view r_{n} as defined on \mathcal{H} by applying the tilde grading.

Definition 3.3.1. An A_{∞}-category is called minimal if all unary compositions $r_{a b}$ vanish. A minimal model of an A_{∞}-category \mathcal{A} is a minimal A_{∞}-category \mathcal{B} which is quasi-isomorphic to A_{∞}.

Definition 3.3.2. A strict homotopy retraction of \mathcal{A} is a a strict homotopy retraction of $\left(\mathcal{H}, r_{1}\right)$. That is, the data of maps

$$
\begin{aligned}
& P_{a b}: \operatorname{Hom}_{\mathcal{A}}(a, b) \rightarrow \operatorname{Hom}_{\mathcal{A}}(a, b), \\
& G_{a b}: \operatorname{Hom}_{\mathcal{A}}(a, b) \rightarrow \operatorname{Hom}_{\mathcal{A}}(a, b)[-1],
\end{aligned}
$$

of degree zero for all $a, b \in \mathrm{ob} \mathcal{A}$, satisfying the relations

$$
\begin{equation*}
P_{a b}^{2}=P_{a b}, \quad \text { id }-P_{a b}=\left[\left(r_{1}\right)_{a b}, G_{a b}\right], \tag{3.13}
\end{equation*}
$$

where $[-,-]$ is the graded commutator.

The submodule

$$
B=\operatorname{im} P \subseteq \mathcal{H}
$$

is given by $\bigoplus_{a, b \in \mathrm{ob} \mathcal{A}} \operatorname{im} P_{a b}$. It follows from the relations (3.13) that B is a sub-complex of \mathcal{H}. We write $\iota: B \rightarrow \mathcal{H}$ for the inclusion and $p: \mathcal{H} \rightarrow B$ for the map induced by P, so that $\iota \circ p=P$.

Remark 3.3.1. For terminology on rooted trees, refer to Appendix A.
Given a valid plane tree T let $E(T)$ denote the set of all edges, $E_{i}(T)$ all internal edges, $E_{e}(T)$ all external edges, and $V_{i}(T)$ all internal vertices. We write $e_{i}(T)$ and $v_{i}(T)$ for the number of internal edges and internal vertices respectively.

Definition 3.3.3. Given a valid plane tree T the augmentation $A(T)$ of T is the plane tree obtained from T by inserting a new vertex of valency 2 on each internal edge of T.

Definition 3.3.4. Given homotopy retract data (P, G) and a tree $T \in \mathcal{T}_{n}$, a decoration D_{T} of $A(T)$ by (P, G) is defined as follows:

1. Place the inclusion $\iota: B \rightarrow \mathcal{H}$ on every non-root leaf of $A(T)$.
2. Place the surjection $p: \mathcal{H} \rightarrow B$ on the root of $A(T)$.
3. Place r_{k} on each internal vertex of valency $k+1>2$.
4. Place G on each vertex of valency 2 , i.e. on each internal edge.

We then obtain a morphism of graded R-bimodules $\rho_{T} \in \operatorname{Hom}\left(B^{\otimes n}, B\right)$ as

$$
\begin{equation*}
\rho_{T}=(-1)^{e_{i}(T)}\left\langle D_{T}\right\rangle, \tag{3.14}
\end{equation*}
$$

where $\left\langle D_{T}\right\rangle$ is the denotation of the decorated tree.
Remark 3.3.2. There are two natural ways to compose the maps on a tree: either we can proceed branch by branch, obtaining a nested composition, or we can work level by level. These are called the branch and height denotations respectively. Due to Koszul
signs, with $\left|r_{n}\right|=+1$ and $|G|=-1$, these two conventions do not agree in general. Indeed, in the example shown in Figure 3.3, the branch denotation gives

$$
p \circ r_{2} \circ\left(G \circ r_{2} \circ \iota^{\otimes 2} \otimes G \circ r_{2} \circ \iota^{\otimes 2}\right),
$$

whereas the height denotation gives

$$
p \circ r_{2} \circ(G \otimes G) \circ\left(r_{2} \otimes r_{2}\right) \circ(\iota \otimes \iota \otimes \iota \otimes \iota)=-p \circ r_{2} \circ\left(G \circ r_{2} \circ \iota^{\otimes 2} \otimes G \circ r_{2} \circ \iota^{\otimes 2}\right) .
$$

In the context of proving the minimal model theorem, the branch denotation is much simpler, so that is what we will use in the remainder of the thesis.

Figure 3.1: An example of an augmented tree decorated by homotopy retract data.
Lemma 3.3.1. For any $T \in \mathcal{T}_{n}$, the associated map ρ_{T} is homogeneous of degree $2-n$, and hence has degree +1 as a map $B[1]^{\otimes n} \rightarrow B[1]$.

Proof. Since G has degree -1 , and r_{k} has degree +1 , the degree of ρ_{T} is

$$
(-1) \cdot e_{i}(T)+\sum_{v \in V_{i}(T)}(3-\operatorname{valency}(v)) .
$$

For every internal vertex of valency $k+1$ there are k edges, so

$$
\sum_{v \in V_{i}(T)}(\operatorname{valency}(v)-1)=e_{i}(T)+v_{i}(T)+n,
$$

and the expression for the degree of ρ_{T} reduces to

$$
2\left(v_{i}(T)-e_{i}(T)\right)-n
$$

But the injection which sends every internal edge to its source only misses the vertex adjacent to the root, so $v_{i}(T)-e_{i}(T)=1$, and the degree of ρ_{T} is therefore $2-n$.

Definition 3.3.5. For $n \geq 2$ define the degree +1 map

$$
\rho_{n}:=\sum_{T \in \mathcal{T}_{n}} \rho_{T},
$$

and set $\rho_{1}:=p \circ r_{1} \circ \iota=\left.r_{1}\right|_{B}$.

The Minimal Model Theorem was first stated by Kadeishvili [25] in 1980 where it was used to compute A_{∞}-infinity structures on the homology and cohomology of fibre spaces. The original proof, which was published in Russian and translated by Merkulov in 44] with applicaitons to Kähler manifolds, constructed the higher products recursively and was extended to A_{∞}-categories by Fukaya 17 and Lefevre-Hasegawa [39.

The proof that we present below, using decorated plane rooted trees, was first sketched for A_{∞}-algebras by Kontsevich-Soibelman [34]. In [38] Lazaroiu presented the same proof in more detail for A_{∞}-categories, using the sector decomposition approach which we follow closely here. However, to the author's knowledge, the literature is lacking a proof which carefully keeps tracks of all Koszul signs, especially those which arise from the choice of denotation (see Appendix A). We aim to remedy this in the remainder of this section.

Theorem 3.3.1 (Minimal Model Theorem). The maps $\left\{\rho_{n}\right\}_{n \geq 1}$ satisfy the forward suspended A_{∞}-relations

$$
\begin{equation*}
\sum_{1 \leq i+j \leq n} \rho_{n-j+1} \circ\left(\operatorname{id}_{B[1]}^{\otimes i} \otimes \rho_{j} \otimes \mathrm{id}_{B[1]}^{\otimes(n-i-j)}\right)=0, \quad n \geq 1 \tag{3.15}
\end{equation*}
$$

Before we can give the proof we must establish a few technical results. First, observe that for $n=1$ the A_{∞}-relation is immediate because $r_{1}^{2}=0$. Next, consider the following R-bilinear maps $\mathcal{H}[1]^{\otimes n} \rightarrow \mathcal{H}[1]$,

$$
\begin{equation*}
(r)_{1}^{n}=r_{1} \circ r_{n}+\sum_{i=0}^{n-1} r_{n} \circ\left(\operatorname{id}_{\mathcal{H}[1]}^{\otimes i} \otimes r_{1} \otimes \operatorname{id}_{\mathcal{H}[1]}^{\otimes(n-i-1)}\right), \tag{3.16}
\end{equation*}
$$

and

$$
\begin{equation*}
(\rho)_{1}^{n}=\rho_{1} \circ \rho_{n}+\sum_{i=0}^{n-1} \rho_{n} \circ\left(\operatorname{id}_{B[1]}^{\otimes i} \otimes \rho_{1} \otimes \operatorname{id}_{B[1]}^{\otimes(n-i-1)}\right) . \tag{3.17}
\end{equation*}
$$

We can rewrite the A_{∞}-relations on the maps $\left\{r_{n}\right\}$ as $r_{1}^{2}=0$ and

$$
\begin{equation*}
(r)_{1}^{n}=-\sum_{\substack{i \geq 0, j \geq 2 \\ i+j \leq k, j \leq k-1}} r_{k-j+1} \circ\left(\mathrm{id}_{\mathcal{H}[1]}^{\otimes i} \otimes r_{j} \otimes \mathrm{id}_{\mathcal{H}[1]}^{\otimes(k-j-i)}\right), \quad n \geq 2 \tag{3.18}
\end{equation*}
$$

Since $\rho_{1}^{2}=0$, it suffices to show that

$$
\begin{equation*}
(\rho)_{1}^{n}=-\sum_{\substack{i \geq 0, j \geq 2 \\ i+j \leq k, j \leq k-1}} \rho_{k-j+1} \circ\left(\mathrm{id}_{B[1]}^{\otimes i} \otimes \rho_{j} \otimes \operatorname{id}_{B[1]}^{\otimes(k-j-i)}\right), \quad n \geq 2, \tag{3.19}
\end{equation*}
$$

from which the A_{∞}-relations will follow. The idea of the proof is to perturb the ρ_{T} maps by adding r_{1} to an internal edge and then exploit the relation $\left[G, r_{1}\right]=\mathrm{id}-P$ to compute $(\rho)_{1}^{n}$ in two different ways to give the desired relation. In what follows we will suppress the subscripts from the id morphisms.

Given any $f \in \operatorname{End}_{R \operatorname{Mod}_{R}}(\mathcal{H})$ of degree zero, and any $T \in \mathcal{T}_{n}$ with an internal edge e, let $D_{f, e}$ be the decoration of $A(T)$ which puts f rather than G at the vertex corresponding to e. We write

$$
\begin{equation*}
\rho_{T, e}^{f}:=(-1)^{e_{i}(T)}\left\langle D_{f, e}\right\rangle, \tag{3.20}
\end{equation*}
$$

and set

$$
\begin{equation*}
\rho_{n}^{f}:=\sum_{T \in \mathcal{T}_{n}} \sum_{e \in E_{i}(T)} \rho_{T, e}^{f} \tag{3.21}
\end{equation*}
$$

Similarly, if e is an external edge adjacent to the $i^{\text {th }}$ leaf or the root (which we denote by 0), then we define a new decoration $D_{e, i}$ by replacing ι (resp. p) with $\iota \circ \rho_{1}$ (resp. $\left.p \circ r_{1}\right)$. We now define perturbed bilinear maps $\widehat{\rho}_{T, e} \in \operatorname{Hom}\left(B^{\otimes n}, B\right)$ as

$$
\widehat{\rho}_{T, e}= \begin{cases}\rho_{T, e}^{r_{1} G+G r_{1}}, & e \in E_{i}(T) \tag{3.22}\\ (-1)^{e_{i}(T)}\left\langle D_{e, i}\right\rangle, & e \in E_{e}(T) \text { adjacent to } i\end{cases}
$$

and finally, by summing over all edges and all trees,

$$
\begin{equation*}
\widehat{\rho}_{n}:=\sum_{T \in \mathcal{T}_{n}} \sum_{e \in E(T)} \widehat{\rho}_{T, e} \tag{3.23}
\end{equation*}
$$

Lemma 3.3.2. For $0 \leq i \leq n-1$,

$$
\begin{equation*}
\rho_{n} \circ\left(\mathrm{id}^{\otimes(i-1)} \otimes \rho_{1} \otimes \mathrm{id}^{\otimes(n-1)}\right)=\sum_{T \in \mathcal{T}_{n}} \widehat{\rho}_{T, e}, \tag{3.24}
\end{equation*}
$$

where e is the edge in T which is adjacent to the $i^{\text {th }}$ leaf.
Proof. Fix $0 \leq i \leq n-1$ and $T \in \mathcal{T}_{n}$. Then

$$
\begin{equation*}
\left\langle D_{e, i}\right\rangle=(-1)^{s}\left\langle D_{T}\right\rangle \circ\left(\mathrm{id}^{\otimes(i-1)} \otimes \rho_{1} \otimes \mathrm{id}^{\otimes(n-1)}\right) \tag{3.25}
\end{equation*}
$$

where s is the sum of the degrees $\left|\phi_{p}\right|$ of the maps on $A(T)$ at vertices q such that $q>i$ under the ordering on T defined in section A.1. Observe that, since internal edges are paired exactly with internal vertices which are not adjacent to the root, those vertices contributing to S come in pairs of opposite degree. Hence we conclude that $s=0$.

Lemma 3.3.3. Using the notation above, we have

$$
\begin{equation*}
\widehat{\rho}_{n}=(\rho)_{1}^{n}+\rho_{n}^{\mathrm{id} \mathcal{H}}-\rho_{n}^{p} \tag{3.26}
\end{equation*}
$$

Proof. It is obvious that $\rho_{1} \circ \rho_{n}=\sum_{T \in \mathcal{T}_{n}} \widehat{\rho}_{T, e}$ if e is adjacent to the root. Hence, using the fact that id $-P=\left[r_{1}, G\right]$ we have

$$
\begin{aligned}
(\rho)_{1}^{n} & =\sum_{T \in \mathcal{T}_{n}} \sum_{e \in E_{e}(T)} \widehat{\rho}_{T, e} \\
& =\widehat{\rho}_{n}-\sum_{T \in \mathcal{T}_{n}} \sum_{e \in E_{e}(T)} \widehat{\rho}_{T, e} \\
& =\widehat{\rho}_{n}-\sum_{T \in \mathcal{T}_{n}} \sum_{e \in E_{e}(T)} \rho_{T, e}^{\left[r_{1}, G\right]} \\
& =\widehat{\rho}_{n}-\sum_{T \in \mathcal{T}_{n}} \sum_{e \in E_{e}(T)}\left(\rho_{T, e}^{\mathrm{id}}-\rho_{T, e}^{P}\right) \\
& =\widehat{\rho}_{n}-\rho_{T, e}^{\mathrm{id} \mathcal{H}}+\rho_{T, e}^{P} .
\end{aligned}
$$

Now we will compute $\widehat{\rho}_{n}$ in a different way. Set

$$
\widehat{\rho}_{T}:=\sum_{e \in E(T)} \hat{\rho}_{T, e}
$$

so that $\widehat{\rho}_{n}=\sum_{T \in \mathcal{T}_{n}} \widehat{\rho}_{T}$. Let v be a vertex of valency greater than 2 on a tree $T \in \mathcal{T}_{n}$
with $n \geq 2$. Set

$$
\begin{equation*}
\widehat{\rho}_{T, v}=\sum_{\substack{e \in E_{i}(T) \\ e \text { ends at } v}} \rho_{T, e}^{r_{i} G}+\sum_{\substack{e \in E_{i}(T) \\ e \text { begins at } v}} \rho_{T, e}^{G r_{i}}+\sum_{\substack{e \in E_{i}(T) \\ e \text { incident at } v}} \widehat{\rho}_{T, e} . \tag{3.27}
\end{equation*}
$$

Then we can rewrite $\widehat{\rho}_{T}$ as

$$
\widehat{\rho}_{T}=\sum_{v \in V_{i}(T)} \widehat{\rho}_{T, v} .
$$

Recall now that $\rho_{T, e}^{r_{1} G}, \rho_{T, e}^{G r_{1}}$, and $\widehat{\rho}_{T, e}$ are the same - up to signs - as $\left\langle D_{r_{1} G, e}\right\rangle,\left\langle D_{G r_{1}, e}\right\rangle$, and $\left\langle D_{e, i}\right\rangle$ respectively. Suppose that the vertex v has k incoming edges. Then the contribution of v to $\left\langle D_{T}\right\rangle$ is the operator

$$
r_{k} \circ\left(\left\langle D_{T_{1}}\right\rangle \otimes \cdots \otimes\left\langle D_{T_{k}}\right\rangle\right),
$$

where the T_{i} is the $i^{t h}$ sub-tree of $A(T)$ above v. Let us now introduce a convenient piece of notation. Since we are only looking at changes to D_{T} on the edges either side of v, we will write $\langle\langle-\rangle\rangle_{T, v}$ for the denotation which has (-) contributed around the vertex v. This is where using the branch denotation makes life much easer, since describing local deviations from D_{T} will not hide unexpected signs. For example,

$$
\left\langle\left\langle r_{k} \circ\left(\left\langle D_{T_{1}}\right\rangle \otimes \cdots \otimes\left\langle D_{T_{k}}\right\rangle\right)\right\rangle\right\rangle_{T, v}=\left\langle D_{T}\right\rangle
$$

Now by the same reasoning as in the proof of Lemma 4.3, $\left|T_{i}\right|=0$ since degree 1 and degree -1 maps are inserted in pairs on every sub-tree of the standard decoration. Hence, writing e_{i} for the edge adjacent to the $i^{\text {th }}$ leaf,

$$
\begin{aligned}
\left\langle D_{r_{1} G, e_{i}}\right\rangle & =\left\langle\left\langle r_{k} \circ\left(\left\langle D_{T_{1}}\right\rangle \otimes \cdots \otimes r_{1}\left\langle D_{T_{i}} \otimes \cdots \otimes\left\langle D_{T_{k}}\right\rangle\right)\right\rangle\right\rangle_{T, v}\right. \\
& =\left\langle\left\langle r_{k} \circ\left(\mathrm{id}^{\otimes(i-1)} \otimes r_{1} \otimes \mathrm{id}^{\otimes(k-i)}\right) \circ\left(\left\langle D_{T_{1}}\right\rangle \otimes \cdots \otimes\left\langle D_{T_{k}}\right\rangle\right)\right\rangle\right\rangle_{T, v} .
\end{aligned}
$$

It follows then that since $r_{1}^{2}=0$ we can write

$$
\begin{aligned}
\widehat{\rho}_{T, v} & =(-1)^{e_{i}(T)}\left\langle\left\langle(r)_{1}^{k}\right\rangle\right\rangle_{T, v} \\
& =(-1)^{e_{i}(T)}\left\langle\left\langle-\sum_{\substack{i \geq 0, j \geq 2 \\
i+j \leq k, j \leq k-1}} r_{k-j+1} \circ\left(\mathrm{id}^{\otimes i} \otimes r_{j} \otimes \mathrm{id}^{\otimes(k-j-i)}\right)\right\rangle\right\rangle_{T, v} \\
& =(-1)^{e_{i}(T)+1} \sum_{\substack{i \geq 0, j \geq 2 \\
i+j \leq k, j \leq k-1}}\left\langle\left\langle r_{k-j+1} \circ\left(\mathrm{id}^{\otimes i} \otimes r_{j} \otimes \mathrm{id}^{\otimes(k-j-i)}\right)\right\rangle\right\rangle_{T, v} .
\end{aligned}
$$

Lemma 3.3.4. Given an valid plane tree $T \in \mathcal{T}_{n}$, an internal vertex v of valency $k+1$, and integers $i \geq 0, j \geq 2$ with $i+j \leq k, j \leq k-1$, let $T^{\prime}=\operatorname{ins}(T, v, i, j)$ be the tree defined in Section A.3, and let e^{\prime} be the created edge. Write $D_{\mathrm{id}, e^{\prime}}^{\prime}$ for the decoration of $A\left(T^{\prime}\right)$ obtained from the standard one by inserting $\operatorname{id}_{\mathcal{H}[1]}$ rather than G at e^{\prime}. Then

$$
\begin{equation*}
\left\langle\left\langle r_{k-j+1} \circ\left(\mathrm{id}^{\otimes i} \otimes r_{j} \otimes \mathrm{id}^{\otimes(k-j-i)}\right)\right\rangle\right\rangle_{T, v}=\left\langle D_{\mathrm{id}, e^{\prime}}^{\prime}\right\rangle . \tag{3.28}
\end{equation*}
$$

Proof. Because operators of opposite sign come in pairs in sub-decorations, we have

$$
\begin{aligned}
\left\langle\left\langle r_{k-j+1} \circ\left(\mathrm{id}^{\otimes i} \otimes r_{j} \otimes \mathrm{id}^{\otimes(k-j-i)}\right)\right\rangle\right\rangle_{T, v} & =\left\langle\left\langle r_{k-j+1} \circ\left(\mathrm{id} \otimes r_{j} \otimes \mathrm{id}\right) \circ\left(\left\langle D_{T_{1}}\right\rangle \otimes \cdots \otimes\left\langle D_{T_{k}}\right\rangle\right)\right\rangle\right\rangle_{T, v} \\
& =\left\langle\left\langler _ { k - j + 1 } \circ \left(\left\langle D_{T_{1}} \otimes \cdots \otimes r_{j}\left\langle D_{T_{j}} \otimes \cdots \otimes\left\langle D_{T_{k}}\right)\right\rangle\right\rangle_{T, v}\right.\right.\right. \\
& =\left\langle D_{\mathrm{id}, e^{\prime}}^{\prime}\right\rangle,
\end{aligned}
$$

as claimed.

