Algebraic geometry is the study of curves, surfaces and higher-dimensional objects defined by polynomial equations. It is the home of one of the deepest ideas in mathematics, the duality between

We will develop this duality over 8 weeks, following D. Cox, J. Little and D. O'shea "Ideals, Varieties and Algonthms" $4^{\text {th }}$ edition (here CLO). The aim is to reach the Elimination Theorem, which is a goodillustration of the power of algebraic (and computational) techniques to solve geometric problems. Along the way we will see topics including Grubber bases, the Hilbert basis theorem, and Buchberger's algorithm

References to CLO look like: Section 1.2, or \$1.2, meaning Section 2 of Chapter 1, and Lemma 1.2.2 meaning Lemma 2 in Section 1. 2.

From childhood we are exposed to the idea of space being imbued with a coordinate system, and we learn to associate the letters x, y, z with the coordinate functions. We say coordinate functions because x is not a veal number, but the "measurement" of a point's " x " coordinate: a function that takes points as input and outputs real numbers.

$$
x(p)=3
$$

When we say "the equation of a circle is $x^{2}+y^{2}=1$ " what we mean is that if you test every point P in the plane, by measuring its x-wordinate $x(P)$, it y-coorclinate $y(P)$, and then compare $x(P)^{2}+y(P)^{2}$ to 1 , the set of point that "pass" is (by definition) the circle of radius 1. We write

$$
\begin{align*}
S^{1} & =\left\{P \mid x(P)^{2}+y(P)^{2}=1\right\} \tag{2.1}\\
& =\left\{P \mid x(P)^{2}+y(P)^{2}-1=0\right\}
\end{align*}
$$

So what kind of thing is $x^{2}+y^{2}-1$? We could say: it is a function, that on input Preturns $x(P)^{2}+y(P)^{2}-1$. And this is tue, but the expression $x^{2}+y^{2}-1$ does more than specify the set of inputloutput pairs $\left(P, x(P)^{2}+y(P)^{2}-1\right)$, it specifies a mule or algorithm for computing the output. The expression $x(P)^{2}+y(P)^{2}-1+2-2$ gives an other rule for computing the same function (of cone there are less trivial examples) Although we often conflate "function" with "rule", strictly speaking a function is just the input output pairs

$$
\begin{equation*}
\text { 「A function } F: X \rightarrow Y \text { is the set }\{(x, F(x)) \mid x \in X\} \tag{2.2}
\end{equation*}
$$

Polynomials

Fine, so what is $x^{2}+y^{2}-1$? It is a polynomial, which is a special kind of mule for computing numbers (not a function, although any polynomial determines a function). To explain what a polynomial is, we consider some examples

We will refer to fields, for which you may read \mathbb{Q}, \mathbb{R} or \mathbb{C}. $\operatorname{Recall} \mathbb{N}=\{0,1,2, \ldots\}$. Let k be a field. A polynomial f in n variables with coefficients in k is an assignment of "wefficients" coeff $(f, \alpha) \in R$ to tuples $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}$, with only finitely many tuples being assigned nonzero values.

A polynomial which assigns 1 to exactly one α and O to the rest is called a monomial, and we denote it by x^{α} (for some formal symbol α). Addition and multiplication of polynomials is defined by

$$
\begin{align*}
\operatorname{coeff}(f+g, \alpha) & =\operatorname{coeff}(f, \alpha)+\operatorname{colf}(g, \alpha) \\
\operatorname{coff}(f g, \alpha) & =\sum_{\substack{\gamma+\beta=\alpha}} \operatorname{coff}(f, \beta) \operatorname{coff}(g, \gamma) \tag{3.1}\\
& \gamma_{1}, \mathbb{N}^{n} \\
\lambda \in k \quad \operatorname{coleff}(\lambda f, \alpha) & =\lambda \operatorname{coeff}(f, \alpha)
\end{align*}
$$

Two polynomials f, g are equal, written $f=g$, if they have the same coefficients, $\operatorname{cosff}(f, \alpha)=\operatorname{coeff}(g, \alpha)$ for all α. Given variable names, e.g. x_{1}, \ldots, x_{n}, we define the polynomials x_{i} to be the monomials $x^{e_{i}}$ where $e_{i}=(0, \ldots, 1, \ldots, 0)$. we write $1=x^{\circ}$ for the polynomial with $\operatorname{colff}(1, \underline{0})=1$, and if $\lambda \in k$ we also write λ for the polynomial $\lambda 1$, ie. coff $(\lambda 1, \underline{0})=\lambda$.