Using Lemma 3.3.4 we can write

$$
\begin{equation*}
\widehat{\rho}_{T, v}=(-1)^{e_{i}(T)+1} \sum_{\substack{i \geq 0, j \geq 2 \\ i+j \leq k, j \leq k-1}}\left\langle D_{\mathrm{id}, e^{\prime}}^{\prime}\right\rangle . \tag{3.29}
\end{equation*}
$$

We can partition \mathcal{T}_{n} by the number of internal edges, so we write

$$
\mathcal{T}_{n}=\coprod_{d \geq 0} \mathcal{T}_{n}^{(d)}
$$

where $\mathcal{T}_{n}^{(d)}$ denotes the subset of trees which have d internal edges. By Lemma A.3.1 of section A.3, there is a bijection when $n>2$

$$
\left(\mathcal{T}_{n}^{(d+1)}\right)^{+} \leftrightarrow\left\{(Q, v, i, j)\left|Q \in \mathcal{T}_{n}^{(d)}, v \in V_{i}(T), i \geq 0, i+j \leq|v|-1,2 \leq j \leq|v|-2\right\},\right.
$$

where $\left(\mathcal{T}_{n}^{(d+1)}\right)^{+}$is the set of pairs (T, e) with $T \in \mathcal{T}_{n}^{d+1}$ and $e \in E_{i}(T)$. Writing

$$
\mathcal{T}_{n}^{+}:=\coprod_{d \geq 0}\left(\mathcal{T}_{n}^{(d+1)}\right)^{+}
$$

this shows that

$$
\begin{aligned}
\widehat{\rho}_{n} & =\sum_{T \in \mathcal{T}_{n}} \sum_{v \in V_{i}(T)} \widehat{\rho}_{T, v} \\
& =\sum_{t \in \mathcal{T}_{n}} \sum_{v \in V_{i}(T)} \sum_{\substack{i \geq 0, j \geq 2 \\
i+j \leq k, j \leq k-1}}(-1)^{e_{i}(T)+1}\left\langle D_{\mathrm{id}, e^{\prime}}^{\prime}\right\rangle \\
& =\sum_{T^{\prime} \in \mathcal{T}_{n}} \sum_{e^{\prime} \in E_{i}\left(T^{\prime}\right)}(-1)^{e_{i}(T)+1}\left\langle D_{\mathrm{id}, e^{\prime}}^{\prime}\right\rangle \\
& =\rho_{n}^{\mathrm{id} \mathcal{H}} .
\end{aligned}
$$

Corollary 3.3.1. For $n>2,(\rho)_{1}^{n}=\rho_{n}^{p}$.

Proof. In Lemma 3.3.3 we showed that $\widehat{\rho}_{n}=(\rho)_{1}^{n}+\rho_{n}^{\mathrm{id}} \boldsymbol{\mathcal { H }}-\rho_{n}^{p}$. From the result above that $\widehat{\rho}_{n}=\rho_{n}^{\text {id }}$, it follows that, for $n>2,(\rho)_{1}^{n}=\rho_{n}^{p}$.

Proof of theorem. Recall that $P=i \circ p$. Since $\rho_{1}^{2}=0$ it suffices to show that for $n \geq 2$,

$$
\rho_{n}^{p}=-\sum_{\substack{i \geq 0, j \geq 2 \\ i+j \leq k, j \leq k-1}} \rho_{n-j+1} \circ\left(\mathrm{id}^{\otimes i} \otimes \rho_{j} \otimes \mathrm{id}^{\otimes n-j-i}\right) .
$$

This, together with the above results will imply that

$$
\begin{equation*}
\sum_{1 \leq i+j \leq n} \rho_{n-j+1} \circ\left(\mathrm{id}^{\otimes i} \otimes \rho_{j} \otimes \mathrm{id}^{\otimes(n-i-j)}\right)=0 \tag{3.30}
\end{equation*}
$$

Recall that by definition

$$
\rho_{n}^{p}=\sum_{T \in \mathcal{T}_{n}} \sum_{e \in E_{i}(T)}(-1)^{e_{i}(T)}\left\langle D_{p, e}\right\rangle .
$$

For a fixed n there is a bijection

$$
\gamma: \coprod_{2 \leq j \leq n-1} \mathcal{T}_{n-j+1} \times \mathcal{T}_{j} \times\{0, \ldots, n-j\} \longrightarrow \mathcal{T}_{n}^{+}
$$

which is defined by taking $\left(T, T^{\prime}, i\right)$ to the tree formed by attaching T^{\prime} to T at the $(i+1)^{\text {st }}$ leaf, creating a new marked internal edge e^{\prime}. This results in a tree \widehat{T} with
$e_{i}(\widehat{T})=e_{i}(T)+e_{i}\left(T^{\prime}\right)+1$. We can now apply the previous lemmas to compute

$$
\begin{aligned}
\rho_{n}^{p} & =\sum_{\substack{2 \leq j \leq n-1 \\
0 \leq i \leq n-j}} \sum_{\substack{T \in \mathcal{T}_{\mathcal{T}}-j+1 \\
Q^{\prime} \in \mathcal{T}_{j}}}(-1)^{e_{i}(\widehat{T})}\left\langle D_{T}\right\rangle \circ\left(\mathrm{id}^{\otimes i} \otimes\left\langle D_{T^{\prime}} \otimes \mathrm{id}^{\otimes(n-j-i)}\right\rangle\right) \\
& =-\sum_{\substack{i \geq 0, j \geq 2 \\
i+j \leq k, j \leq k-1}}\left(\sum_{T \in \mathcal{T}_{n-j+1}}(-1)^{e_{i}(T)}\right) \circ\left(\mathrm{id}^{\otimes i} \otimes\left(\sum_{T^{\prime} \in \mathcal{T}_{j}}\left\langle D_{T^{\prime}}\right\rangle\right) \otimes \mathrm{id}^{\otimes(n-j-i)}\right) \\
& =-\sum_{\substack{i \geq 0, j \geq 2 \\
i+j \leq k, j \leq k-1}} \rho_{n-j+i} \circ\left(\mathrm{id}^{\otimes i} \otimes \rho_{j} \otimes \mathrm{id}^{\otimes(n-j-i)}\right)
\end{aligned}
$$

as required.

Chapter 4

Matrix factorisations

4.1 Preliminaries

In the 1980's Eisenbud studied the homological properties of hypersurface singularities and complete intersections using a deceptively simple, yet highly effective, piece of technology: matrix factorisations. A matrix factorisation is exactly what it sounds like: a factorisation of one linear operator into two other linear operators. These objects date back to Dirac's famous factorisation of the four-dimensional Laplacian, Δ, as

$$
\begin{equation*}
\left(\sum_{\mu=1}^{4} \gamma_{\mu} \frac{\partial}{\partial x_{\mu}}\right)^{2}=\Delta \cdot \mathrm{id} \tag{4.1}
\end{equation*}
$$

where the γ_{μ} are the Dirac matrices. However, it was Eisenbud's application of the idea to the theory of singular rings which built the idea into the powerful theory we have today.

Let (R, \mathfrak{m}) be a regular local ring and let M be a finitely generated R-module. A sequence $x_{1}, \ldots, x_{n} \in R$ is called an M-regular sequence if x_{i} is a nonzerodivisor in $M /\left(x_{1}, \ldots, x_{i-1}\right) M$ for all $1 \leq i \leq r$. The depth of M is the length of a maximal M-sequence. The projective dimension, $\operatorname{pd}_{R}(M)$, of M is the length of a minimal free resolution of M. The following theorem is a cornerstone of homological commutative algebra.

Theorem 4.1.1 (Auslander-Buchsbaum [1]). Let M be a finitely generated module over a regular local ring R. The projective dimension and the depth of M are related to the Krull dimension of R by the following formula:

$$
\begin{equation*}
\operatorname{pr}_{R}(M)=\operatorname{dim}(R)-\operatorname{depth}(M) . \tag{4.2}
\end{equation*}
$$

Let $W \in R$ Although this formula does not hold when $S=R /(W)$ is singular, we can still use it to deduce information about certain classes of modules over S.

Definition 4.1.1. We say that a finitely generated S-module M is Cohen-Macaulay if $\operatorname{depth}(M)=\operatorname{dim}(S)$.

The following construction is due to Eisenbud [14]. Let M be a Cohen-Macaulay module over $S=R /(W)$. This is equivalent to considering M as an R-module such that $\operatorname{depth}(M)=\operatorname{dim}(R)-1$ and W annihilates M. The Auslander-Buchsbaum formula then says that

$$
\begin{equation*}
\operatorname{proj} \operatorname{dim}_{R}(M)=\operatorname{dim}(R)-\operatorname{depth}(M)=1, \tag{4.3}
\end{equation*}
$$

so M admits an R-free resolution of length 1 . In other words, we can find an exact sequence of R-modules

$$
0 \rightarrow X_{0} \xrightarrow{\phi} X_{1} \rightarrow M \rightarrow 0
$$

such that X_{0} and X_{1} are free. Since M is annihilated by W, we can construct a splitting ψ of ϕ such that $\psi \phi=W \cdot \mathrm{id}_{R}$. It follows that $\psi \phi \psi=W \cdot \psi$. Since ψ is a monomorphism this implies that $\phi \psi=W \cdot \mathrm{id}_{R}$. This implies in turn that X_{0} and X_{1} have the same rank, and therefore ψ and ϕ are in fact square matrices. This motivates the following definition.

Definition 4.1.2 (Eisenbud). Let (R, \mathfrak{m}) be a regular local ring and let $W \in \mathfrak{m}$ be some non-zero element. A matrix factorisation of W is a free $\mathbb{Z} / 2$-graded R-module X of finite rank equipped with an R-linear map d of odd degree such that $d^{2}=W \cdot \mathrm{id}_{X}$.

This definition is equivalent to writing $X=X_{0} \oplus X_{1}$ together with degree +1 maps

$$
X_{0} \xrightarrow{d_{0}} X_{1} \xrightarrow{d_{1}} X_{0},
$$

such that $d_{0} \circ d_{1}=d_{1} \circ d_{0}=W \cdot \mathrm{id}_{X}$ and

$$
d=\left[\begin{array}{cc}
0 & d_{1} \\
d_{0} & 0
\end{array}\right] .
$$

We will refer to d as the twisted differential of the matrix factorisation.
A morphism of matrix factorisations of W is a $\mathbb{Z} / 2 \mathbb{Z}$-graded linear map $f: X \rightarrow Y$ such that $f \circ d^{Y}=d^{X} \circ f$. Equivalently, it is a pair R-module homomorphisms f_{0} : $X_{0} \rightarrow Y_{0}$ and $f_{1}: X_{1} \rightarrow Y_{1}$ such that the following diagram commutes:

Definition 4.1.3. The $D G$-category of matrix factorisations $\operatorname{mf}(R, W)$ of $W \in R$ is the $\mathbb{Z} / 2 \mathbb{Z}$-graded DG-category consisting of the following data:

- The objects of $\mathrm{mf}(R, W)$ are matrix factorisations (X, d) of W.
- The mapping complexes $\operatorname{mf}(R, W)(X, Y)$ are given by the R-module of $\mathbb{Z} / 2 \mathbb{Z}$ graded R-linear maps $f:\left(X, d^{X}\right) \rightarrow\left(Y, d^{Y}\right)$ with the differential given by

$$
d(f)=d_{Y} \circ f-(-1)^{|f|} f \circ d_{X} .
$$

The homotopy category of matrix factorisations $\operatorname{hmf}(R, W)$ of $W \in R$ is obtained by taking the $0^{\text {th }}$ cohomology of the mapping complexes $\operatorname{mf}(R, W)(X, Y)$.

Remark 4.1.1. We will usually drop the ring R from the notation, writing simply $\mathrm{mf}(W)$ and $\operatorname{hmf}(W)$.

The following is a simple but important example:
Example 4.1.1. Consider the polynomial $W=x^{n} \in \mathbb{C}[x]$. The family of matrices

$$
A_{i}=\left[\begin{array}{cc}
0 & x^{n-i} \tag{4.4}\\
x^{i} & 0
\end{array}\right], \quad i \in\{1, \ldots, n\}
$$

satisfy $A_{i}^{2}=x^{n}$. id. Therefore $\left\{\left(\mathbb{C}[x]^{2}, A_{i}\right)\right\}$ is a family of matrix factorisations of W. It was shown in [21] that all matrix factorisations of $W=x^{n}$ are given by direct sums of these factorisations.

Example 4.1.2. Consider the polynomial $W=x^{d}-y^{d} \in \mathbb{C}[x, y]$, and write $\eta=e^{2 \pi i / d}$ for the $d^{\text {th }}$ root of unity. We can factor W as

$$
\begin{equation*}
W=\prod_{i=0}^{d-1}\left(x-\eta^{i} y\right) \tag{4.5}
\end{equation*}
$$

As in the previous example we can now write down a family of matrix factorisations

$$
X_{i}=\left[\begin{array}{cc}
0 & \prod_{i \notin I}\left(x-\eta^{i} y\right) \tag{4.6}\\
\prod_{i \in I}\left(x-\eta^{i} y\right) & 0
\end{array}\right], \quad I \subseteq\{1, \ldots, d\}
$$

Following the physics literature [4, 15], we will refer to this family of matrix factorisations as permutation defects.

We will return to these examples in the context of A_{∞}-algebras and A_{∞}-modules in Sections 5.4 and 6.1.

Definition 4.1.4. Given a matrix factorisation (X, d) of $W \in R$, the dual matrix factorisation is $X^{\vee}:=\operatorname{Hom}_{R}(X, R)$, with twisted differential $d^{\vee}(f)=(-1)^{|f|+1} f \circ d$. This is a matrix factorisation of $-W$.

Definition 4.1.5. Let X and Y be matrix factorisations of W and V respectively. The tensor product, $X \otimes_{R} Y$, has a natural $\mathbb{Z} / 2 \mathbb{Z}$-grading, with twisted differential $d_{X \otimes Y}=d_{X} \otimes \mathrm{id}+\mathrm{id} \otimes d_{Y}$. It is a matrix factorisation of $W+V$.

After choosing a basis, we can write $X \otimes_{R} Y$ as

$$
\left(X_{0} \otimes Y_{0}\right) \oplus\left(X_{1} \otimes Y_{1}\right) \xrightarrow{d_{0}^{X \otimes Y}}\left(X_{1} \otimes Y_{0}\right) \oplus\left(X_{0} \otimes Y_{1}\right) \xrightarrow{d_{1}^{X \otimes Y}}\left(X_{0} \otimes Y_{0}\right) \oplus\left(X_{1} \otimes Y_{1}\right),
$$

where $d_{i}^{X \otimes Y}=d_{i}^{X} \otimes \mathrm{id}+\mathrm{id} \otimes d_{i+1}^{Y}$ with the necessary Kozul signs.

Definition 4.1.6. The shift functor $(-)[1]: \operatorname{hmf}(W) \rightarrow \operatorname{hmf}(W)$ is given on matrix factorisations (X, d) by

$$
\begin{equation*}
\left(X_{0} \xrightarrow{d_{0}} X_{1} \xrightarrow{d_{1}} X_{0}\right)[1]=X_{1} \xrightarrow{-d_{1}} X_{0} \xrightarrow{-d_{0}} X_{1} . \tag{4.7}
\end{equation*}
$$

We write $X[n]$ for the n-fold application of the shift functor.

Remark 4.1.2. Observe that $X[2]=X$, so we can define shifts of negative degree by $X[-1]=X[1]$ and more generally $X[-n]=X[n]$.

4.2 Koszul factorisations

We will be particularly interested in a certain class of matrix factorisations, which we call Koszul factorisations.

Definition 4.2.1. Let R be a commutative ring and let $W \in R$. Suppose we have sequences a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} in R such that

$$
W=\sum_{i=1}^{m} a_{i} b_{i}
$$

Consider the $\mathbb{Z} / 2 \mathbb{Z}$-graded R-module $F_{\psi}=R \psi_{1} \oplus \cdots \oplus R \psi_{n}$ with $\left|\psi_{i}\right|=1$, and define operators

$$
\begin{equation*}
\left.\delta_{+}=\sum_{i=1}^{n} a_{i} \psi_{i}^{*}\right\lrcorner(-), \quad \delta_{-}=\sum_{i=1}^{n} b_{i} \psi_{i} \wedge(-) . \tag{4.8}
\end{equation*}
$$

Here $\left.\psi_{i}^{*}\right\lrcorner(-)$ is the contraction operator defined by the formula

$$
\begin{equation*}
\left.\psi_{i}^{*}\right\lrcorner\left(\psi_{i_{1}} \wedge \cdots \wedge \psi_{i_{p}}\right)=\sum_{k=1}^{p}(-1)^{k+1} \delta_{i, i_{k}} \psi_{i_{1}} \wedge \cdots \wedge \widehat{\psi_{i_{k}}} \wedge \cdots \wedge \psi_{i_{p}} \tag{4.9}
\end{equation*}
$$

where $\widehat{\psi_{i_{k}}}$ means that $\psi_{i_{k}}$ is omitted. We will write ψ_{i}^{*} when we mean $\left.\psi_{i}^{*}\right\lrcorner(-)$, and ψ_{i} when we mean $\psi_{i} \wedge(-)$. The Koszul matrix factorisation of W with respect to the chosen decomposition is

$$
\{\underline{a}, \underline{b}\}:=\left(\bigwedge F_{\psi}, \delta_{+}+\delta_{-}\right)
$$

Example 4.2.1. If we take $R=\mathbb{k}[x]$, the Koszul factorisation $\left\{x^{i}, x^{n-i}\right\}$ of $W=x^{n}$ is simply the matrix factorisation

$$
\mathbb{k}[x] \xrightarrow{x^{i}} \mathbb{k}[x] \xrightarrow{x^{n-i}} \mathbb{k}[x]
$$

of Example 4.1.1.
Example 4.2.2. Suppose $\mathbb{k}=R /(\underline{x}-P)$ is the residue field at a singular point $P=\left(p_{1}, \ldots, p_{n}\right)$ of $Z(W)$, the zero locus of W. Then for some $W_{1}, \ldots, W_{n} \in R$, write,

$$
W=\sum_{i=1}^{n}\left(x_{i}-p_{i}\right) W_{i} .
$$

The associated Koszul factorisation is denoted

$$
\begin{equation*}
\mathbb{k}_{W}^{s t a b}(P):=\left\{\underline{x}-P,\left(W_{1}, \ldots, W_{n}\right)\right\} . \tag{4.10}
\end{equation*}
$$

Lemma 4.2.1. Let X and Y be matrix factorisations of W and V respectively.

1. There is a natural isomorphism of matrix factorisations of $-W-V$

$$
\begin{aligned}
\Psi: X^{\vee} \otimes Y^{\vee} & \rightarrow(X \otimes Y)^{\vee}, \\
\Psi(f \otimes g)(x \otimes y) & =(-1)^{|x| \cdot|y|} f(x) g(y) .
\end{aligned}
$$

2. There is a canonical isomorphism of matrix factorisations of $-W$

$$
\begin{aligned}
\Psi:\{\underline{b},-\underline{a}\} & \rightarrow\{\underline{a}, \underline{b}\}^{\vee} \\
\psi_{i_{1}} & \wedge \cdots \wedge \psi_{i_{p}}
\end{aligned}>(-1)^{\binom{p}{2}}\left(\psi_{i_{1}} \wedge \cdots \wedge \psi_{i_{p}}\right)^{*}, \quad\left(i_{1}<\cdots<i_{p}\right) . . ~ l
$$

3. There is a canonical isomorphism of matrix factorisation of W

$$
\begin{equation*}
\{\underline{b},-\underline{a}\} \cong\{\underline{a},-\underline{b}\}[m] . \tag{4.11}
\end{equation*}
$$

Proof. See [8], Appendix B.

Corollary 4.2.1. Let X be a matrix factorisation of $W=\sum_{i=1}^{n} x_{i} W_{i} \in R$. Then there is an R-linear isomorphism of complexes

$$
\begin{equation*}
\operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}(p), X\right) \cong\left(\{\underline{x}-\underline{p},-\underline{w}\} \otimes_{R} X\right)[n], \tag{4.12}
\end{equation*}
$$

where $\underline{w}=\left(W_{1}, \ldots, W_{n}\right)$.
Proof. We compute

$$
\begin{aligned}
\operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}(p), X\right) & =\operatorname{Hom}_{R}(\{\underline{x}-\underline{p}, \underline{w}\}, X) & & \\
& \cong\{\underline{x}-\underline{p}, \underline{w}\}^{\vee} \otimes_{R} X & & \\
& \cong\{\underline{w},-(\underline{x}-\underline{p})\} \otimes_{R} X & & \text { Lemma 4.2.1 } \\
& \cong\left(\{\underline{x}-\underline{p},-\underline{w}\} \otimes_{R} X\right)[n], & & \text { Lemma 4.2.1. }
\end{aligned}
$$

4.3 Compact generator of $\operatorname{hmf}(\mathrm{W})$

In this section we will follow [48] to show that $\mathbb{k}_{W}^{s t a b}(p)$ is a compact generator of $\operatorname{hmf}(W)$.
Definition 4.3.1 (Neeman, [50]). Let \mathcal{T} be a triangulated category. A triangulated subcategory \mathcal{T}^{\prime} is a thick subcategory if it is closed under taking direct summands of its objects. An object X of \mathcal{T} is a split generator of \mathcal{T} if the smallest thick subcategory of \mathcal{T} containing X is \mathcal{T} itself. An object X of \mathcal{T} is compact if the functor $\operatorname{Hom}_{\mathcal{T}}(X,-)$ commutes with arbitrary coproducts.

Remark 4.3.1. This definition of compactness is equivalent to the property that every morphism $X \rightarrow \bigoplus_{i} Y_{i}$ factors through a finite coproduct.

Lemma 4.3.1 (Dyckerhoff, [10|). There is an isomorphism for any (possibly infinite rank) matrix factorisation X of W

$$
\begin{equation*}
H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}(p), X\right) \cong H^{*}\left(X \otimes_{R} R /(\underline{x}-p)\right)[n] \tag{4.13}
\end{equation*}
$$

as $\mathbb{Z} / 2 \mathbb{Z}$-graded vector spaces.

Proof. This was originally proved by Dyckerhoff [10] using different methods. Without loss of generality take $\underline{p}=0$. By Section 5.3.1 there is a strong deformation retract

$$
H \circlearrowright\left(\bigwedge\left(\bigoplus_{i=1}^{n} \mathbb{k} \theta_{i}\right) \otimes_{\mathbb{k}} R, d_{K}=\sum_{i=1}^{n} x_{i} \theta_{i}^{*}\right) \stackrel{\pi \otimes \mathrm{id}}{\rightleftarrows}(\mathbb{k}, 0)
$$

Where $H=\left[\Delta, d_{K}\right] \Delta$ and $\Delta=\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \theta_{i}$. By taking the tensor product with X we obtain another strong deformations retract

$$
\operatorname{id}_{X} \otimes H \circlearrowright\left(X \otimes_{R} \bigwedge\left(\bigoplus_{i=1}^{n} \mathbb{k} \theta_{i}\right) \otimes_{\mathbb{k}} R, d_{K}\right) \stackrel{\mathrm{id} \otimes \pi \otimes \mathrm{id}}{\mathrm{id} \otimes \sigma}\left(X \otimes_{R} \mathbb{k}, 0\right)
$$

We can perturb the differential on the left hand side to $d_{K}+\delta$, where

$$
\begin{equation*}
\delta=\sum_{i=1}^{n}\left(-W_{i}\right) \theta_{i}+d_{X} . \tag{4.14}
\end{equation*}
$$

Since $(H \delta)^{m}=0$ for $m \gg 0$, we can apply the Homological Perturbation Lemma (5.2.1) to obtain a strong deformation retract

$$
H_{\infty} \circlearrowright\left(X \otimes_{R} \bigwedge\left(\bigoplus_{i=1}^{n} \mathbb{k} \theta_{i}\right) \otimes_{\mathbb{k}} R, d_{K}+\delta\right) \stackrel{\mathrm{id} \otimes \pi \otimes \mathrm{id}}{\rightleftarrows}\left(X \otimes_{R} \mathbb{k}, d_{X} \otimes 1\right)
$$

By Corollary 4.2 .1 , the left hand side is equal to $\left(\{\underline{x}-\underline{p},-\underline{w}\} \otimes_{R} X\right) \cong \operatorname{Hom}_{R}\left(\mathbb{K}_{W}^{s t a b}(p), X\right)[n]$. The right hand side is isomorphic to $X \otimes_{R} R /(\underline{x})$, so the strong deformation retract gives the result.

Lemma 4.3.2 (Infinite dimensional Gaussian reduction). Let X be a (possibly infinite rank) matrix factorisation of $W \in \mathbb{k}[[x]]$. Then X decomposes as $X \cong X_{\min } \oplus Y$ with Y contractible and $X_{\min }$ a matrix factorisation such that $d_{X_{\min }}\left(X_{\min }\right) \subseteq \mathfrak{m} \cdot X_{\min }$.

Proof. Let C be the contractible matrix factorisation

$$
C=\left(R \cdot c_{0} \oplus R \cdot c_{1}, d_{C}=\left[\begin{array}{cc}
0 & 1 \tag{4.15}\\
W & 0
\end{array}\right]\right)
$$

Then given any matrix factorisation X of W, a morphism $f: C \rightarrow X$ is determined completely by the image of c_{1}. Indeed $d_{C}\left(c_{1}\right)=c_{0}$, so $f\left(c_{0}\right)=f\left(d_{C}\left(c_{1}\right)\right)=d_{X}\left(f\left(c_{1}\right)\right)$. Therefore, given $x \in X$ we can define a morphism $f_{x}: C[|x|] \rightarrow X$ by $f_{x}\left(c_{1}\right)=x$.

Any $\mathbb{Z} / 2 \mathbb{Z}$-graded submodule of X closed under d_{X} which is isomorphic to a direct sum of copies of C will be a contractible submodule, so the idea of the proof is to use Zorn's Lemma to show that the set of such submodules has a maximal element and a complement in X. This maximal element will be Y and its complement will be $X_{\min }$.

Let \mathcal{P} denote the set of triples (Z, U, P) where $Z, P \subseteq X$ are $\mathbb{Z} / 2 \mathbb{Z}$-graded submodules with complement P, i.e. $Z \oplus P=X$, such that $d_{X}(Z) \subseteq Z$ and $U \subset Z$ is a subset of homogeneous elements. Consider the subset

$$
\begin{equation*}
\mathcal{Q}=\left\{(Z, U, P) \mid \sum f_{x}: \bigoplus_{x \in U} C[|x|] \rightarrow Z \text { is an isomorphism }\right\} \subseteq \mathcal{P} \tag{4.16}
\end{equation*}
$$

This has the structure of a poset with $(Z, U, P) \leq\left(Z^{\prime}, U^{\prime}, P^{\prime}\right)$ if $Z \subseteq Z^{\prime}, P^{\prime} \subseteq P$, and $U=Z \cap U^{\prime}$. Let $\left\{\left(Z_{i}, U_{i}, P_{i}\right) \mid i \in I\right\}$ be a chain in \mathcal{Q} and set

$$
\begin{equation*}
(Z, U, P)=\left(\bigcup_{i \in I} Z_{i}, \bigcup_{i \in I} U_{i}, \bigcap_{i \in I} P_{i}\right) \tag{4.17}
\end{equation*}
$$

Then $Z_{i} \subseteq Z, U_{i}=Z_{i} \cap U$, and $P \subseteq P_{i}$ for all i, and we claim that $(Z, U, P) \in \mathcal{Q}$.
First observe that the following square commutes

It follows that we can form a commuting ladder of inclusions and isomorphisms. When we take the limit of this entire diagram we obtain an isomorphism

$$
\underset{\longrightarrow}{\lim } Z_{i} \cong \lim _{\longrightarrow} \bigoplus_{x \in U_{i}} C[|x|]
$$

These limits are isomorphic to Z and $\bigoplus_{x \in U} C[|x|]$ respectively, so we see that

$$
\sum f_{x}: \bigoplus_{x \in U} C[|x|] \rightarrow Z
$$

is an isomorphism. Next, it is certainly true that $X=Z+P$, so we just need to show that $Z \cap P=\{0\}$. If $0 \neq z \in Z$ then $z \in Z_{i}$ for some i, so $z \notin P_{i}$ because $Z_{i} \cap P_{i}=\{0\}$. But then $z \notin P$, so $X=Z \oplus P$.

This shows that every chain has an upper bound, so by Zorn's Lemma \mathcal{Q} has a maximal element which we denote by $\left(Y, U, X_{\min }\right)$. If $X_{\min }$ were to have a unit in the matrix representation of $d_{X_{\min }}$ we could could use classical Gaussian elimination to split off a single copy of C. But this would contradict the maximality of Y. Hence it must be the case that $d_{X_{\text {min }}}\left(X_{\min }\right) \subseteq \mathfrak{m} \cdot X_{\text {min }}$.

The following corollary was first proved by Schoutens [56], in the context of the stable derived category of Cohen-Macaulay modules, and independently by Dyckerhoff [10]. Seidel [57, 11.1] also observed that a slightly weaker form of the result can be deduced from results of Orlov [52]. The proof presented here is due to Murfet [48].

Corollary 4.3.1. If \mathbb{k} is a field and $W \in \mathbb{k}[[\boldsymbol{x}]]$ has an isolated singularity at 0 , then $\mathbb{k}_{W}^{\text {stab }}$ is a split generator of $\operatorname{hmf}(W)$.

Proof. Let $R=\mathbb{k}[[\mathbf{x}]]$. Consider $\operatorname{hmf}(W)$ as a subcategory of $\operatorname{HMF}(W)$, the homotopy category of infinite rank matrix factorisations of W. This is a triangulated category with infinite coproducts, and it is easy to see that $\operatorname{hmf}(W) \subseteq \operatorname{HMF}(W)^{c}$, the subcategory of compact objects. Indeed, if X is a finitely generated matrix factorisation with chosen basis $\left\{e_{j}\right\}_{j=1, \ldots, n}$, then any morphism $f: X \rightarrow \bigoplus_{i \in I} Y_{i}$ factors as

where $f\left(e_{i}\right) \in Y_{j}$. In particular $\mathbb{k}_{W}^{s t a b}$ is a compact object in $\operatorname{HMF}(W)$.
We will show that $\mathbb{k}_{W}^{s t a b}$ is a compact generator of $\operatorname{HMF}(W)$. From this it will follow, using the general theory of triangulated categories (see [50]), that the smallest thick triangulated subcategory of $\operatorname{HMF}(W)$ containing $\mathbb{k}_{W}^{s t a b}$, written $\left\langle\mathbb{k}_{W}^{s t a b}\right\rangle$, is $\operatorname{HMF}(W)^{c}$. But $\operatorname{hmf}(W)$ is a thick subcategory containing $\mathbb{k}_{W}^{\text {stab }}$. Therefore we have inclusions of subcategories

$$
\begin{equation*}
\left\langle\mathbb{k}_{W}^{s t a b}\right\rangle \subseteq \operatorname{hmf}(W) \subseteq \operatorname{HMF}(W)=\left\langle\mathbb{k}_{W}^{s t a b}\right\rangle \tag{4.18}
\end{equation*}
$$

from which is follows that $\left\langle\mathbb{k}_{W}^{s t a b}\right\rangle=\operatorname{hmf}(W)$.
Suppose $\operatorname{Hom}_{\mathcal{T}}\left(\mathbb{k}_{W}^{\text {stab }}, X[i]\right)=0$ for $i \in \mathbb{Z} / 2 \mathbb{Z}$ and some $X \in \operatorname{HMF}(W)$. Then, by Lemma 4.3.1.

$$
\begin{equation*}
0=H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X\right) \cong H^{*}(X \otimes \mathbb{k})[n] \tag{4.19}
\end{equation*}
$$

But using Lemma 4.3.2 we see that X is homotopy equivalent over R to a matrix factorisation $X_{\min }$ whose differential, in matrix form, contains no units. It follows that the differential on $X_{\text {min }} \otimes_{R} \mathbb{k}$ vanishes, so

$$
\begin{equation*}
0=H^{*}\left(X \otimes_{R} \mathbb{k}\right) \cong H^{*}\left(X_{\min } \otimes_{R} \mathbb{k}\right) \cong X_{\min } \otimes_{R} \mathbb{k} . \tag{4.20}
\end{equation*}
$$

This implies that $X \cong 0$ in \mathcal{T}. It then follows that $\mathbb{k}_{W}^{s t a b}$ compactly generates $\operatorname{HMF}(W)$.

As a consequence of Theorem 2.4 .2 and Corollary 4.3.1, there is a quasi-isomorphism of DG-categories

$$
\begin{equation*}
\operatorname{mf}(W) \xrightarrow{\cong} \operatorname{Perf}\left(\operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right)\right), \quad X \mapsto \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X\right), \tag{4.21}
\end{equation*}
$$

In particular the DG-algebra $\operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right)$ contains all of the information of $\operatorname{hmf}(W)$.

4.4 Orlov's theorem

Matrix factorisations package the homological data of hypersurface singularities into an elementary and computable package. It turns out, surprisingly, that the category $\operatorname{hmf}(W)$ contains all of the homological information (up to quasi-isomorphism) of the singularity in question. For example, Dyckerhoff showed in [10] that we one can recover the Jacobi algebra $\operatorname{Jac}(W)$ as the Hochschild cohomology of the DG-category mf (W).

Let R be a Noetherian regular local ring and suppose $W \in R$ has a singular point at 0 . Let $S=R /(W)$. We denote by $D^{b}(S)$ the bounded derived category of S-modules. The objects are bounded complexes of finitely generated S-modules with morphisms given up to homotopy and with all quasi-isomorphisms formally inverted.

Recall that the global dimension of a ring is defined to be the supremum of the lengths of projective resolutions of S-modules. Recall the following homological criterion for regularity.

Theorem 4.4.1 (Serre [58]). A commutative local ring S is regular if and only if it has finite global dimension.

Definition 4.4.1. A complex of S-modules is perfect if it is quasi-isomorphic to a bounded complex of projective S-modules.

Perfect S modules form a triangulated subcategory $\operatorname{Perf}(S)$ of $D^{b}(S)$. Using this terminology, Serre's theorem implies that S is regular if and only if $D^{b}(S)$ is equivalent to $\operatorname{Perf}(S)$. It follows that the failure of this equivalence when S is singular ought to provide insight into the nature of the singularities of $Y=\operatorname{Spec}(S)$.

Definition 4.4.2 (Orlov [51]). Let $S=R / W$. The derived category of singularities is given by the Verdier quotient

$$
D_{s g}(S):=D^{b}(S) / \operatorname{Perf}(S)
$$

Proposition 4.4.1. Every object A in $D_{s g}(S)$ is isomorphic to $N[k]$ for some finitely generated S-module N.

The derived category of singularities has one major pitfall: its morphisms are extremely difficult to work with. Unlike the bounded derived category $D^{b}(S)$, whose morphisms can be computed as Ext groups, the morphisms in $D^{s g}(S)$ depend in a very non-trivial way on how $\operatorname{Perf}(S)$ embeds in $D^{b}(S)$ as a subcategory. This is where matrix factorisations enter the picture, in the form of the following remarkable theorem of Orlov:

Theorem 4.4.2 (Orlov). Let $S=R / W$. There is a triangulated equivalence of categories,

$$
\begin{equation*}
\text { coker : } \operatorname{hmf}(W) \rightarrow D^{s g}(S) \tag{4.22}
\end{equation*}
$$

Proof. See [51], Theorem 3.9.

In one direction, this functor sends a matrix factorisation

$$
\begin{equation*}
X_{0} \xrightarrow{d_{0}} X_{1} \xrightarrow{d_{1}} X_{0} \tag{4.24}
\end{equation*}
$$

to the R-module $N=\operatorname{coker}\left(d_{1}\right)$. Since N is annihilated by W, it can be thought of as an S-module. We can then identify N with the object of $D^{b}(S)$ which has N in degree 0 and 0 in all other degrees.

We will now describe a partial inverse to coker following [10]. Proposition 4.4.1 tells us that every object in $D^{s g}(S)$ is isomorphic to an S-module N. Let us restrict to those S-modules which are isomorphic to $R /\left(f_{1}, \ldots, f_{n}\right)$, where $f_{1}, \ldots, f_{n} \in R$ is a regular sequence such that $W \in\left(f_{1}, \ldots, f_{n}\right)$. Then $W=\sum_{i=1}^{n} w_{i} f_{i}$, for some $W_{i} \in R$, and we have constructed the Koszul matrix factorisation $\{\underline{w}, f\}$ in $\operatorname{hmf}(W)$.

In the general case we use a theorem of Eisenbud [14], which implies that, given any object N of $D^{s g}(S)$, the minimal free resolution of N is eventually 2-periodic, and this gives the desired matrix factorisation.

This theorem was originally due to Buchweitz [6] but was not published at the time. It was rediscovered by Orlov in the context of mathematical physics, following the suggestion of Kontsevich that the homotopy category of matrix factorisations ought to be a good model for the category of D-branes in Landau Ginzberg models.

Chapter 5

Minimal model construction

5.1 Introduction

Motivated by Theorem 4.4.2 and Corollary 4.3.1, we wish to compute the A_{∞}-minimal model of the DG-algebra $\operatorname{End}_{R}\left(\mathbb{K}_{W}^{s t a b}\right)$. We begin this chapter with an account of the Homological Perturbation Lemma. Using this, we will construct a strong deformation retract on $\operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right)$ in order to apply the Minimal Model Theorem of Section 3.3. We then introduce configurations and Feynman interactions as a tool to compute higher products explicitly, following Murfet [47]. This chapter concludes with two examples of A_{∞}-minimal models.

5.2 Homological perturbation lemma

Suppose we are given some complex of R modules (M, d) on which we wish to perform concrete computations. In a best case scenario, M will be finite dimensional and calculations can be implemented using any number of computer packages. Unfortunately, this not the case in the majority of problems.

In many cases of interest our chain complex M will have finite dimensional cohmomology. This often means that we are able to find some finite dimensional complex $\left(N, d^{\prime}\right)$ which is quasi-isomorphic to M, in such a way that any information contained in the cohomology of M can be computed using N. In this case we call N a finite model of M.
Example 5.2.1. Consider the Koszul complex of the element $x \in \mathbb{k}[x]$:

$$
\begin{equation*}
K(x): \quad 0 \rightarrow \mathbb{k}[x] \xrightarrow{x} \mathbb{k}[x] . \tag{5.1}
\end{equation*}
$$

As a graded \mathbb{K}-vector space, $K(x)$ is infinite dimensional. It is easy to see however, that $H^{*} K(x) \cong \mathbb{k}$. In particular, we can construct a quasi-isomorphism $K(X) \rightarrow \mathbb{k}$ as follows. Consider the morphism of complexes

with π given by

$$
\begin{equation*}
\pi: \mathbb{k}[x] \rightarrow \mathbb{k}, \quad \sum_{i=1}^{n} a_{i} x^{i} \mapsto a_{0} \tag{5.2}
\end{equation*}
$$

Let $\iota: \mathbb{k} \rightarrow \mathbb{k}[x]$ be the inclusion of constants, and define $H: \mathbb{k}[x] \rightarrow \mathbb{k}[x]$ by extending linearly $H\left(x^{n}\right)=x_{n-1}, H(1)=0$. Then $\pi \circ \iota=\mathrm{id}$ and

$$
x H=\mathrm{id}-\iota \circ \pi .
$$

It follows that H defines a contracting homotopy, and thus π is a quasi-isomorphism.

In most cases, the construction of a contracting homotopy isn't this simple, and finding a finite model can be somewhat of an art-form. The Homological Perturbation Lemma provides an algorithm to compute a finite model in the case where we can exhibit the differential d on M as a perturbation of a simpler differential.

More explicitly, suppose we have a cochain complex (M, d) such that the differential can be decomposed as $d=\tau+\gamma$ and (M, τ) is a chain complex with a know contracting homotopy h. The Homological Perturbation Lemma allows us, under certain 'convergence' conditions, to deform h via γ to a contracting homotopy of (M, d).

Definition 5.2.1. A deformation retract of chain complexes (M, d_{M}) and (N, d_{N}) consists of a triple of morphisms (π, σ, h)

$$
M \underset{\sigma}{\stackrel{\pi}{\rightleftarrows}} N \longmapsto h
$$

where $h: N \rightarrow N$ is a degree -1 operator satisfying

$$
\begin{aligned}
\pi \sigma & =\mathrm{id} \\
\mathrm{id}-\sigma \pi & =\left[d_{N}, h\right] .
\end{aligned}
$$

A deformation retract is called strong if in addition it satisfies the following conditions

$$
h^{2}=0, \quad h \sigma=0, \quad \pi h=0
$$

Remark 5.2.1. Any deformation retract can be made into a strong deformation retract by appropriately adjusting H.

Theorem 5.2.1 (Homological Perturbation Lemma). Suppose

$$
\left(M, d_{M}\right) \underset{\sigma}{\rightleftarrows}\left(N, d_{N}\right) \hookleftarrow h
$$

is a strong deformation retract. If $d_{N}+\tau$ has finite order, i.e. $(h \tau)^{n}=0$ for some n, then

$$
\left(M, d_{\infty}\right) \stackrel{\pi_{\infty}}{\sigma_{\infty}}\left(N, d_{N}+\tau\right) \longmapsto h_{\infty}
$$

is a strong deformation retract, where $A=\sum_{m \geq 0}(-1)^{m} \tau(h \tau)^{m}$ and

$$
\begin{aligned}
\sigma_{\infty} & =\sigma-h A \sigma \\
\pi_{\infty} & =\pi-\pi A h \\
d_{\infty} & =d-\pi A \sigma \\
h_{\infty} & =\sum_{m \geq 0}(-1)^{m}(h \tau)^{m} .
\end{aligned}
$$

Proof. See [9].