Exercise 1.1 (i) $x^{\alpha}=x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ where for $m \in \mathbb{N}$, and a polynomial f, we write f^{m} for $\underbrace{f \ldots f}_{m}$.
(ii) $x^{\alpha} x^{\beta}=x^{\alpha+\beta}$ where addition on \mathbb{N}^{n} is coordinate-wise.
(iii) If $\alpha^{(1)}, \ldots, \alpha^{(m)}$ are clistinct elements of \mathbb{N}^{n} then
$f=a_{1} x^{\alpha^{(1)}}+\cdots+a_{m} x^{\alpha^{(m)}}$ is the polynomial with $\operatorname{coff}\left(f, \alpha^{(i)}\right)=a_{i}$ for $1 \leq i \leq m$.

Def n The set of polynomials in n-variables is P_{n}, or if we want to fix names for the variables, $k\left[x_{1}, \ldots, x_{n}\right]$.

The set of polynomials $k\left[x_{1}, \ldots, x_{n}\right]$ is a commutative ring, which just means that you can add and multiply polynomials in a way that satisfies the usual algebraic properties for integers.
We will not dwell on these properties here, but simply highlight that multiplication distributes over addition $f(g+h)=f g+f h$.

Def n Given $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ we say f divides g (written $f \mid g$) if there exists $h \in k\left[x_{1}, \ldots, x_{n}\right]$ with $g=f h$

Example 1.1 (i) $x^{2}+y^{2}-1 \in R[x, y]$
(ii) $2 x^{2}+3 x-2 \in k[x]$
(iii) $3 x^{2} y+y^{2}+2 x^{2}+1 \in k[x, y]$
(iv) $2 x+3 x=5 x \in k[x]$
(v) $1+x+x^{2}+x^{3}+\cdots \notin k[x]$

Lemma 1.1 If $f \in k\left[x_{1}, \ldots, x_{n}\right]$ and $X=\left\{\alpha \in \mathbb{N}^{n} \mid \operatorname{coeff}(f, \alpha) \neq 0\right\}$ then

$$
f=\sum_{\alpha \in \Lambda} a_{\alpha} x^{\alpha} \text { where } a_{\alpha}=\operatorname{coeff}(f, \alpha) \text {. }
$$

Proof By def ${ }^{N}$

$$
\begin{aligned}
\operatorname{coff}\left(\sum_{\alpha} a_{\alpha} x^{\alpha}, \beta\right) & =\sum_{\alpha} \operatorname{coeff}\left(a_{\alpha} x^{\alpha}, \beta\right) \\
& =\sum_{\alpha} a_{\alpha} \operatorname{coeff}\left(x^{\alpha}, \beta\right) \\
& =\sum_{\alpha} a_{\alpha} \delta_{\alpha=\beta} \quad \text { Kronecker delta, } 1 \text { if } \alpha=\beta \\
& =a_{\beta} \quad \text { and } O \text { otherwise }
\end{aligned}
$$

so the LHS and RHS have the same coefficients. \square

Generally we write polynomials f as $\sum_{\alpha} a_{\alpha} x^{\alpha}$ where it is unclentoud the α are all distinct and there are only finitely many of them.

If $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ we write $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.

Def ${ }^{n}$ Let $f \in k\left[x_{1}, \ldots, x_{n}\right]$. Then with $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$

- If $a_{\alpha} \neq 0$ we call $a \alpha x^{\alpha}$ a term of f
- If $f \neq 0$ the total degree of f is $\max \left\{|\alpha| \mid a_{\alpha} \neq 0\right\}$

Example 1.2 $3 x^{2} y+y^{2}+2 x^{2}+1$ has four terms and total degree 3 .