5.3 The construction

In this section we will construct a strong deformation retract of $\operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right)$ onto a finite dimensional sub-complex in order to apply the Minimal Model Theorem. Similar tchniques have been used by Seidel [57] and Efimov [12] in the context of mirror symmetry. We begin with a description of the DG-algebra $\operatorname{End}_{R}\left(\mathbb{K}_{W}^{s t a b}\right)$.

Definition 5.3.1. Let $W \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, and write $\partial_{x_{i}}=\frac{\partial}{\partial x_{i}}$ for the partial derivatives. We say that W is a potential if it satisfies the following conditions:

1. With $I=\left(\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W\right), R / I$ is a finitely generated free \mathbb{k}-module;
2. The sequence $\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W$ is quasi-regular;
3. The Koszul complex of $\partial_{x_{1}} W, \ldots, \partial_{x_{n}} W$ is exact except in degree zero.

In order to construct a strong deformation retract which generalises from $\operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right)$ to the whole DG-category $\operatorname{MF}(W)$, we embed $\operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right)$ into a larger chain complex \mathcal{H}, and then construct a strong deformation retract on \mathcal{H} using the Homological Perturbation Lemma. This allows us to recover a deformation retract of $\operatorname{End}\left(\mathbb{k}_{W}^{s t a b}\right)$ onto a finite dimensional vector space by constructing a split idempotent from the natural Clifford algebra structure on $\operatorname{End}\left(\bigwedge\left(\bigoplus_{i=1}^{n} \mathbb{k} \theta_{i}\right)\right)$ [49].

Let us fix some notation for later chapters. Let \mathbb{k} be a \mathbb{Q}-algebra and let $W \in \mathfrak{m}^{3} \subset$ $R=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, where $\mathfrak{m}=\left(x_{1}, \ldots, x_{n}\right)$. Choose a decomposition $W=\sum x_{i} W_{i}$ with $W_{i} \in \mathfrak{m}^{2}$. We use the following $\mathbb{Z} / 2 \mathbb{Z}$-graded \mathbb{k}-vector spaces

$$
\begin{aligned}
F_{\psi} & =\mathbb{k} \psi_{1} \oplus \cdots \oplus \mathbb{k} \psi_{n}, \\
F_{\psi *} & =\mathbb{k} \psi_{1}^{*} \oplus \cdots \oplus \mathbb{k} \psi_{n}^{*}, \\
F_{\theta} & =\mathbb{k} \theta_{1} \oplus \cdots \oplus \mathbb{k} \theta_{n} .
\end{aligned}
$$

Here, $\left|\psi_{i}\right|=\left|\psi_{i}^{*}\right|=\left|\theta_{i}\right|=1$ for all i, ψ_{i}^{*} and ψ_{i} are the contraction and wedge product operators of Section 4.2, and the θ_{i} are formal variables. We can then write $\mathbb{k}_{W}^{s t a b}$ as

$$
\begin{equation*}
\mathbb{K}_{W}^{s t a b}=\left(R \otimes_{\mathbb{k}} \bigwedge F_{\psi}, d_{W}=\sum_{i=1}^{n} x_{i} \psi_{i}^{*}+\sum_{i=1}^{n} W_{i} \psi_{i}\right) \tag{5.3}
\end{equation*}
$$

Using this presentation, the endomorphism DG-algebra is given by

$$
\begin{equation*}
\operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right)=\left(R \otimes_{\mathbb{k}} \operatorname{End}_{\mathbb{k}}\left(\bigwedge F_{\psi}\right), d_{\text {End }}=\sum_{i=1}^{n} x_{i}\left[\psi_{i}^{*},-\right]+\sum_{i=1}^{n} W_{i}\left[\psi_{i},-\right]\right) \tag{5.4}
\end{equation*}
$$

An important role in the A_{∞}-minimal model will be played by the following operators:

Definition 5.3.2. The Atiyah classes of $\operatorname{End}_{R}\left(\mathbb{K}_{W}^{s t a b}\right)$ are the R-linear operators

$$
\begin{equation*}
\operatorname{At}_{i}^{W}:=\left[d_{\mathrm{End}}, \partial_{x_{i}}\right]: \operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right) \rightarrow \operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right) \tag{5.5}
\end{equation*}
$$

Lemma 5.3.1. $\mathrm{At}_{i}=-\left[\psi_{i}^{*},-\right]-\sum_{q=1}^{n} \partial_{x_{i}} W_{q}\left[\psi_{q},-\right]$.

Proof. By direct computation we have

$$
\begin{aligned}
\mathrm{At}_{i} & =\left[\left[d_{\mathrm{k}_{W}^{\text {stab }}},-\right], \partial_{x_{i}}\right] \\
& =\sum_{q}\left[x_{q}\left[\psi_{q}^{*},-\right], \partial_{x_{i}}\right]+\sum_{q}\left[W_{q}\left[\psi_{q},-\right], \partial_{x_{i}}\right] \\
& =-\sum_{q} \partial_{x_{i}}\left(x_{q}\right)\left[\psi_{q}^{*},-\right]-\sum_{q} \partial_{x_{i}}\left(W_{q}\right)\left[\psi_{q},-\right] \\
& =-\left[\psi_{i}^{*},-\right]-\sum_{q} \partial_{x_{i}}\left(W_{q}\right)\left[\psi_{q},-\right] .
\end{aligned}
$$

It is proven in [49] there is, up to homotopy, an induced module structure over the Clifford algebra on $\operatorname{End}_{R}\left(\mathbb{K}_{W}^{s t a b}\right)$ generated by

$$
\begin{equation*}
\gamma_{i}=\mathrm{At}_{i}, \quad \gamma_{i}^{\dagger}=-\psi_{i}, \tag{5.6}
\end{equation*}
$$

with relations $\left[\gamma_{i} \gamma_{j}^{\dagger}\right] \delta_{i j}$.
Lemma 5.3.2. The map $e=\gamma_{1} \ldots \gamma_{n} \gamma_{n}^{\dagger} \ldots \gamma_{1}^{\dagger}$ is, up to homotopy, an idempotent which is split by a projection $H^{*} \operatorname{End}_{R}\left(\mathbb{k}_{W}^{\text {stab }}\right) \rightarrow \bigwedge F_{\psi^{*}}$.

Proof. See [49, Section 2.4.

5.3.1 The deformation retract

Consider the Koszul complex of $\left(x_{1}, \ldots, x_{n}\right) \in R$ given by

$$
\begin{equation*}
K=\left(R \otimes_{\mathbf{k}} \bigwedge F_{\theta}, d_{K}=\sum_{i=1}^{n} x_{i} \theta_{i}^{*}\right) \tag{5.7}
\end{equation*}
$$

again writing $\left.\theta_{i}^{*}=\theta_{i}^{*}\right\lrcorner(-)$ in d_{K}. By combining K and $\operatorname{End}_{R}\left(\mathbb{K}_{W}^{s t a b}\right)$ we obtain

$$
\begin{equation*}
\mathcal{H}:=\left(R \otimes_{\mathbb{k}} \operatorname{End}_{\mathbb{k}}\left(\bigwedge F_{\psi}\right) \otimes_{\mathfrak{k}} \bigwedge F_{\theta}, d_{\mathrm{End}}+d_{K}\right) \tag{5.8}
\end{equation*}
$$

Recall that a contracting homotopy on a chain complex is a special case of a deformation retract onto a complex concentrated in degree zero. Thus, if we can find a contracting homotopy on K, then The Homological Perturbation Lemma will give us a deformation retract of \mathcal{H}.

To construct a contracting homotopy on the Koszul complex we require some machinery. First, let us identify $R \otimes_{\mathfrak{k}} \bigwedge F_{\theta}$ with $\Omega_{R \mid k}$, the algebra of Kähler differential forms on R.

Definition 5.3.3 (Loday [40], Section 8.1). Let M be an R-module. A connection on M is a \mathbb{k}-linear map

$$
\Delta^{0}: M \rightarrow M \otimes_{R} \Omega_{R \mid k}
$$

such that

$$
\begin{equation*}
\Delta^{0}(x \omega)=\Delta(x) \omega+(-1)^{|\omega|} x d_{K}(\omega) \tag{5.9}
\end{equation*}
$$

for $x \in M \times \Omega_{R \mid k}$ and $\omega \in \Omega_{R \mid k}$.
Such a map always extends to a linear map $\Delta: M \otimes_{R} \Omega_{R \mid k} \rightarrow M \otimes_{R} \Omega_{R \mid k}$. A connection Δ is called flat if $\Delta^{2}=0$.

Consider the connection $\Delta: R \otimes \bigwedge F_{\theta} \rightarrow R \otimes \bigwedge F_{\theta}$ defined on $r \in R$ and $\omega \in \bigwedge F_{\theta}$ by

$$
\begin{equation*}
\Delta(r \otimes w)=\sum_{i=1}^{n} \partial_{x_{i}}(r) \otimes\left(\theta_{i} \wedge \omega\right) \tag{5.10}
\end{equation*}
$$

In the remainder of this chapter we will abuse notation and write $r \cdot \omega:=r \otimes w$.
Remark 5.3.1. Note that this connection is a natural generalisation of the contracting homotopy used in example 5.2. Observe also that, given $r \in R$ and $\omega \in \bigwedge F_{\theta}$,

$$
\begin{aligned}
\Delta^{2}(r \cdot \omega) & =\sum_{i=1}^{n} \partial_{x_{i}} \theta_{i}^{*} \sum_{j=1}^{n} \partial_{x_{j}} \theta_{j}^{*}(r \cdot \omega) \\
& =\sum_{i \neq j} \partial_{x_{i}} \partial_{x_{j}}(r) \theta_{i}^{*} \theta_{j}^{*}(\omega) \\
& =0
\end{aligned}
$$

since $\partial_{x_{i}} \partial_{x_{j}}(r) \theta_{i}^{*} \theta_{j}^{*}(\omega)=-\partial_{x_{j}} \partial_{x_{i}}(r) \theta_{j}^{*} \theta_{i}^{*}(\omega)$, so Δ is flat.
Observe that R and $\bigwedge F_{\theta}$ have natural \mathbb{Z}-gradings, with degrees $\left|x^{n}\right|=n$ and $\left|\theta_{i} \theta_{j}\right|=2$.

Lemma 5.3.3. If $r \in R$ and $\omega \in \bigwedge F_{\theta}$ are homogeneous then

$$
\begin{equation*}
\left[d_{K}, \Delta\right](f \cdot \omega)=\left(|r|_{\mathbb{Z}}+|\omega|_{\mathbb{Z}}\right) r \cdot \omega \tag{5.11}
\end{equation*}
$$

Proof. We proceed by direct calculation,

$$
\begin{aligned}
d_{K} \Delta(r \cdot \omega) & =\sum_{i=1}^{n} x_{i} \theta_{i}^{*} \sum_{j=1}^{n} \partial_{x_{j}} \theta_{j}(r \cdot \omega) \\
& \left.=\sum_{i \notin \omega} x_{j} \partial_{x_{j}}(r) \omega-\sum_{i \neq j} x_{i} \partial_{x_{j}}(f) \theta_{j} \theta_{i}^{*}\right\lrcorner(\omega) . \\
\Delta d_{K}(r \cdot \omega) & =\sum_{j=1}^{n} \partial_{x_{j}} \theta_{j} \sum_{i=1}^{n} x_{i} \theta_{i}^{*}(r \cdot \omega) \\
& \left.\left.=\sum_{i=1}^{n} \partial_{x_{i}}\left(x_{i} r\right) \theta_{i} \theta_{i}^{*}\right\lrcorner(\omega)+\sum_{i \neq j} x_{i} \partial_{x_{j}}(r) \theta_{j} \theta_{i}^{*}\right\lrcorner(\omega) \\
& \left.=|\omega|_{\mathbb{Z}} r \cdot \omega+\sum_{i \in|\omega|} x_{i} \partial_{x_{i}}(r) \omega+\sum_{i \neq j} x_{i} \partial_{x_{j}}(r) \theta_{j} \theta_{i}^{*}\right\lrcorner(\omega) .
\end{aligned}
$$

here we write $i \in \omega$ to mean those indices i such that θ_{i} is a component of ω. Combining these terms gives the desired form.

It follows that $\left[d_{K}, \Delta\right]$ is invertible. Explicitly, if $r=\sum_{\mathbf{i}} a_{\mathbf{i}} x^{\mathbf{i}}$ for some multi-index $\mathbf{i} \in \mathbb{N}^{n}$, we have

$$
\begin{equation*}
\left[d_{K}, \Delta\right]^{-1}\left(r \theta_{i_{1}} \ldots \theta_{i_{p}}\right)=\sum_{\mathbf{i}} \frac{r(\mathbf{i})}{p+|\mathbf{i}|} x^{\mathbf{i}} \theta_{i_{1}} \ldots \theta_{i_{p}} \tag{5.12}
\end{equation*}
$$

where $r(\mathbf{i})$ is the coefficient of $x^{\mathbf{i}}$ in r and $|\mathbf{i}|=i_{1}+\cdots+i_{n}$.

Definition 5.3.4. Let H be the degree $-1 \mathbb{k}$-linear map on K defined by

$$
\begin{equation*}
H=\left[d_{K}, \Delta\right]^{-1} \Delta \tag{5.13}
\end{equation*}
$$

Lemma 5.3.4. $H^{2}=0$ on K.
Proof. It suffices to show that $\Delta\left[d_{K}, \Delta\right]^{-1} \Delta=0$. Now $\Delta\left[d_{K}, \Delta\right]=\left[d_{K}, \Delta\right] \Delta$, so

$$
\left[d_{K}, \Delta\right] \Delta\left[d_{K}, \Delta\right]^{-1} \Delta=\Delta\left[d_{K}, \Delta\right]\left[d_{K}, \Delta\right]^{-1} \Delta=\Delta^{2}=0
$$

The result follows, since $\left[d_{K}, \Delta\right]$ is multiplication by a constant.

Write $\pi: R \rightarrow R / \mathbf{x} R \cong \mathbb{k}$ for the natural projection map, and $\sigma: \mathbb{k} \rightarrow R$ for the inclusion of constants. Note that $\pi \sigma=\mathrm{id}$, and, away from degree zero, $\sigma \pi=\mathrm{id}$.

Lemma 5.3.5. The map H gives a homotopy between $\sigma \pi$ and id on K.
Proof. We need to show that $d_{K} H+\sigma \pi=\mathrm{id}$ on the degree zero part of $R \otimes_{\mathbb{k}} \bigwedge F_{\theta}$. Obviously on any constant term $d_{K} H$ will vanish, so it suffices to check for $\mathrm{x} R$. For any $r \in \mathbf{x} R$

$$
\begin{aligned}
\left(1-d_{K} H-\sigma \pi\right)(r) & =r-d_{K}\left[d_{K}, \Delta\right]^{-1} \Delta(r) \\
& =r-\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j} \frac{1}{|r|_{\mathbb{Z}}-1+\left|\theta_{i}\right|_{\mathbb{Z}}} \partial_{x_{i}}(r) \theta_{j}^{*} \theta_{i} \\
& =r-\frac{1}{|r|_{\mathbb{Z}}} \sum_{i=1}^{n} x_{i} \partial_{x_{i}}(r) \\
& =r-r=0 .
\end{aligned}
$$

It follows that there is a homotopy equivalence of cochain complexes between K and the complex with \mathbb{k} in degree zero and zero in all other degrees. This is called the de Rham contraction. This data gives us a strong deformation retraction

where $\sigma(\Psi)=1 \otimes 1 \otimes \Psi$ and π the surjective composition

$$
K \rightarrow R \rightarrow R / \mathfrak{m}
$$

We can now apply the Homological Perturbation Lemma to the above deformation retract to obtain a strong deformation retract

$$
H_{\infty} \circlearrowright\left(\mathcal{H}, d_{\text {End }}+d_{K}\right) \frac{\pi \otimes \mathrm{id}}{\sigma_{\infty}}\left(\operatorname{End}\left(\bigwedge F_{\psi}\right) \otimes \mathbb{k}, 0\right)
$$

where H_{∞} and σ_{∞} are as in the statement of the Homotopy Perturbation Lemma.

Lemma 5.3.6 (Murfet). There is an isomorphism of $D G$-algebras

$$
\left(\mathcal{H}, d_{\mathrm{End}}\right) \underset{\exp (\delta)}{\stackrel{\exp (-\delta)}{\rightleftarrows}}\left(\mathcal{H}, d_{\mathrm{End}}+d_{K}\right),
$$

where $\delta=\sum_{i=1}^{n}\left(\psi_{i} \wedge(-)\right) \theta_{i}^{*}$.

Proof. First we will prove the useful identity

$$
\begin{equation*}
\left[d_{\text {End }}, \delta^{n}\right]=n \delta^{n-1} d_{K}, \quad n \geq 1 . \tag{5.14}
\end{equation*}
$$

When $n=1$ this is easy because $\delta \circ d_{\text {End }}=0$ and

$$
d_{\mathrm{End}} \circ \delta=\left(\sum_{i=1}^{n} x_{i}\left[\psi_{i}^{*},-\right]+\sum_{i=1}^{n} W_{i}\left[\psi_{i},-\right]\right) \sum_{j=1}^{n}\left(\psi_{i} \wedge(-)\right) \theta_{i}^{*}=d_{K} .
$$

Now for $n>1$ we have

$$
\left[d_{\mathrm{End}}, \delta^{n}\right]=d_{\mathrm{End}} \delta^{n}-\delta^{n} d_{\mathrm{End}}=\sum_{i=0}^{n-1} \delta^{i}\left[d_{\mathrm{End}}, \delta\right] \delta^{n-i-1}=\sum_{i=0}^{n-1} \delta^{i} d_{K} \delta^{n-i-1}=n \delta^{n-1} d_{K}
$$

To prove the lemma we need to show that $\exp (-\delta)$ and $\exp (\delta)$ intertwine the differentials. Using the identity above we have

$$
\begin{aligned}
\left(d_{\text {End }}+d_{K}\right) \exp (-\delta)-\exp (-\delta) & =\left[d_{\text {End }}, \exp (-\delta)\right]+d_{K} \exp (-\delta) \\
& =\sum_{m \geq 1} \frac{(-1)^{n}}{n!}\left[d, \delta^{n}\right]+d_{K} \exp (-\delta) \\
& =\sum_{m \geq 1} \frac{(-1)^{n}}{n!} n \delta^{n-1} d_{K}+d_{K} \exp (-\delta) \\
& =d_{K} \frac{d}{d \delta} \exp (-\delta)+d_{K} \exp (-\delta) \\
& =-d_{K} \exp (-\delta)+d_{K} \exp (-\delta) \\
& =0 .
\end{aligned}
$$

The same calculation shows that $\left(d_{\text {End }}+d_{K}\right) \exp (\delta)-\exp (\delta)=0$, completing the proof.

Collecting all of the result of this section so far we have the following theorem:
Theorem 5.3.1 (Murfet, [47). Using the following even homogeneous operators on \mathcal{H},

$$
\begin{array}{cc}
\Delta=\sum_{i=1}^{n} \partial_{x_{i}} \theta_{i}, & H=\left[d_{K}, \Delta\right]^{-1} \Delta \\
\sigma_{\infty}=\sum_{m=0}^{\infty}(-1)^{m}\left(H d_{\mathrm{End}}\right)^{m} \sigma & H_{\infty}=\sum_{m=0}^{\infty}(-1)^{m}\left(H d_{\mathrm{End}}\right)^{m} H
\end{array}
$$

there is a strong deformation retract

$$
h_{\infty} \longleftrightarrow\left(\mathcal{H}, d_{\mathrm{End}}\right) \stackrel{\exp (-\delta)}{\rightleftarrows}\left(\mathcal{H}, d_{\text {End }}+d_{K}\right) \stackrel{\pi}{\rightleftarrows \sigma_{\infty}}\left(\operatorname{End}_{\mathfrak{k}}\left(\bigwedge F_{\psi}\right), 0\right)
$$

where $h_{\infty}=\exp (\delta) \circ H_{\infty} \circ \exp (-\delta)$.

This theorem provides a deformation retract of \mathcal{H} onto a finite dimensional vector space, and by the standard minimal model algorithm we can compute the induced A_{∞}-structure b on $\operatorname{End}_{\mathrm{k}}\left(\bigwedge F_{\psi}\right)$. We find that the contraction operators ψ_{i}^{*} span an A_{∞}-subalgebra

$$
\bigwedge F_{\psi^{*}} \subseteq \operatorname{End}_{\mathbb{k}}\left(\bigwedge F_{\psi}\right)
$$

The strong deformation retract of Theorem 5.3.1 implies that $\bigwedge F_{\psi^{*}}$ is quasi-isomorphic to $H^{*} \operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right) \subset H^{*} \mathcal{H}$, and therefore the A_{∞}-structure b on $\bigwedge F_{\psi^{*}}$ gives the minimal model of $\operatorname{End}_{R}\left(\mathbb{k}_{W}^{s t a b}\right)$. In what follows we set

$$
\begin{equation*}
\mathcal{A}_{W}=\left(\bigwedge F_{\psi^{*}}, b\right) \tag{5.15}
\end{equation*}
$$

Putting all of this together, the Minimal Model Theorem allows us to write $A_{\infty^{-}}$ higher products as

$$
\begin{equation*}
b_{d}=\sum_{T \in \mathcal{T}_{d}}(-1)^{e_{i}(T)}\left\langle D_{T}\right\rangle: \mathcal{A}_{W}[1]^{\otimes d} \rightarrow \mathcal{A}_{W}[1] . \tag{5.16}
\end{equation*}
$$

Here, $e_{i}(T)$ is the number of internal edges in T, and $\left\langle D_{T}\right\rangle$ is the decoration of $A(T)$ by assignment of modules:

- \mathcal{A}_{W} to each leaf of T, including the root;
- \mathcal{H} to each internal edge;
and the assignment of maps:
- $\exp (\delta) \sigma_{\infty}$ to each non-root leaf;
- h_{∞} to each internal edge;
- r_{2}, the forward suspended multiplication, to each internal vertex of valency three;
- $\pi \exp (-\delta)$ to the root.

In fact, the following proposition simplifies things even more.

Proposition 5.3.1. The higher A_{∞}-products are given by

$$
\begin{equation*}
b_{d}\left(\Lambda_{1} \otimes \cdots \otimes \Lambda_{d}\right)=\sum_{T \in \mathcal{T}_{d}}(-1)^{Q\left(T, \Lambda_{1} \otimes \cdots \otimes \Lambda_{d}\right)}\left\langle D_{T}^{\prime}\right\rangle\left(\Lambda_{1} \otimes \cdots \otimes \Lambda_{d}\right), \tag{5.17}
\end{equation*}
$$

where

$$
\begin{equation*}
Q\left(T, \Lambda_{1} \otimes \cdots \otimes \Lambda_{d}\right)=e_{i}(T)+d+1+\sum_{1 \leq i \leq j \leq d} \tilde{\Lambda}_{i} \tilde{\Lambda}_{j}+\sum_{i=1}^{d} \tilde{\Lambda}_{i} C_{i} . \tag{5.18}
\end{equation*}
$$

Here, $\tilde{\Lambda}_{i}=\left|\Lambda_{i}\right|-1$, and C_{i} is the number of times a path from the $i^{\text {th }}$ input enters an internal vertex of T from the left. The decoration D_{T}^{\prime} is given by the same assignment of modules as D_{T} but with maps:

- σ_{∞} for each input;
- H_{∞} for each internal edge;
- $m_{2} \exp (-\Xi)$ for each vertex of valency three, where $\Xi=\sum_{i=1}^{n}\left[\psi_{i},-\right] \otimes \theta_{i}^{*}$;
- π for the root.

Proof. See [47, Proposition 4.18.

Remark 5.3.2. Observe that

$$
\begin{equation*}
\exp (-\Xi)=\sum_{m=0}^{\infty}(-1)^{m} \sum_{1 \leq j_{1}<\cdots<j_{m} \leq n} \prod_{i=1}^{m}\left[\psi_{j_{i}},-\right] \otimes \theta_{j_{i}}^{*} . \tag{5.19}
\end{equation*}
$$

It may seem at first like this construction has made the picture a whole lot more complicated: we started with a very concrete object, a matrix factorisation, and we've produced higher A_{∞}-products which appear to be a whole lot harder to work with. However, hidden beneath the mass of complicated expressions is one major advantage: we have a finite dimensional vector space and a discrete data structure, so we can perform concrete computations. In this subsection we will explain a method to break down the higher A_{∞}-products into sums of configurations resembling Feynman diagrams on trees.

Proposition 5.3.2. The maps σ_{∞} and H_{∞} can be reduced to the maps

$$
\begin{equation*}
\sigma_{\infty}=\sum_{m=0}^{\infty}(-1)^{m} \sum_{\underline{j}, \underline{z}, \boldsymbol{\gamma}, \underline{\underline{L}}} \frac{1}{\left|\gamma_{1}\right| \ldots\left|\gamma_{m}\right|}\left[\prod_{i=1}^{m} W_{j_{i}}\left(\gamma_{i}\right) \partial_{x_{z_{\nu(i)}}}\left(\boldsymbol{x}^{\gamma_{i}}\right) \theta_{z_{\nu(i)}}\left[\psi_{j_{i}},-\right]\right] \circ \sigma, \tag{5.20}
\end{equation*}
$$

$H_{\infty}=\sum_{m=0}^{\infty}(-1)^{m} \sum_{\underline{j}, \underline{z}, \underline{\gamma}, \underline{\nu}} \sum_{t=1}^{n} \frac{1}{a} \frac{\zeta_{a}\left(\left|\gamma_{1}\right|, \ldots,\left|\gamma_{m}\right|\right)}{\left|\gamma_{1}\right| \ldots\left|\gamma_{m}\right|}\left[\prod_{i=1}^{m} W_{j_{i}}\left(\gamma_{i}\right) \partial_{x_{z_{\nu(i)}}}\left(\boldsymbol{x}^{\gamma_{i}}\right) \theta_{z_{\nu(i)}}\left[\psi_{j_{i}},-\right]\right] \circ \partial_{x_{t}} \theta_{t}$.

Here we write $\boldsymbol{x}^{\gamma_{i}}=x_{1}^{\gamma_{i_{1}}} \ldots x_{m}^{\gamma_{i_{m}}},\left|\gamma_{i}\right|=\sum_{j=1}^{m} \gamma_{i_{m}}, \underline{j}=\left\{1 \leq j_{1}<\cdots<j_{m} \leq n\right\}$, $\underline{z}=\left\{1 \leq z_{1}<\cdots<z_{m} \leq n\right\}, \underline{\gamma}$ ranges over sequences of length m in $\mathbb{N}^{n} \backslash\{0\}$, and ν ranges over elements of the symmetric group \mathcal{S}_{n}. Here, ζ_{a} is the function

$$
\begin{equation*}
\zeta_{a}\left(\lambda_{1}, \ldots \lambda_{m}\right)=\sum_{\sigma \in \mathcal{S}_{m}} \frac{\lambda_{1} \ldots \lambda_{m}}{\left(a+\lambda_{\sigma(1)}\right) \ldots\left(a+\lambda_{\sigma(1)}+\cdots+\lambda_{\sigma(m)}\right)}, \tag{5.22}
\end{equation*}
$$

and $W_{j_{i}}\left(\gamma_{i}\right)$ is equal to the coefficient of $x^{\gamma_{i}}$ in $W_{j_{i}}$.

Proof. See 47, Proposition 4.6.

5.4 Configurations and Feynman calculus

We can see now, looking at the forms of $\sigma_{\infty}, H_{\infty}$, and $\exp (-\Xi)$, that the maps in the decoration $D_{T^{\prime}}$ are really built from simple operators:

$$
\begin{equation*}
\sigma, \quad \partial_{x_{i}} \theta_{i}, \quad m_{2} \circ\left(\left[\psi_{j_{i}},-\right] \otimes \theta_{j_{i}}^{*}\right), \quad W^{j_{i}}\left(\gamma_{i}\right) \partial_{x_{z_{\nu}(i)}}\left(x^{\gamma_{i}}\right) \theta_{z_{\nu(i)}}\left[\psi_{j_{i}},-\right], \tag{5.23}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left[\theta_{i}^{*}, \theta_{i}\right]=1, \quad\left[\psi_{i}, \psi_{i}^{*}\right]=1, \quad \theta_{i} \psi_{i}^{*}=-\psi_{i}^{*} \theta_{i} . \tag{5.24}
\end{equation*}
$$

This motivates a change of perspective: rather than obtaining the higher products b_{n} by summing over trees $T \in \mathcal{T}_{d}$ decorated by the unwieldy maps of Proposition, we can pull all of the summations out of $\left\langle D_{T}^{\prime}\right\rangle$ and instead sum over the configurations of the aforementioned simple operators on the trees. We will make this idea precise below, but first we will present a simple yet illustrative example.

Example 5.4.1. Let $W=x^{3}$ with the canonical decomposition $x \cdot x^{2}$. Let's look at the structure of the first of the higher A_{∞}-products b_{3}. First, observe that the underlying $\mathbb{Z} / 2 \mathbb{Z}$-graded module of \mathcal{A}_{W} is isomorphic to $\mathbb{k} \oplus \mathbb{k} \psi$, with $|\psi|=1$. There are two trees to consider:

The potential W has only one variable, giving a dramatic reduction in complexity:

$$
\begin{gathered}
\sigma_{\infty}=\sigma-\partial_{x}\left(x^{2}\right) \theta[\psi,-] \circ \sigma, \\
H_{\infty}=\partial_{x} \theta-\partial_{x}\left(x^{2}\right) \theta[\psi,-] \circ \partial_{x} \theta, \\
\\
\quad \exp (-\Xi)=[\psi,-] \otimes \theta .
\end{gathered}
$$

There are 16 terms once we expand the summations in $\left\langle D_{T}\right\rangle$. The product b_{3} is then

$$
\begin{aligned}
& b_{3}=\pi \circ m_{2}([\psi,-] \otimes \theta) \circ\left(\sigma \otimes\left(\partial_{x} \circ m_{2}([\psi,-] \otimes \theta) \circ(\sigma \otimes \sigma)\right)\right) \\
& \quad-\pi \circ m_{2}([\psi,-] \otimes \theta) \circ\left((x \theta[\psi,-] \circ \sigma) \otimes\left(\partial_{x} \circ m_{2}([\psi,-] \otimes \theta) \circ(\sigma \otimes \sigma)\right)\right) \\
&+\pi \circ m_{2}([\psi,-] \otimes \theta) \circ\left(\sigma \otimes\left(\partial_{x} \circ m_{2}([\psi,-] \otimes \theta) \circ((x \theta[\psi,-] \circ \sigma) \otimes \sigma)\right)\right) \\
&-\pi \circ m_{2}([\psi,-] \otimes \theta) \circ\left((x \theta[\psi,-] \circ \sigma) \otimes\left(\partial_{x} \circ m_{2}([\psi,-] \otimes \theta) \circ((x \theta[\psi,-] \circ \sigma) a \otimes \sigma)\right)\right) \\
& \vdots \\
&+\pi \circ m_{2}([\psi,-] \otimes \theta) \circ\left((x \theta[\psi,-] \circ \sigma) \otimes\left(\left(x \theta[\psi,-] \circ \partial_{x}\right) \circ m_{2}([\psi,-] \otimes \theta) \circ(\sigma \otimes \sigma)\right)\right) .
\end{aligned}
$$

It is left to the reader to check that there is only one term which doesn't vanish, leaving

$$
b_{3}=-\pi \circ m_{2}([\psi,-] \otimes \theta) \circ\left(\sigma \otimes\left(\partial_{x} \circ m_{2}([\psi,-] \otimes \theta) \circ(\sigma \otimes(x \theta[\psi,-] \circ \sigma))\right)\right) .
$$

We can then check that this gives

$$
b_{3}\left(\Lambda_{1} \otimes \Lambda_{2} \otimes \Lambda_{3}\right)= \begin{cases}1, & \Lambda_{1}=\Lambda_{2}=\Lambda_{3}=\psi \\ 0, & \text { otherwise } .\end{cases}
$$

Definition 5.4.1. Let $W \in \mathfrak{m}^{3}$ be a potential in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. Make a choice of decomposition $W=\sum_{i=1}^{n} x_{i} W_{i}$. Write $\mathbf{x}^{\gamma}=x_{1}^{\gamma_{1}} \ldots x_{n}^{\gamma_{n}}$ for the monomials in W_{i} where γ ranges over a finite subset of \mathbb{N}^{n}.

- An A-type interaction is an operator

$$
\theta_{i} \mathbf{x}^{\gamma-i}\left[\psi_{j},-\right] \in \operatorname{End}_{\mathbb{k}}(\mathcal{H}) .
$$

with $i \geq 1, j \leq n, \gamma \in \mathbb{N}^{n}$.

- A B-type interaction in an operator

$$
\theta_{t} \partial_{x_{t}} \in \operatorname{End}_{\mathbf{k}}(\mathcal{H}) .
$$

with $t \in\{1, \ldots, n\}$.

- A C-type interaction is an operator

$$
m_{2}\left(\left[\psi_{j},-\right] \otimes \theta_{j}^{*}\right) \in \operatorname{Hom}_{\mathbb{k}}\left(\mathcal{H}^{\otimes 2}, \mathcal{H}\right) .
$$

with $j \in\{1, \ldots, n\}$.

A configuration $D_{T, C}$ on a tree T is an assignment of A, B, and C-type interactions to the vertices of $A(T)$, as well as π to the root, subject to the following constraints:

- A-type interactions can only occur on non-root leaves and internal edges;
- there must be exactly one B-type interaction on each internal edge;
- C-type interactions can only occur at trivalent vertices;
- There may be up to $n A$-type or C-type interactions on a given vertex;
- The A-type interactions with indices i, j, γ are given the coefficient

$$
-\frac{\gamma_{i}}{|\gamma|} W^{j}(\gamma)
$$

and each B-type and C-type interaction appears with coefficient -1 .
We will write $\operatorname{Con}(T)$ for the set of all configurations on T.

Remark 5.4.1. We will refer to the pictorial representations of the interactions as Feynman interactions. It must be stressed that we are not claiming any direct connection to Feynman diagrams in quantum field theory, and that the pictures are only intended as a tool to provide illustration. We think of the configurations as determining paths of ψ_{i}^{*}, x_{i}, and θ_{i} variables which propagate down the tree from the leaves to the root.

Lemma 5.4.1. The denotation $\left\langle D_{T, C}\right\rangle$ of a decoration is a linear map $\mathcal{A}_{W}^{\otimes d} \rightarrow \mathcal{A}_{W}$.
Proof. A priori the denotation $\left\langle D_{T, C}\right\rangle$ is a linear map $\mathcal{A}_{W}^{\otimes d} \rightarrow \mathcal{H}$. Recall that the map $\pi: \mathcal{H} \rightarrow \mathcal{H}$ acts as the identity on \mathcal{A}_{W} and sends each θ_{i} and x_{i} term to zero. This implies that the only non-zero denotations must consist of compositions of commutators [$\left.\psi_{i},-\right]$. Since the submodule $\mathcal{A}_{W} \subset \mathcal{H}$ is closed under such compositions, the image of $\left\langle D_{T, C}\right\rangle$ is in \mathcal{A}_{W}.

Definition 5.4.2. Given $T \in \mathcal{T}_{d}$ and $C \in \operatorname{Con}(T)$, we define the \mathbb{k}-linear operator

$$
\mathcal{O}(T, C): \mathcal{A}_{W}^{\otimes d} \rightarrow \mathcal{A}_{W}
$$

to be the denotation $\mathcal{O}(T, C)=\left\langle D_{T, C}\right\rangle$, defined without Koszul signs.

We will say that a configuration $C \in \operatorname{Con}(T)$ vanishes if $\mathcal{O}(T, C)$ is the zero map.
Remark 5.4.2. For notational convenience, we represent a configuration C on a tree T by the following data at each non-root vertex of $A(T)$:

- An integer $m(v) \geq 0$;
- A subset $J(v) \subseteq\{1, \ldots, n\}$ with $|J(v)|=m(v)$;
- If v is an input, or comes from an internal edge of T, a pair

$$
\left(a_{j}(v), \gamma_{j}(v)\right) \in\{1, \ldots, n\} \times \mathbb{N}^{n}
$$

for each $j \in J(v)$, with $\gamma_{j}(v)_{a_{j}(v)} \geq 1$;

- If v comes from an internal edge, an integer $t(v) \in\{1, \ldots, n\}$.

The integer $m(v)$ counts the number of A-type or C-type interactions which take place at v. The set $J(v)$ consists of all j indices appearing in interactions at v. On input vertices and vertices corresponding to internal edges the pair $\left(a_{j}(v), \gamma_{j}(v)\right)$ are the indices which define the A-type interaction at v, and on internal edges the integer $t(v)$ determines the index the B-type interaction.

Example 5.4.2. In the previous example, the unique nonvanishing term was

$$
-\pi \circ m_{2}([\psi,-] \otimes \theta) \circ\left(\sigma \otimes\left(\partial_{x} \circ m_{2}([\psi,-] \otimes \theta) \circ(\sigma \otimes(x \theta[\psi,-] \circ \sigma))\right)\right)
$$

This corresponds to the configuration with $n=1$,

$$
\begin{gathered}
m\left(i_{1}\right)=m\left(i_{2}\right)=m\left(i_{3}\right)=1 \\
J\left(i_{3}\right)=J\left(v_{1}\right)=J\left(v_{2}\right)=\{1\} \\
t(e)=1
\end{gathered}
$$

In other words, the configuration with one A-type interaction at the third vertex, one C-type interaction on each internal vertex, and the mandatory B-type interaction on the one internal edge.

Definition 5.4.3. Let e be an internal edge of T, and define

$$
\begin{equation*}
N_{C}(e)=\sum_{v<e} \sum_{j \in J(v)}\left|\gamma_{j}(v)\right|-\sum_{z<e} m(z), \tag{5.25}
\end{equation*}
$$

where v ranges over all inputs and internal edges of T which are strictly above e in T, and z ranges over all internal vertices of T which are strictly above e.

Remark 5.4.3. The integer $N_{C}(e)$ counts the number of x_{i} and θ_{j} terms which flow into e from above.

Definition 5.4.4. Given a tree T and a configuration $T \in \operatorname{Con}(T)$, write

$$
\begin{equation*}
Z(T, C)=\prod_{e} \frac{\zeta_{N_{C}(e)}\left(\left|\gamma_{j_{1}}\right|, \ldots,\left|\gamma_{j_{m}}\right|\right)}{N_{C}(e)} \in \mathbb{Q} \tag{5.26}
\end{equation*}
$$

where e ranges over all internal edges in T with $N_{C}(e) \neq 0$, and $\left\{j_{1}, \ldots, j_{m}\right\}=J(e)$. For an edge with $m(e)=0$, so that $J(e)=\emptyset$, we set $\zeta_{N_{C}(e)}=1$. If T has no internal edges we set $Z(T, C)=1$.

Example 5.4.3. In the example we have used so far our tree has only one internal edge, and all A-type interactions are on the leaves. This means that $Z(T, C)=1$.

If $m(e)=1$ then $J(e)=\{j\}$ and we write $N_{C}(e)=N, \gamma_{j}(e)=\gamma$. Then

$$
\zeta_{N}(|\gamma|)=\frac{|\gamma|}{N+|\gamma|} .
$$

The reason for introducing $N_{C}(e)$ and $Z(T, C)$ is that they arise as the coefficients of $\mathcal{O}(T, C)$ in the A_{∞}-higher products. From a combinatorial point of view, these two numbers are the most important pieces of information encoded in the higher products.

We are now in a position to write down a formula for the higher A_{∞}-products in terms of configurations:

Theorem 5.4.1. (Murfet, [477]) The A_{∞}-products $b_{d}: \mathcal{A}_{W}[1]{ }^{\otimes d} \rightarrow \mathcal{A}_{W}[1]$ can be written as

$$
\begin{equation*}
b_{d}\left(\Lambda_{1} \otimes \cdots \otimes \Lambda_{d}\right)=\sum_{T \in \mathcal{T}_{d}} \sum_{C \in \operatorname{Con}(T)}(-1)^{Q\left(T, \Lambda_{1} \otimes \cdots \otimes \Lambda_{n}\right)} Z(T, C) \cdot \mathcal{O}(T, C)\left(\Lambda_{1} \otimes \cdots \otimes \Lambda_{d}\right), \tag{5.27}
\end{equation*}
$$

for any $\Lambda_{i} \in \mathcal{A}_{W}[1]^{\otimes d}$, where, as in Proposition 5.3.1, the sign is given by

$$
\begin{equation*}
Q\left(T, \Lambda_{1} \otimes \cdots \otimes \Lambda_{d}\right)=1+\sum_{1 \leq i \leq j \leq d} \tilde{\Lambda}_{i} \tilde{\Lambda}_{j}+\sum_{i=1}^{d} \tilde{\Lambda}_{i} C_{i} . \tag{5.28}
\end{equation*}
$$

In conclusion, $\left(\mathcal{A}_{W}, b\right)$ is the A_{∞}-minimal model of $\operatorname{End}_{R}\left(\mathbb{K}_{W}^{s t a b}\right)$, and in particular there is an equivalence of categories

$$
\begin{equation*}
\operatorname{hmf}(\mathbb{k}[[\mathbf{x}]], W) \cong \operatorname{Perf}_{\infty}\left(\mathcal{A}_{W}, b\right), \tag{5.29}
\end{equation*}
$$

by Theorem 2.4.2.

Lemma 5.4.2. Given any potential W, the associated A_{∞}-algebra must have a product

$$
\begin{equation*}
b_{2}\left(\Lambda_{1} \otimes \Lambda_{2}\right)=(-1)^{\tilde{\Lambda}_{1}+1} \Lambda_{1} \cdot \Lambda_{2} \tag{5.30}
\end{equation*}
$$

Proof. This is precisely the product obtained from the empty configuration on the tree with two leaves.

Example 5.4.4. We will now compute the A_{∞}-minimal model for the A_{d} hypersurface singularity $W=x^{d}=x \cdot x^{d-1}$. Since $n=1$ the underlying graded vector space is $\mathbb{k}[\psi] / \psi^{2} \cong \mathbb{k} \oplus \mathbb{k} \psi$. The Feynman interactions in this case are

A

B

C

Suppose $T \in \mathcal{T}_{n}$ and C is a nonvanishing configuration on T. Observe first that we cannot have any A-type interactions on the internal edges, because the θ term produced would annihilate with the θ produced by the B-type interaction. This forces all A-type interactions to the leaves of T. Next consider an arbitrary internal vertex v in T. Then the sub-tree T_{v} entering v from the left must consist of a single external edge. Otherwise, the edge connecting T_{v} to v must produce a θ term which annihilates at the subsequent edge.

The same argument then tells us that there can only be one A-type interaction, and that it must be the rightmost leaf of T. Thus, T must be a comb-shaped tree of the form:

This tree will have $n-2$ internal edges. Since all x variables must be annihilated before reaching the root, we must have $n=d$. This is the only nonvanishing configuration. To feed the C-type interactions at each vertex and the A-type interaction on the
rightmost leaf, the input pattern must be $\psi^{*} \otimes \cdots \otimes \psi^{*}$ with d factors. The resulting higher products are therefore

$$
\begin{aligned}
b_{2}\left(\Lambda_{1} \otimes \Lambda_{2}\right) & =(-1)^{\tilde{\Lambda}_{1}+1} \Lambda_{1} \cdot \Lambda_{2} \\
b_{d}\left(\psi^{*} \otimes \cdots \otimes \psi^{*}\right) & =1,
\end{aligned}
$$

for any $\Lambda_{1}, \Lambda_{2} \in \mathcal{A}_{W}[1]$.

5.5 Bounds on the higher products

In this section we will address the computability of the construction in section 5.4.
Lemma 5.5.1. Let T be a binary rooted tree with d leaves equipped with a nonvanishing configuration coming from a linear potential $W=\sum_{i=1}^{n} x_{i}^{d_{i}}$. Then

$$
\begin{equation*}
d \leq \frac{2}{1-n+\sum_{i=1}^{n} \frac{2}{d_{i}}} \tag{5.31}
\end{equation*}
$$

Proof. The potential W produces $n A$-type interactions:

Observe that each A_{i}-type interaction requires $d_{i} \psi_{i}^{*}$ inputs: one for the A_{i}-interaction itself, one for the C-type interactions removing the θ_{i} produced by the A_{i}-interaction, and one for each of the θ_{i} 's produced by the B-types necessary to eliminate the x_{i} variables. Let ε_{i} be the number of A_{i} interactions. Then, since $\psi_{i}^{*} \psi_{i}^{*}=0, d_{i} \varepsilon_{i} \leq d$. Moreover, since each A_{i} requires $d_{i}-2$ internal edges, we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left(d_{i}-2\right) \varepsilon_{i}=d-2 \tag{5.32}
\end{equation*}
$$

It follows that

$$
d-2=\sum_{i=1}^{n}\left(d_{i}-2\right) \varepsilon_{i} \leq \sum_{i=1}^{n} \frac{d_{i}-2}{d_{i}} d
$$

from which the bound follows.
Observe that if $n>2$ or $\operatorname{deg}(W)>3$ then the bound no longer provides any information. For instance, if $W=x^{4}+y^{4}$ then Equation 5.27 becomes $0 \leq 2$, which is tautological. However, this is the only bound on the number of leaves available to us from the data of a configuration. This leads us to suspect that if either the degree of W is greater than 3 , or there are more than three variables, then there will be an infinite number of higher products.

5.6 The A_{∞}-algebra associated to $W=x^{3}-y^{3}$

Let $W=x^{3}-y^{3}=x \cdot x^{2}-y \cdot y^{2}$. In this section we will compute the A_{∞}-minimal model associated to W, which is original in this thesis.

By Lemma 5.5.1, only trees with $q \leq 6$ leaves can contribute configurations to the higher products. Moreover, if $q=5$ then there will be precisely three internal edges, requiring three A-type interactions to produce x and y variables. This requires either $\operatorname{six} \psi_{1}^{*}$ inputs or six ψ_{2}^{*} inputs, which is impossible. Thus we eliminate $q \in\{2,3,4,6\}$. The Feynman interactions for W are :

A_{x}

A_{y}

B_{x}

B_{y}

C_{x}

C_{y}

The $q=2$ case will be the standard suspended multiplication b_{2}, so all that remains is the $q \in\{3,4,6\}$ cases.
$q=3$: There is only one tree with trivial leftmost branch, and, since there is only one internal edge, any non-zero configuration must have exactly one A-type interaction. Since this lies on the rightmost input, the only choice is whether the A-type interaction is A_{x} or A_{y}. The configuration is completely determined by this choice of A-type interaction, so we have

$$
m_{3}(x, y, z)=\left[\psi_{1}^{*}+\psi_{2}^{*}, x\right] \otimes\left[\psi_{1}^{*}+\psi_{2}^{*}, y\right] \otimes\left[\psi_{1}^{*}+\psi_{2}^{*}, z\right] .
$$

$q=4$: There are five binary rooted trees with four leaves, but only two have a trivial leftmost branch:

Numerical simulations reveal that T_{1} has 16 nonvanishing configurations, and T_{2} has 4 nonvanishing configurations. These trees have two internal edges, so there muse be two A-type interactions. Moreover, we must have one A-type interaction of each type, since otherwise we would require six ψ_{i}^{*} inputs to feed the A and C type interactions.
We first consider T_{2}. We cannot place A-type interactions on either of the edges, as otherwise there would be no chance to remove the x or y without causing θ_{i} terms to annihilate. Moreover, we must have at least one A-type interaction on 3 , otherwise the θ_{i} would annihilate at the next edge. For the same reason we also cannot have A-type interactions on both 2 and 3 .
Suppose we have two A-type interactions at 3 . Then there must be two C-type interactions on the next vertex, otherwise we would have two θ_{i} terms entering the last edge, leading to annihilation. Next, we can choose to have either a B_{x} or B_{y} interaction on the first edge and then have the complementary B-type interaction on the second edge. Finally, we must have two C-type interactions at the bottom vertex. This gives

$$
m_{4}\left(\psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*} \otimes x\right)=2 x
$$

The next two configurations must have A-type interactions at 3 and 4 . Since the Feynman rules are unchanged by swapping x and y, it makes no difference
whether we place A_{x} or A_{y} at 3 . These configurations have no more choices, and therefore contribute

$$
\begin{aligned}
& m_{4}\left(\psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \otimes \psi_{2}^{*}\right)=1, \\
& m_{4}\left(\psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{2}^{*} \otimes \psi_{1}^{*}\right)=1 .
\end{aligned}
$$

The configurations on T_{1} are more numerous, so we will leave it to the reader to check that the configurations contribute

$$
\begin{aligned}
m_{4}\left(\psi_{2}^{*} \otimes \psi_{1}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*}\right) & =1 \\
m_{4}\left(\psi_{1}^{*} \otimes \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*}\right) & =1 \\
m_{4}\left(\sigma\left(\psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*}\right)\right) & =2,
\end{aligned}
$$

where $\sigma \in \mathcal{S}_{4} \backslash\{(23),(14)\}$ acts by permuting the tensors:

$$
\sigma\left(v_{1} \otimes v_{2} \otimes v_{3} \otimes v_{4}\right)=v_{\sigma^{-1}(1)} \otimes v_{\sigma^{-1}(2)} \otimes v_{\sigma^{-1}(3)} \otimes v_{\sigma^{-1}(4)}
$$

$q=6:$ Numerical computations show that there is only one tree to check:

There are four nonvanishing configurations. As a starting point, observe that we must have two A-type interactions on the $(2,3,4)$ sub-tree and two on the $(5,6)$ sub-tree. Next, note that we cannot have any A-type interactions on 2 or 5 , as both would result in a $\theta_{1} \theta_{2}$ term appearing at v and annihilating at the subsequent edge. Likewise we cannot have any A-type interactions on internal edges. We must therefore have two A-type interactions on 6 , and we are free to choose which is used by the B-type interaction first.

On the $(3,4)$ sub-tree we can either have one A-type on each leaf or have both on 4. Both cases have two choices, namely which variable is used in the first B-type
interaction. However, once we have made this choice, we are forced to fix the remainder of the configuration, as it is only possible for $(2,3,4)$ to output one ψ_{i}^{*} term and this must match up with the θ_{i} term which enters v from the right. This completely describes all possible nonvanishing configurations, giving the expected count of four. We have pictured in 5.1 one of the possible configuration propagation patterns on T.
Now, all of the configurations listed above requite a full input, so the higher product is determined to be

$$
\begin{equation*}
m_{6}\left(\psi_{1}^{*} \psi_{2}^{*} \otimes \psi_{1}^{*} \psi_{2}^{*}\right)=-4 \tag{5.33}
\end{equation*}
$$

Figure 5.1: A propagation pattern on T.

Chapter 6

A_{∞}-minimal models of modules and bimodules

In this chapter we will extend the methods of Chapter 5 to provide original examples of a family of A_{∞}-modules and A_{∞}-bimodules.

6.1 A_{∞}-minimal models of modules

In this section we will extend the construction of the minimal model of the DG-algebra $\operatorname{End}_{\mathfrak{k}}\left(\mathbb{K}_{W}^{s t a b}\right)$ to an explicit description of the functor

$$
\begin{equation*}
\Psi: \operatorname{hmf}(W) \rightarrow \operatorname{Perf}_{\infty}\left(\mathcal{A}_{W}\right) \tag{6.1}
\end{equation*}
$$

of Theorem 2.4.2. Recall that this sends a matrix factorisation X of W to the minimal A_{∞}-module, over \mathcal{A}_{W},

$$
H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X\right) .
$$

As in the case of the construction of the A_{∞}-algebra minimal model, will will not actually compute the A_{∞}-structure on cohomology, but rather on a hototopically equivalent model. Fix a matrix factorisation $\left(X, d_{X}\right)$ of W and assume that $d_{X}(X) \subseteq$ $\left(x_{1}, \ldots, x_{n}\right) X$.

Let T be the DG-category with one object • which has endomorphism DG-algebra $\left(\bigwedge F_{\theta}, 0\right)$, where $F_{\theta}=\bigoplus_{i=1}^{n} \mathbb{k} \theta_{i}$. Consider the DG-subcategory of $\operatorname{mf}(W)$ given by

We form the tensor product

This is still a DG-category with the action

After applying the construction of Section 5.3 we obtain strong deformations retracts

$$
\begin{gathered}
h_{\infty} \circlearrowright\left(\bigwedge F_{\theta} \otimes \operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right), d_{\mathrm{End}}\right) \rightleftarrows\left(\operatorname{End}_{\mathbb{k}}\left(\bigwedge F_{\psi}\right), 0\right) \\
\widehat{h}_{\infty} \\
\rightleftarrows\left(\bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{K}_{W}^{s t a b}, X\right), d_{\mathrm{Hom}}\right) \rightleftarrows\left(\underline{\operatorname{Hom}}\left(\mathbb{k}_{W}^{s t a b}, X\right), d_{\underline{\operatorname{Hom}}}\right)
\end{gathered}
$$

where $\underline{\operatorname{Hom}}(A, B):=\operatorname{Hom}(A, B) \otimes_{\mathbb{k}[\mathbf{x}]} \mathbb{k}$, and the tensor product is taken with all x_{i} acting as 0 on \mathbb{k}. All of the maps here are the same as Theorem 5.3.1, with the exception of the homotopy \widehat{h}_{∞} and the morphism $\widehat{\sigma}_{\infty}$ which are given by

$$
\begin{align*}
& \widehat{h}_{\infty}=\sum_{m=0}^{\infty}(-1)^{m}\left(H d_{\text {Нот }}\right)^{m} H, \tag{6.2}\\
& \widehat{\sigma}_{\infty}=\sum_{m=0}^{\infty}(-1)^{m}\left(H d_{\text {Ном }}\right)^{m} \sigma, \tag{6.3}
\end{align*}
$$

where $d_{\text {Hom }}$ is the differential on $\operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, X\right)$ given by

$$
\begin{equation*}
d_{\text {Hom }}(\alpha)=d_{X} \circ \alpha-(-1)^{|\alpha|} \sum_{i=1}^{n} W_{i} \alpha \circ \psi_{i}-(-1)^{|\alpha|} \sum_{i=1}^{n} x_{i} \alpha \circ \psi_{i}^{*} . \tag{6.4}
\end{equation*}
$$

Applying the Minimal Model Theorem of Section 3.5 yields a minimal A_{∞}-category quasi-isomorphic to $T \otimes_{\mathfrak{k}} \mathcal{C}$. We denote this A_{∞}-category by

where $\left\{\nu_{n}\right\}$ denote the induced A_{∞}-module higher products

$$
\begin{equation*}
\nu_{n}: \underline{\operatorname{End}}\left(\mathbb{K}_{W}^{s t a b}\right)^{\otimes(n-1)} \otimes \underline{\operatorname{Hom}}\left(\mathbb{k}_{W}^{s t a b}, X\right) \rightarrow \underline{\operatorname{Hom}}\left(\mathbb{k}_{W}^{s t a b}, X\right), \tag{6.5}
\end{equation*}
$$

and the $\left\{b_{n}\right\}$ are the A_{∞}-algebra higher products of Theorem5.4.1. The higher products $\left\{\nu_{n}\right\}$ are computed using trees in the usual way. The decoration D_{T} given by the same assignment of modules and maps as in Lemma 5.3.1, with the exception of the rightmost branch which is decorated bythe following maps:

- $\widehat{\sigma}_{\infty}$ for the input;
- \widehat{h}_{∞} for each internal edge,
- $r_{2} \exp (-\Xi)$ for each internal vertex, where $\Xi=\sum_{i=1}^{n}\left[\psi_{i},-\right] \otimes \theta_{i}^{*}$, and r_{2} is the action

$$
\left(\bigwedge F_{\theta} \otimes \operatorname{End}\left(\mathbb{k}_{W}^{s t a b}\right)\right) \otimes\left(\bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, X\right)\right) \rightarrow \bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, X\right)
$$

given above.

Figure 6.1: An example of a decorated tree

The configurations that we use to compute the higher products will also be the same as those in Section 5.4, with the exception of the rightmost channel. In addition to the usual B, and C type interactions will have the following exotic interactions arising from $d_{\text {Hom }}$:

1. $\theta_{i} \partial_{x_{i}}\left(d_{\text {Hom }}\right) \circ(-)$;
2. $\theta_{i} \partial_{x_{i}}\left(W_{j}\right) \circ(-) \circ \psi_{j}$;
3. $\theta_{i} \circ(-) \circ \psi_{i}^{*}$.

We can write the underlying graded module of $\operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, X\right)$ as

$$
\begin{aligned}
\operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, X\right) & \cong\left(\bigwedge F_{\psi}\right)^{*} \otimes_{\mathbb{k}} X \\
& \cong \bigwedge F_{\psi^{*}} \otimes_{\mathfrak{k}} X
\end{aligned}
$$

Using this presentation, a contraction $\psi_{i}^{*} \in \operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right)$ acts as

$$
\begin{align*}
& \psi_{i}^{*} \cdot\left(\psi_{i_{1}}^{*} \wedge \cdots \wedge \psi_{i_{p}}^{*} \otimes x\right)=(-1)^{p} \psi_{i}^{*} \wedge \psi_{i_{1}}^{*} \wedge \cdots \wedge \psi_{i_{p}}^{*} \otimes x \tag{6.6}\\
& \left.\psi_{j} \cdot\left(\psi_{i_{1}}^{*} \wedge \cdots \wedge \psi_{i_{p}}^{*} \otimes x\right)=(-1)^{p} \psi_{j}\right\lrcorner\left(\psi_{i_{1}}^{*} \wedge \cdots \wedge \psi_{i_{p}}^{*}\right) \otimes x . \tag{6.7}
\end{align*}
$$

Therefore pre-composing with ψ_{i}^{*} acts as a wedge product, and pre-composing with ψ_{i} acts as a contraction. We can therefore present the exotic interactions diagrammatically as follows:

- Exotic A-type interactions of the first kind which depends on the structure of d_{X} :

- The standard A-type interactions

$$
\left.\theta_{i} \partial_{x_{i}}\left(W_{j}\right) \psi_{j}\right\lrcorner(-)
$$

- Exotic A-type interaction of the second kind which produces θ and ψ_{i}^{*} from nothing

$$
\theta_{i} \psi_{i}^{*} \wedge(-)
$$

Definition 6.1.1. Given a tree $T \in \mathcal{T}_{n}$, an exotic configuration on T is consists of a configuration on T (as in Definition 5.4.1) together with the assignment of exotic interactions to the leaf and edges of the rightmost branch.

It is clear from the deformation retracts that

$$
\begin{equation*}
\bigwedge F_{\theta} \otimes_{\mathbb{k}} H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X\right) \cong \underline{\operatorname{Hom}}\left(\mathbb{k}_{W}^{s t a b}, X\right) \tag{6.8}
\end{equation*}
$$

so all that remains is to find the summand of $\operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, X\right)$ which corresponds to $\mathbb{k} \cdot 1 \otimes H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X\right) \subset \bigwedge F_{\theta} \otimes_{\mathfrak{k}} H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X\right)$. We use the Clifford action of $\operatorname{End}\left(\bigwedge F_{\theta}\right)$ on $\underline{\operatorname{Hom}}\left(\mathbb{K}_{W}^{s t a b}, X\right)$ with

$$
\begin{equation*}
\gamma_{i}=\mathrm{At}_{i}=-\partial_{x_{i}}\left(d_{\text {Hom }}\right), \quad \gamma_{i}^{\dagger}(\alpha)=-(-1)^{|\alpha|} \alpha \circ \psi_{i} . \tag{6.9}
\end{equation*}
$$

If we assume that $W \in \mathfrak{m}^{3}$ then this simplifies to

$$
\begin{equation*}
\gamma_{i}(\alpha)=-\partial_{x_{i}}\left(d_{X}\right)+(-1)^{|\alpha|} \alpha \circ \psi_{i}^{*} \tag{6.10}
\end{equation*}
$$

We can therefore identify the intersection of the $\operatorname{ker}\left(\gamma_{i}^{\dagger}\right)$ as i varies with $H^{*} \operatorname{Hom}_{R}\left(\mathbb{K}_{W}^{s t a b}, X\right)$,
giving an isomorphism

$$
\begin{align*}
H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X\right)[n] & \cong \bigcap_{i=1}^{n} \operatorname{ker}\left(\gamma_{i}^{\dagger}\right) \\
& \left.=\bigcap_{i=1}^{n} \operatorname{ker}\left(\psi_{i}\right\lrcorner(-)\right) \tag{6.11}\\
& =\mathbb{k} \cdot 1 \otimes_{\mathbb{k}} \underline{X} \\
& \cong \underline{X} .
\end{align*}
$$

Combining this with the split idempotent of Section 5.3 we obtain higher products

$$
\begin{equation*}
\nu_{n}: \mathcal{A}_{W}[1]^{\otimes(n-1)} \otimes \underline{X}[1] \rightarrow \underline{X}[1] . \tag{6.12}
\end{equation*}
$$

The outcome of this construction is the following theorem:
Theorem 6.1.1. Let \mathcal{A}_{W} denote the A_{∞}-minimal model of $\operatorname{End}\left(\mathbb{k}_{W}^{s t a b}\right)$. The A_{∞}-module corresponding a matrix factorisation $X[n]$ has underlying vector space

$$
\underline{X} \cong H^{*} \operatorname{Hom}_{R}\left(\mathbb{k}_{W}^{s t a b}, X[n]\right),
$$

and higher products

$$
\begin{equation*}
\nu_{n}: \mathcal{A}_{W}[1]^{\otimes(n-1)} \otimes \underline{X}[1] \rightarrow \underline{X}[1], \tag{6.13}
\end{equation*}
$$

given by summing over exotic configurations on trees $T \in \mathcal{T}_{n}$.

Example 6.1.1. Let $W=x^{d}$ and let X be the Koszul matrix factorisation

$$
\left(\bigwedge \mathbb{k} \xi \otimes_{\mathbb{k}} R, d_{X}=x^{i} \xi^{*}+x^{d-i} \xi\right)
$$

Then $\partial_{x}\left(d_{X}\right)=i x^{i-1} \xi^{*}+(d-i) x^{d-i-1} \xi$, and the exotic A-type interaction of the first becomes two interactions,

The exotic interaction of the second kind does not contribute, because it does not produce an x variable for the subsequent B-type interaction. If an x variable were to
enter the rightmost branch from an incoming sub-tree the it would carry with it a θ term, thus anniilating at the subsequent internal edge.

The same arguments of Example 5.4.4 show that nonvanishing configurations can only appear on trees with the shape

We can only have one exotic A-type interaction on this tree, and it must be at the rightmost vertex. It follows that we have two configurations to consider, one for each of the exotic A-type interactions, and we can read off the higher products as

$$
\begin{aligned}
m_{2}(x \otimes y) & =(-1)^{x+1} x \cdot y \\
m_{i}\left(\psi^{*} \otimes \cdots \otimes \psi^{*} \otimes x\right) & =\xi\lrcorner x \\
m_{d-i}\left(\psi^{*} \otimes \cdots \otimes \psi^{*} \otimes x\right) & =\xi \wedge x
\end{aligned}
$$

6.2 $\quad A_{\infty}$-minimal models of bimodules

As a result of Theorem 2.4 .2 and Corollary 4.3.1, we can completely understand the homotopy category of matrix factorisations $\operatorname{hmf}(W)$ by computing A_{∞}-modules over the minimal model of $\operatorname{End}\left(\mathbb{k}_{W}^{s t a b}\right)$. This result has one major drawback: the computational difficulty rises steeply as we make W more complicated. As a stark example, we have only been successful in computing by hand the minimal model of one potential with two variables, namely $W=x^{3}-y^{3}$ (see Section 5.6). Surprisingly it is often possible to explicitly compute A_{∞}-module and A_{∞}-bimodule structures arising from matrix factorisations, even when we know little about the higher products of the A_{∞}-algebras involved. In this section will will show how one can use the construction of the previous section to produce an A_{∞}-bimodule structure on a matrix factorisation of $V-W$.

Lemma 6.2.1. Let $V, W \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be potentials. Then,

1. $\left(\mathbb{k}_{W}^{s t a b}\right)^{\vee} \cong \mathbb{k}_{-W}^{\text {stab }}[n]$ as matrix factorisations of $-W$.
2. $\mathbb{K}_{W}^{s t a b} \otimes \mathbb{k}_{V}^{s t a b} \cong \mathbb{k}_{W+V}^{s t a b}$ as matrix factorisations of $V+W$.

Proof. The first statement is a direct consequence of Lemma 4.2.1, and the second follows by direct computation.

Let X be a matrix factorisation of $W-V$. Using the above lemma we have

$$
\begin{align*}
\operatorname{Hom}\left(\mathbb{k}_{W-V}^{s t a b}, X\right) & \cong \operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b} \otimes \mathbb{k}_{-V}^{s t a b}, X\right) \\
& \cong \operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b} \otimes\left(\mathbb{k}_{V}^{s t a b}[n]\right)^{\vee}, X\right) \\
& \cong \operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, \operatorname{Hom}\left(\left(\mathbb{k}_{V}^{s t a b}[n]\right)^{\vee}, X\right)\right) \tag{6.14}\\
& \cong \operatorname{Hom}\left(\mathbb{k}_{W}^{s t a b}, \mathbb{k}_{V}^{s t a b}[n] \otimes X\right) \\
& \cong\left(\mathbb{k}_{W}^{s t a b}\right)^{\vee} \otimes \mathbb{k}_{V}^{s t a b}[n] \otimes X
\end{align*}
$$

As a consequence, we have a $\operatorname{End}\left(\mathbb{k}_{V}^{s t a b}\right)$ - $\operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right)$-DG-bimodule structure given by

$$
\begin{align*}
& \left(\left(\psi_{i_{1}} \ldots \psi_{i_{p}}\right)^{*} \otimes \phi_{i_{1}} \ldots \phi_{i_{q}} \otimes x\right) \cdot \psi_{i}^{*}=(-1)^{q+|x|}\left(\psi_{i_{1}} \ldots \psi_{i_{p}} \psi_{i}\right)^{*} \otimes \phi_{i_{1}} \ldots \phi_{i_{q}} \otimes x \\
& \left.\left(\left(\psi_{i_{1}} \ldots \psi_{i_{p}}\right)^{*} \otimes \phi_{i_{1}} \ldots \phi_{i_{q}} \otimes x\right) \cdot \psi_{j}=(-1)^{q+|x|}\left(\psi_{j}\right\lrcorner\left(\psi_{i_{1}} \ldots \psi_{i_{p}}\right)\right)^{*} \otimes \phi_{i_{1}} \ldots \phi_{i_{q}} \otimes x \\
& \phi_{j} \cdot\left(\left(\psi_{i_{1}} \ldots \psi_{i_{p}}\right)^{*} \otimes \phi_{i_{1}} \ldots \phi_{i_{q}} \otimes x\right)=(-1)^{p}\left(\psi_{i_{1}} \ldots \psi_{i_{p}}\right)^{*} \otimes \phi_{i} \phi_{i_{1}} \ldots \phi_{i_{q}} \otimes x \tag{6.16}\\
& \left.\phi_{i}^{*} \cdot\left(\left(\psi_{i_{1}} \ldots \psi_{i_{p}}\right)^{*} \otimes \phi_{i_{1}} \ldots \phi_{i_{q}} \otimes x\right)=(-1)^{p}\left(\psi_{i_{1}} \ldots \psi_{i_{p}}\right)^{*} \otimes \phi_{i}^{*}\right\lrcorner\left(\phi_{i_{1}} \ldots \phi_{i_{q}}\right) \otimes x \tag{6.17}
\end{align*}
$$

for any $\psi_{i}^{*}, \psi_{j} \in \operatorname{End}\left(\mathbb{k}_{W}^{s t a b}\right)$ and any $\phi_{i}^{*}, \phi_{j} \in \operatorname{End}\left(\mathbb{k}_{V}^{s t a b}\right)$.
We let T be the category with one object and endomorphism DG-algebra $\bigwedge F_{\theta}$ and let \mathcal{D} be the category

We take the tensor product with T to obtain

After applying the homological perturbation of Section 5.3 we obtain strong deformations retracts

$$
\begin{aligned}
& h_{\infty}^{W} \circlearrowright\left(\bigwedge F_{\theta} \otimes \operatorname{End}\left(\mathbb{K}_{W}^{s t a b}\right), d_{\mathrm{End}}^{W}\right) \rightleftarrows\left(\operatorname{End}_{\mathbb{k}}\left(\bigwedge F_{\psi}\right), 0\right), \\
& h_{\infty}^{V} \circlearrowright\left(\bigwedge F_{\theta} \otimes \operatorname{End}\left(\mathbb{K}_{V}^{s t a b}\right), d_{\operatorname{End}}^{V}\right) \rightleftarrows\left(\operatorname{End}_{\mathbb{k}}\left(\bigwedge F_{\psi}\right), 0\right), \\
& \widehat{h}_{\infty} \circlearrowright\left(\bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{k}_{W-V}^{s t a b}, X\right), d_{\text {Hom }}\right) \rightleftarrows\left(\underline{\operatorname{Hom}}\left(\mathbb{k}_{W}^{s t a b}, X\right), d_{\underline{\text { Hom }}}\right) .
\end{aligned}
$$

Combining the Minimal Model Theorem and the split idempotent of the previous section together with calculations 6.11 and 6.14 gives the A_{∞}-category

which encodes the A_{∞}-bimodule higher products

$$
\nu_{r, s}: \mathcal{A}_{V}[1]^{\otimes r} \otimes \underline{X}[1] \otimes \mathcal{A}_{W}[1]^{\otimes s} \rightarrow \underline{X}[1]
$$

giving the $\mathcal{A}_{V}-\mathcal{A}_{W}-A_{\infty}$-bimodule structure on X.
Let $T \in \mathcal{T}_{n}$ and choose a non-root leaf v of T whose path to the root we call the trunk of T. The decoration D_{T} that we use to compute the A_{∞}-products is given as follows:

- If T^{\prime} is a sub-tree off the left of the trunk we place h_{∞}^{V} on internal edges, $m_{2} \exp (-\Xi)$ on each internal vertex, and σ_{∞}^{V} on each leaf. At the vertex where T^{\prime} meets the trunk we place the operator $r_{2}^{V} \exp (-\Xi)$, where r_{2}^{V} is the operator

$$
\begin{equation*}
\left(\bigwedge F_{\theta} \otimes \operatorname{End}\left(\mathbb{k}_{V}^{s t a b}\right)\right) \otimes\left(\bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{k}_{W-V}^{s t a b}, X\right)\right) \rightarrow \bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{k}_{W-V}^{s t a b}, X\right) \tag{6.19}
\end{equation*}
$$

given in equations (6.14), (6.15);

- If T^{\prime} is a sub-tree off the left of the trunk we place h_{∞}^{W} on internal edges, $m_{2} \exp (-\Xi)$ on each internal vertex, and σ_{∞}^{W} on each leaf. At the vertex where T^{\prime} meets the trunk we place the operator $r_{2}^{W} \exp \left(-\Xi^{s}\right)$, where

$$
\begin{equation*}
\Xi^{s}=\sum_{i=1}^{n} \theta_{i}^{*} \otimes[\psi,-] \tag{6.20}
\end{equation*}
$$

Figure 6.2: A decoration on a tree with the trunk in bold.
and r_{2}^{W} is the operator

$$
\begin{equation*}
\left(\bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{K}_{W-V}^{s t a b}, X\right)\right) \otimes\left(\bigwedge F_{\theta} \otimes \operatorname{End}\left(\mathbb{k}_{V}^{s t a b}\right)\right) \rightarrow \bigwedge F_{\theta} \otimes \operatorname{Hom}\left(\mathbb{k}_{W-V}^{s t a b}, X\right) \tag{6.21}
\end{equation*}
$$

given in equations (6.16), (6.17);

- We place \widehat{h}_{∞} on the internal edges of the trunk, and $\widehat{\sigma}_{\infty}$ on v.

As a result, the configurations determining the higher products have standard A, B, and C type interactions of the trunk, exotic interactions on the trunk, and reversed C-type interactions on vertices of the trunk meeting branches which come from the right.

$6.3 \mathcal{A}_{x^{d}}-\mathcal{A}_{y^{e}}$-bimodules

In this section we will give an original example of a family of A_{∞}-bimodule minimal models associated to permutation defects. Let $R=\mathbb{k}[x, y]$. Recall from Example 4.1.2 that we can factor

$$
\begin{equation*}
W=x^{d}-y^{d}=\prod_{i=0}^{d-1}\left(x-\eta^{i} y\right), \quad \eta=e^{2 \pi i /(d)}, d \geq 3 \tag{6.22}
\end{equation*}
$$

Given a non-empty subset $I \subseteq\{0, \ldots, d-1\}$, there is a matrix factorisation

$$
\begin{equation*}
P_{I}=\left(\bigwedge \mathbb{k} \xi \otimes_{\mathbb{k}} R, d_{P_{I}}=\prod_{i \in I}\left(x-\eta^{i} y\right) \xi^{*}+\prod_{i \in I^{c}}\left(x-\eta^{i} y\right) \xi\right) \tag{6.23}
\end{equation*}
$$

called a permutation defect. Using the construction of Section 6.2 we will compute the $A_{\infty}-\mathcal{A}_{x^{d}}-\mathcal{A}_{y^{s}}$-bimodule structure on P_{I}.

To compute the higher products we need to understand the exotic Feynman interactions which arise from the permutation defects. These arise from the partial derivatives

$$
\begin{align*}
& \partial_{x}\left(d_{P_{I}}\right)=\sum_{a \in I} \prod_{i \in I \backslash\{a\}}\left(x-\eta^{i} y\right) \xi^{*}+\sum_{a \in I^{c}} \prod_{i \in I^{c} \backslash\{a\}}\left(x-\eta^{i} y\right) \xi, \tag{6.24}\\
& \partial_{y}\left(d_{P_{I}}\right)=-\sum_{a \in I} \eta^{a} \prod_{i \in I \backslash\{a\}}\left(x-\eta^{i} y\right) \xi^{*}-\sum_{a \in I^{c}} \eta^{a} \prod_{i \in I^{c} \backslash\{a\}}\left(x-\eta^{i} y\right) \xi . \tag{6.25}
\end{align*}
$$

Using a generalised binomial formula, we can expand the products as

$$
\prod_{i \in I \backslash\{a\}}\left(x-\eta^{i} y\right)=\sum_{k=0}^{|I|-1}(-1)^{k} c_{a, k} y^{k} x^{|I|-k-1}, \quad c_{a, k}=\sum_{\substack{J \subseteq I \backslash\{a\} \\|J|=k}} \prod_{j \in J} \eta^{j} .
$$

Observe that there can not be any contribution from exotic A-type interactions of the second kind, because they do not produce an x or y variable for the subsequent B-type interaction. If an x or y variable were to come from a branch then it would bring with it a θ_{i} of the same type, causing the configuration to vanish at the next edge. Each monomial in these expansions will contribute one exotic A-type interaction, so the exotic Feynman interactions will be of the following four types (omitting coefficients and signs):

In what follows, suppose T is a tree supporting a nonvanishing configuration C.
Lemma 6.3.1. The configuration C must not allow there to be a $\theta_{1} \theta_{2}$ term on the central trunk.

Proof. Because there are only ψ_{1}^{*} inputs on the left of the trunk and ψ_{2}^{*} inputs on the right, there cannot be more than one C-type interaction on each internal vertex. This means than each vertex of the trunk can only remove one θ_{i} term, so if a $\theta_{1} \theta_{2}$ term were to ever appear on the trunk, the configuration would not be able to remove it before the root, and the configuration would vanish.

Corollary 6.3.1. The branches entering the trunk of T must have precisely one leaf with no A-type interactions.

Proof. If there were a non-trivial sub-tree (or a leaf with an A-type interaction) entering the trunk then the connecting edge would generate a θ_{i} term. There is no way for a configuration to remove this θ_{i} before the next edge, where the B-type interaction would create another. By the lemma this would cause the configuration to vanish, so all inputs to the trunk must be leaves with no interactions.

Corollary 6.3.2. There can only be one A-type interaction in C, and it must be an exotic A-type interaction occurring at the top of the trunk.

All nonvanishing configurations will therefore consist of the following data:

- A choice of exotic A-type interaction, and
- a choice of ordering of the necessary B-type interactions.

It follows that the higher products come in one type for each of the four types of exotic A-type interaction, and are sums over all ways to choose orders of B-type interactions. Explicitly, the four types are
$\left.m_{|I|-k, k}\left(\left(\psi_{1}^{*}\right)^{\otimes(|I|-k)} \otimes x \otimes\left(\psi_{2}^{*}\right)^{\otimes k}\right)=(-1)^{k}\binom{|I|-1}{k}\left(\sum_{a \in I} c_{a, k}\right) \xi^{*}\right\lrcorner x$
$m_{d-|I|-k, k}\left(\left(\psi_{1}^{*}\right)^{\otimes(d-|I|-k)} \otimes x \otimes\left(\psi_{2}^{*}\right)^{\otimes k}\right)=(-1)^{k}\binom{|I|-1}{k}\left(\sum_{a \in I} c_{a, k}\right) \xi \wedge x$
$\left.m_{|I|-1-k, k+1}\left(\left(\psi_{1}^{*}\right)^{\otimes(|I|-1-k)} \otimes x \otimes\left(\psi_{2}^{*}\right)^{\otimes(k+1)}\right)=(-1)^{k+1}\binom{|I|-1}{k}\left(\sum_{a \in I} \eta^{a} c_{a, k}\right) \xi^{*}\right\lrcorner x$
$m_{d-|I|-1-k, k+1}\left(\left(\psi_{1}^{*}\right)^{\otimes(d-|I|-1-k)} \otimes x \otimes\left(\psi_{2}^{*}\right)^{\otimes(k+1)}\right)=(-1)^{k+1}\binom{|I|-1}{k}\left(\sum_{a \in I} \eta^{a} c_{a, k}\right) \xi \wedge x$
Example 6.3.1. We will consider the case when $d=3$ and $I=\{1\}$. The exotic Feynman interactions are

We can immediately read off that the higher products are

$$
\begin{array}{ll}
m_{2,0}\left(\psi_{1}^{*} \otimes \psi_{1}^{*} \otimes a\right)=\xi \wedge a & m_{0,2}\left(b \otimes \psi_{2}^{*} \otimes \psi_{2}^{*}\right)=\xi \wedge b \\
\left.m_{1,0}\left(\psi_{1}^{*} \otimes a\right)=\xi\right\lrcorner a & \left.m_{0,1}\left(b \otimes \psi_{2}^{*}\right)=\xi\right\lrcorner b \\
m_{1,0}(1, a)=a & m_{0,1}(b, 1)=b \\
m_{1,1}\left(\psi_{1}^{*} \otimes a \otimes \psi_{2}^{*}\right)=2 \xi \wedge a . &
\end{array}
$$

From this we can read off that the exotic Feynman interactions are

All possible configurations are determined by placing one exotic Feynman interaction at the top of the trunk and then accounting for all possible choices in the ordering of the B-type interactions. For instance, if the monomial produced by the interaction contains only one variable then there are no choices: the B-type interactions are already determined. The picture is more interesting when we have a mixed monomial like $x y$. Then we can choose to either have the B_{x} or the B_{y} interaction highest in the tree, and this will subsequently determine the configuration.

Using this, we can write down the higher products as

$$
\begin{aligned}
& m_{3,0}\left(\psi_{1}^{*} \otimes \psi_{1}^{*} \otimes \psi_{1}^{*} \otimes a\right)=2 \xi \wedge a \\
& m_{0,3}\left(a \otimes \psi_{2}^{*} \otimes \psi_{2}^{*} \otimes \psi_{2}^{*}\right)=-2 \eta \xi \wedge a \\
& m_{2,1}\left(\psi_{1}^{*} \otimes \psi_{1}^{*} \otimes a \otimes \psi_{2}^{*}\right)=-2\left(\eta+\eta^{3}+\eta^{4}\right) \xi \wedge a \\
& m_{1,2}\left(\psi_{1}^{*} \otimes a \otimes \psi_{2}^{*} \otimes \psi_{2}^{*}\right)=2\left(1+\eta^{3}+\eta^{4}\right) \xi \wedge a \\
& \left.m_{2,0}\left(\psi_{1}^{*} \otimes \psi_{1}^{*} \otimes a\right)=\xi\right\lrcorner a \\
& \left.m_{0,2}\left(a \otimes \psi_{2}^{*} \otimes \psi_{2}^{*}\right)=\eta^{4} \xi\right\lrcorner a \\
& \left.m_{1,1}\left(\psi_{1}^{*} \otimes a \otimes \psi_{1}^{*}\right)=-2\left(\eta^{4}+1\right) \xi\right\lrcorner a \\
& m_{1,0}(1, a)=a \\
& m_{0,1}(a, 1)=a .
\end{aligned}
$$

Bibliography

[1] Maurice Auslander and David A Buchsbaum. Homological dimension in local rings. Transactions of the American Mathematical Society, 85(2):390-405, 1957.
[2] Aleksei Igorevich Bondal and Mikhail Mikhailovich Kapranov. Enhanced triangulated categories. Matematicheskii Sbornik, 181(5):669-683, 1990.
[3] Alexei Bondal and Dmitri Orlov. Reconstruction of a variety from the derived category and groups of autoequivalences. Compositio Mathematica, 125(3):327344, 2001.
[4] Ilka Brunner and Matthias R Gaberdiel. Matrix factorisations and permutation branes. Journal of High Energy Physics, 2005(07):012, 2005.
[5] Ilka Brunner, Manfred Herbst, Wolfgang Lerche, and Bernhard Scheuner. Landauginzburg realization of open string TFT. Journal of High Energy Physics, 2006(11):043, 2006.
[6] Ragnar-Olaf Buchweitz, David Eisenbud, and Jürgen Herzog. Cohen-Macaulay modules on quadrics. Singularities, representation of algebras, and vector bundles, pages 58-116, 1987.
[7] Nils Carqueville, Laura Dowdy, and Andreas Recknagel. Algorithmic deformation of matrix factorisations. Journal of High Energy Physics, 2012(4):14, 2012.
[8] Nils Carqueville and Daniel Murfet. Computing Khovanov-Rozansky homology and defect fusion. Algebraic EG Geometric Topology, 14(1):489-537, 2014.
[9] Marius Crainic. On the perturbation lemma, and deformations. arXiv preprint math/0403266, 2004.
[10] Tobias Dyckerhoff. Compact generators in categories of matrix factorizations. Duke Mathematical Journal, 159(2):223-274, 2011.
[11] Tobias Dyckerhoff and Daniel Murfet. Pushing forward matrix factorizations. Duke Mathematical Journal, 162(7):1249-1311, 2013.
[12] Alexander I Efimov. Homological mirror symmetry for curves of higher genus. Advances in Mathematics, 230(2):493-530, 2012.
[13] Samuel Eilenberg. Abstract description of some basic functors. Journal of the Indian Mathematical Society, 24(1-2):231-234, 1960.
[14] David Eisenbud. Homological algebra on a complete intersection, with an application to group representations. Transactions of the American Mathematical Society, 260(1):35-64, 1980.
[15] Håkon Enger, Andreas Recknagel, and Daniel Roggenkamp. Permutation branes and linear matrix factorisations. Journal of High Energy Physics, 2006(01):087, 2006.
[16] Kenji Fukaya. Morse homotopy, A_{∞}-category, and Floer homologies, from Proceedings of GARC Workshop on Geometry and Topology '93 (Seoul, 1993). Lecture Notes Ser, 18.
[17] Kenji Fukaya. Floer homology and mirror symmetry I. AMS IP Studies in Advanced Mathematics AMS, 23:15-44, 2001.
[18] Kenji Fukaya. Deformation theory, homological algebra and mirror symmetry. Geometry and physics of branes (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol, pages 121-209, 2003.
[19] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and ea. Lagrangian intersection Floer theory. American Mathematical Society, 2009.
[20] Matthias R Gaberdiel and Barton Zwiebach. Tensor constructions of open string theories (I) Foundations. Nuclear Physics B, 505(3):569-624, 1997.
[21] M Herbst, CI Lazaroiu, and W Lerche. Superpotentials, A-infinity relations and WDVV equations for open topological strings. 2004. arXiv preprint hepth/0402110.
[22] Manfred Herbst. Quantum A-infinity structures for open-closed topological strings. arXiv preprint hep-th/0602018, 2006.
[23] Mark Hovey. Model categories. Number 63. American Mathematical Soc., 2007.
[24] Tornike Kadeishvili. The algebraic structure in the homology of an $\mathrm{A}(\infty)$-algebra. Soobshch. Akad. Nauk Gruzin. SSR, 108(2):249-252, 1982.
[25] Tornike V Kadeishvili. On the homology theory of fibre spaces. Russian Mathematical Surveys, 35(3):231-238, 1980.
[26] Hiroshige Kajiura. Noncommutative homotopy algebras associated with open strings. Reviews in Mathematical Physics, 19(01):1-99, 2007.
[27] Anton Kapustin and Yi Li. D-branes in Landau-Ginzburg models and algebraic geometry. Journal of High Energy Physics, 2003(12):005, 2004.
[28] Ludmil Katzarkov, Maxim Kontsevich, and Tony Pantev. Hodge theoretic aspects of mirror symmetry. arXiv preprint arXiv:0806.0107, 2008.
[29] Bernhard Keller. A-infinity algebras, modules and functor categories, 2005. arXiv preprint math.RT/0510508.
[30] Bernhard Keller. Deriving DG categories. Ann. Sci. École Norm. Sup.(4), 27(1):63-102, 1994.
[31] Bernhard Keller. Introduction to A-infinity algebras and modules. arXiv preprint math/9910179, 1999.
[32] Maxim Kontsevich. Homological algebra of mirror symmetry. arXiv preprint alggeom/9411018, 1994.
[33] Maxim Kontsevich. Deformation quantization of Poisson manifolds. Letters in Mathematical Physics, 66(3):157-216, 2003.
[34] Maxim Kontsevich and Yan Soibelman. Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. I, 2006. arXiv preprint math/0606241.
[35] Maxim Kontsevich and Yan Soibelman. Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000), 203-263, World Sci. Publishing, River Edge, NJ, 2001.
[36] Calin-Iulio Lazaroiu. On the structure of open-closed topological field theory in two dimensions. Nuclear Physics B, 603(3):497-530, 2001.
[37] Calin Iuliu Lazaroiu. On the non-commutative geometry of topological D-branes. Journal of High Energy Physics, 2005(11):032, 2005.
[38] Calin Iuliu Lazaroiu. Generating the superpotential on a D-brane category: I. arXiv preprint hep-th/0610120, 2006.
[39] Kenji Lefevre-Hasegawa. Sur les A-infini cat'egories. arXiv preprint math/0310337, 2003.
[40] Jean-Louis Loday. Cyclic homology, volume 301. Springer Science \& Business Media, 2013.
[41] D-M Lu, John H Palmieri, Q-S Wu, and James J Zhang. A-infinity structure on Ext-algebras. Journal of pure and applied algebra, 213(11):2017-2037, 2009.
[42] Snigdhayan Mahanta. Noncommutative Geometry in the Framework of Differential Graded Categories. Arithmetic and Geometry Around Quantization, pages 253275, 2010.
[43] Sergei Merkulov. Frobenius ∞_{∞} invariants of homotopy Gerstenhaber algebras i. arXiv preprint math/0001007, 2000.
[44] Sergei A Merkulov. Strongly homotopy algebras of a kähler manifold. arXiv preprint math/9809172, 1998.
[45] Stephan Mescher. A primer on A-infinity-algebras and their Hochschild homology. arXiv preprint arXiv:1601.03963, 2016.
[46] Gregory W Moore and Graeme Segal. D-branes and K-theory in 2D topological field theory. arXiv preprint hep-th/0609042, 2006.
[47] Daniel Murfet. A_{∞}-minimal models of matrix factorisations.
[48] Daniel Murfet. Mini-course on A-infinity categories and matrix factorisations.
[49] Daniel Murfet. The cut operation on matrix factorisations. Journal of Pure and Applied Algebra, 2017.
[50] Amnon Neeman. Triangulated Categories.(AM-148), volume 148. Princeton University Press, 2014.
[51] Dmitri Orlov. Triangulated categories of singularities and D-branes in LandauGinzburg models. arXiv preprint math/0302304, 2003.
[52] Dmitri Orlov. Formal completions and idempotent completions of triangulated categories of singularities. Advances in Mathematics, 226(1):206-217, 2011.
[53] Alexander Polishchuk. A-infinty algebra of an elliptic curve and Eisenstein series. Communications in Mathematical Physics, 301(3):709-722, 2011.
[54] Alexander Polishchuk. Moduli of curves as moduli of A-infinity structures. arXiv preprint arXiv:1312.4636, 2013.
[55] Alain Prouté. Algèbres différentielles fortement homotopiquement associatives(A indice l'infini-algèbres). PhD thesis, 1986.
[56] Hans Schoutens. Projective dimension and the singular locus. 2003.
[57] Paul Seidel. Homological mirror symmetry for the genus two curve. arXiv preprint arXiv:0812.1171, 2008.
[58] Jean-Pierre Serre. Sur la dimension homologique des anneaux et des modules noethériens. In Proceedings of the international symposium on algebraic number theory, Tokyo \& Nikko, volume 1956, pages 175-189, 1955.
[59] Jim Stasheff. Homotopy associativity of H-spaces. I. Transactions of the American Mathematical Society, 108(2):275-292, 1963.
[60] Gonçalo Tabuada. Invariants additifs de DG-catégories. International Mathematics Research Notices, 2005(53):3309-3339, 2005.
[61] Thomas Tadler. Infinity inner products on A-infinity algebras. arXiv preprint arXiv:0806.0065, 2008.
[62] Bertrand Toën. The homotopy theory of DG-categories and derived Morita theory. Inventiones mathematicae, 167(3):615-667, 2007.
[63] Cumrun Vafa. Topological Landau-Ginzburg models. Modern Physics Letters A, 6(04):337-346, 1991.
[64] Charles E Watts. Intrinsic characterizations of some additive functors. Proceedings of the American Mathematical Society, 11(1):5-8, 1960.

Appendix A

Trees

In this appendix we will fix some notation and conventions for rooted trees as required for calculations of A_{∞}-categories.

A. 1 Basic definitions

Definition A.1.1. 1. A tree is a connected acyclic graph.

2. Any vertex with valency 1 is called a leaf vertex.
3. A rooted tree is a tree in which one leaf vertex is marked as the root. We give a rooted tree an orientation by orienting all edges in the direction of the root.
4. Given any vertex v in a rooted tree, there is a unique path to the root. We call the first vertex in this path the parent of v. A child of a vertex v is a vertex of which v is the parent.
5. A plane tree is a rooted tree with an ordering for the children of each vertex.
6. A plane tree is valid if it has $n+1$ leaves (including the root) for some $n \geq 2$ and all non leaf vertices have valency at least three.

We will interchangeably refer to leaves as external vertices, and non-leaf vertices as internal vertices. We refer to the edges meting leaves as external edges, and all other edges are called internal edges.

Definition A.1.2. A morphism of plane trees is a morphism of oriented graphs which preserves the root vertex and the ordering on children.

Definition A.1.3. Let v be a vertex of a rooted tree T. The depth of v is the length of the unique path from v to the root, and the height of v is the length of the longest path from v to a leaf. The height of T is the height of the root.

Example A.1.1. Consider the following plane tree:

The longest path from r to a leaf is that to either l_{2} or l_{3} which has length 3 , so T has height 3 . Likewise, w has height 2 and depth 1 , and v has height 1 and depth 2 . The vertex v has two children l_{2} and l_{3}.

Remark A.1.1. We can see from the example above that it is natural to assign clockwise order to a plane tree, so for instance the children of v are ordered $\left(l_{1}, l_{2}\right)$.

Definition A.1.4. Let T be a plane tree. We define a relation \prec on the vertices as follows: Let w and w^{\prime} be vertices of T, and write P_{w} and $P_{w^{\prime}}$ for the respective paths to the root. We say that $W \prec W$ if there is a vertex v in $P_{w} \cap P_{w^{\prime}}$ and children s, s^{\prime} of v with $s<s^{\prime}$ and $s \in P_{w}, s^{\prime} \in P_{w^{\prime}}$.

Remark A.1.2. This relation \prec subsumes the chosen order $<$ on the children of the vertices of T.

Lemma A.1.1. If we restrict \prec to non-root leaves then \prec is a total order
The existence of this total order allow us to repackage the data of a valid plane tree in terms of purely combinatorial information.
Definition A.1.5. Let T be a valid plane tree with $n+1$ leaves. The combinatorial tree associated to T, denoted $c(T)$, is an ordered set defines as follows. Write v_{1}, \ldots, v_{n} for the set of non-root leaves, written in clockwise order, and define $\alpha\left(v_{i}\right)=i$. We extend α recursively to internal vertices v with ordered children w_{1}, \ldots, w_{k} by

$$
\begin{equation*}
\alpha(v)=\left(\alpha\left(w_{1}\right), \ldots, \alpha\left(w_{n}\right)\right) . \tag{A.1}
\end{equation*}
$$

We denote the set of combinatorial trees with $n+1$ leaves by \mathcal{T}_{n}.

Because \prec is a total order on non-root leaves, there is an obvious bijection between the set of isomorphism classes of valid plane trees and combinatorial trees. We implicitly identify plane trees and combinatorial trees throughout the thesis.

Example A.1.2. The combinatorial tree associated to the tree in Example B.1.1 is given by

A. 2 Decorations and denotations

We will now give details of how one can obtain a bilinear map from a plane tree T, via decorations and denotations. We will highlight the contrast between the height and branch denotations.

Definition A.2.1. Let R be a commutative ring and T and plane tree with at least one edge. A decoration of T, denoted by D_{T}, consists of the following data:

1. A graded R-module L_{v} for each leaf v;
2. A graded R-module M_{e} for every edge e;
3. For each internal vertex v with incoming edges $\left(e_{1}, \ldots, e_{k}\right)$ and outgoing edge e, an integer I_{v} (in either \mathbb{Z} or $\mathbb{Z} / 2 \mathbb{Z}$) and a degree $I_{v} R$-linear map

$$
\begin{equation*}
\phi_{v}: M_{1} \otimes \cdots \otimes M_{k} \rightarrow M_{e} ; \tag{A.2}
\end{equation*}
$$

4. For each non-root leaf l with incident edge e a degree zero R-linear map

$$
\begin{equation*}
\phi_{l}: L_{l} \rightarrow M_{e} \tag{A.3}
\end{equation*}
$$

5. A degree zero R-linear map

$$
\begin{equation*}
\phi_{r}: M_{e} \rightarrow L_{r} ; \tag{A.4}
\end{equation*}
$$

where r is the root and e is the edge incident to r.

Example A.2.1. On the tree T of previous examples, a decoration is

Here, the maps are $\phi_{l_{i}}: L_{l_{i}} \rightarrow M_{e_{l_{i}}}, \phi_{v}: M_{e_{l_{2}}} \otimes M_{e_{l_{3}}} \rightarrow M_{e}$, and $\phi_{w}: M_{e_{l_{1}}} \otimes M_{e} \rightarrow M_{e_{r}}$.

Given a decoration D_{T} of a valid plane tree T, we can compose and take the tensor product of the maps to give a linear map $\left\langle D_{T}\right\rangle: L_{v_{1}} \otimes \cdots \otimes L_{v_{n}} \rightarrow L_{r}$. However, there are two obvious ways of doing this, either by heigh or by branch, and because of Koszul signs we will not always obtain the same linear map.

Definition A.2.2. Let T be a valid plane tree with a decoration D_{T}. The height denotation $\left\langle D_{T}\right\rangle_{H}$ is the homogeneous R-linear map $\left\langle D_{T}\right\rangle_{H}: L_{v_{1}} \otimes \cdots \otimes L_{v_{n}} \rightarrow L_{r}$ defined s follows:

1. Let h be the maximum depth of the leaves in T (or the height of T). For each leaf with v depth less than h we attach a bivalent vertices to the edge e_{v} coming from v until v had depth h, and to these new vertices we attach the identity operator on $M_{e_{e}}$.
2. For $1 \leq d \leq h$ let $V_{d}(T)$ denote the set of vertices of T (including the new vertices) of depth d. Make $V_{d}(T)$ totally ordered by \prec, say $\left(v_{1}, \ldots, v_{k}\right)$, and for each v_{i} let $\left(e_{i, 1}, \ldots, e_{e, a_{i}}\right.$ be the ordered set of edges terminating at v_{i}, and f_{i} the outgoing edge at v_{i}.
3. Define an outgoing R-linear map for each $1 \leq d<h$ by

$$
\begin{equation*}
\Phi_{d}:=\phi_{v_{1}} \otimes \cdots \otimes \phi_{v_{k}}:\left(\bigotimes_{j} M_{e_{1, j}}\right) \otimes \cdots \otimes\left(\bigotimes_{j} M_{e_{k, j}}\right) \rightarrow M_{f_{1}} \otimes \cdots \otimes M_{f_{k}} \tag{A.5}
\end{equation*}
$$

using the Koszul sign convention. Define $\Phi_{h}=\phi_{l_{1}} \otimes \cdots \otimes \phi_{l_{n}}$ and $\Phi_{0}=\phi_{r}$.
4. Set $\left\langle D_{T}\right\rangle_{H}:=\Phi_{0} \otimes \cdots \otimes \Phi_{h}$.

Definition A.2.3. Let T be a valid plane tree with a decoration D_{T}. The branch denotation $\left\langle D_{T}\right\rangle_{B}$ is the homogeneous R-linear map $\left\langle D_{T}\right\rangle_{B}: L_{v_{1}} \otimes \cdots \otimes L_{v_{n}} \rightarrow L_{r}$ defined s follows:

1. If T has one edge from the leaf l_{1} to the root r then $\left\langle D_{T}\right\rangle_{B}:=\phi_{r} \circ \phi_{l_{1}}$.
2. If T has more than one edge then we recursively define

$$
\begin{equation*}
\left\langle D_{T}\right\rangle_{B}:=\phi_{r} \circ \phi_{v} \circ\left(\left\langle D_{T_{1}}\right\rangle_{B} \otimes \cdots \otimes\left\langle D_{T_{k}}\right\rangle_{B}\right), \tag{A.6}
\end{equation*}
$$

where v is the vertex immediately before the root and T_{1}, \ldots, T_{k} are the sub-trees of T whose root is v.

Example A.2.2. On the decoration of Example B.2.1 the height and branch denotation are

$$
\begin{aligned}
\left\langle D_{T}\right\rangle_{H} & =\phi_{r} \circ \phi_{w} \circ\left(\mathrm{id} \otimes \phi_{v}\right) \circ\left(\phi_{l_{1}} \otimes \phi_{l_{2}} \otimes \phi_{l_{3}}\right) \\
\left\langle D_{T}\right\rangle_{B} & =\phi_{r} \circ \phi_{w} \circ\left(\phi_{l_{1}} \otimes\left(\phi_{v} \circ\left(\phi_{l_{2}} \otimes \phi_{l_{3}}\right)\right)\right) \\
& =(-1)^{\left|\phi_{v}\right| \cdot\left|\phi_{l_{1}}\right|} \phi_{r} \circ \phi_{w} \circ\left(\mathrm{id} \otimes \phi_{v}\right) \circ\left(\phi_{l_{1}} \otimes \phi_{l_{2}} \otimes \phi_{l_{3}}\right) \\
& =(-1)^{\left|\phi_{v}\right|}\left\langle D_{T}\right\rangle_{H} .
\end{aligned}
$$

A. 3 Edge contraction and insertion

Definition A.3.1. Let T be a plane tree and e an edge of T connecting vertices v and w. Suppose w is closer to the root than v, and that w has children w_{1}, \ldots, w_{k} with $w_{j}=v$ and v has children v_{1}, \ldots, v_{m}. The tree $T \neg e$ is the plane tree obtained by deleting v and attaching the children of v to w so that the ordered set of the children of w is $w_{1}, \ldots, w_{j-1}, v_{1}, \ldots, v_{m}, w_{j+1}, \ldots, w_{k}$.

Example A.3.1. If T is the tree used in previous examples then the contraction of T at e is

Definition A.3.2. Let T be a plane tree and v an internal vertex with children $\left(v_{1}, \ldots, v_{k}\right)$. Given integers $i \geq 0$ and $j \geq 1$ with $i+j \leq k$ the edge insertion ins (T, v, i, j) is obtained from T by detaching the edges joining $v_{i+1}, \ldots v_{i+j}$ to v, inserting a new vertex w to which which $v_{i+1}, \ldots v_{i+j}$ join, and inserting a new edge e joining w to v. The parent/child relations are unchanged by this relation with the exception that $v_{i+1}, \ldots v_{i+j}$ now have parent w and the parent of w is v.

Example A.3.2. Let T^{\prime} be the tree obtained in the previous example by contracting the edge e of T. We can recover T as the edge inserting ins $\left(T^{\prime}, w, 1,1\right)$.

Remark A.3.1. It is obvious that if we start with a valid plane tree T and perform an edge contraction then the resulting tree will be valid. Likewise, if we begin with a valid plane tree and insert an edge over a vertex v of valency $k>3$ and if $2 \leq j \leq k-1$ then $\operatorname{ins}(T, v, i, j 0$ is also a valid plane tree.

Definition A.3.3. We denote by \mathcal{T}_{n}^{+}the set of pairs (T, e) where $T \in \mathcal{T}_{n}$ and e is an edge of T.

Remark A.3.2. We can partition the set $\mathcal{T}_{n}=\coprod_{c \geq 0} \mathcal{T}_{n}^{(c)}$ where $\mathcal{T}_{n}^{(c)}$ is the subset of trees with c internal edges.

Lemma A.3.1. For $n>2$ and $c \geq 0$ there is a bijection $\left(\mathcal{T}_{n}^{(c+1)}\right)^{+} \leftrightarrow\left\{(T, v, i, j)\left|T \in \mathcal{T}_{n}^{(c)}, v \in V_{i}(T), i \geq 0, i+j \leq|v|-1,2 \leq j \leq|v|-2\right\}\right.$, where $|v|$ denotes the valency of v.

Proof. For any edge e in a tree, denote by $t(e)$ the vertex at which e terminates and $s(e)$ the vertex where e begins. Write v_{1}, \ldots, v_{k} for the children of $t(e)$, where $s(e)=v_{m}$. We define a map from left to tight by

$$
\begin{equation*}
(T, e) \rightarrow(T \neg e, t(e), m-1,|s(e)|-1) \tag{A.7}
\end{equation*}
$$

Clearly $T \neg e \in \mathcal{T}_{n}^{(c)}, t(e) \in V_{i}(T)$, and $m-1 \geq 0$. It is also clear that $2 \leq|s(e)|-1 \leq$ $|t(e)|-2$ because T is a valid plane tree. Moreover,

$$
\begin{equation*}
|t(e)|-1=k+|s(e)|-1-1 \geq m+|s(e)|-2=m-1+|s(e)|-1 \tag{A.8}
\end{equation*}
$$

so the map defined above really does land in the right hand side. To show that this is a bijection we will should that the map from the right to the left given by

$$
\begin{equation*}
(T, v, i, j) \mapsto \operatorname{ins}(T, v, i, j) \tag{A.9}
\end{equation*}
$$

is a two-sided inverse. Again, this map clearly lands in $\left(\mathcal{T}_{n}^{(c+1)}\right)^{+}$. It is also clear that

$$
\operatorname{ins}(T \neg e, t(e), m-1,|s(e)|-1)=T
$$

and that the composition in the other direction is the identity. Therefore the map B.7 is a bijection.