Now we know to think of polynomials as finite data structures assigning wefficients a_{α} to tuples $\alpha \in \mathbb{N}^{n}$. There is an associated polynomial function :

Def n Given $f \in k\left[x_{1}, \ldots, x_{n}\right]$ define $F: k^{n} \longrightarrow k$ by, if $f=\sum_{\alpha} a_{\alpha} x^{\alpha}$,

$$
F\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\sum_{\alpha} \underbrace{a_{\alpha} \lambda_{1}^{\alpha_{1}} \cdots \lambda_{n}}_{\text {ops in } R}{ }_{n}^{\alpha_{n}}
$$

As a set, F is $\left\{(\leq, F(\leq)) \mid \leq \in R^{n}\right\}$ which is infinite if k is. We will often elide the distinction between f and F and just write f for both. This seems like it might be confusing, because if g is another polynomial with function G then

- $f=g$ means equality as polynomials (1.e. $\operatorname{copf}(f, \alpha)=\operatorname{coff}(g, \alpha)$ for all $\alpha)$
- $F=G$ means equality as functions (1.e. $F(\leq)=G(\leq)$ for $a l l \leq \in k^{n}$)

Clearly $f=g$ implies $F=C$. The converse is also true:

Proposition CLO 1.1.5 Let k be an infinite field and $f \in k\left[x_{1}, \ldots, x_{n}\right]$ with function $F: k^{n} \rightarrow k$. Then $f=0$ if and only if $F=0$.

Proof We prove the converse by induction on n. If $n=1$ then a nonzero polynomial of clegree m has at most m roots (we will reprove this later). Suppose $F=0$ but that $f \neq 0$. Then f has degree m say, and hence at most m roots, but $F=0$ so f has $>m$ roots (since k has $>m$ distinct elements), a contradiction.

For the incluctive step suppose the convene holds for $n \leqslant N$ and let $f \in\left[x_{1}, \ldots, x_{N+1}\right]$. Suppose that $F=0$. We can collect terms to write, for some $m \geqslant 0$,

$$
f=\sum_{i=0}^{m} g_{i}\left(x_{1}, \ldots, x_{N}\right) x_{N+1}^{i}
$$

where $g_{i} \in k\left[x_{1}, \ldots, x_{N}\right]$. For $\leq=\left(c_{1}, \ldots, c_{N}\right) \in k^{N}$ we have the polynomial

$$
h_{\leq}:=f\left(c_{1}, \ldots, c_{N}, x_{N+1}\right)=\sum_{i=0}^{m} \underbrace{g_{i}\left(c_{1}, \ldots, c_{N}\right.}_{\text {in } k}) x_{N+1}^{i} \in k\left[x_{N+1}\right]
$$

Since $F=O$, the function H_{\leq}associated to h_{\leq}is zero, $H_{\leq}=O$. But by the base case then we have $h_{c}=0$ as a polynomial, so $g_{i}(c)=0$ for $0 \leq i \leqslant m$. Since \subseteq was arbitrang this shows the functions G_{i} associated to g_{i} are zen, and by the inductive hypothesis $g_{i}=0$ hence $f=0$. \square

Corollary CLO 1.1.6 Let k be an infinite field, $f, g \in k\left[x_{1}, \ldots, x_{n}\right]$ with functions F, G.
Then $f=g$ if and only if $F=G$

Proof Apply the Proposition to $f-g \cdot \square$

Affine varieties

We have said algebraic geometry is the study of cures, surfaces and higher-dimensional objects defined by solutions of systems of polynomial equations. These are called varieties. Given a field k we write A_{k}^{n} or just \mathbb{A}^{n} for n-dimensional affine space

$$
\mathbb{A}^{n}=k^{n}=\left\{\left(a_{1}, \ldots, a_{n}\right)\left|a_{i} \in k \quad\right| \leq i \leqslant n\right\}
$$

The purpose of the notation is to emphasise k^{n} as an object of algebraic geometry, as opposed to a vector space, for example.

Def ${ }^{n}$ Let $f_{1}, \ldots, f_{s} \in k\left[x_{1}, \ldots, x_{n}\right]$. Then we define

$$
V\left(f_{1}, \ldots, f_{s}\right)=\left\{\underline{a} \in \mathbb{A}^{n} \mid f_{i}(\underline{a})=0 \text { for } 1 \leq i \leq s\right\}
$$

and call this the affine variety determined by $f_{y} \ldots, f_{s}$. This depends only on the set $\left\{f_{1}, \ldots, f_{s}\right\}$, so order clues not matter.

Tor the moment we only allow finite systems of equations f_{1}, \ldots, f_{s}. But watch this space!

Remark If $f=0$ then $V(f)=A^{n}$, so \mathbb{A}^{n} is an affine variety.
If $f=1$ then since $0 \neq 1$ (careful now!) $V(f)=\phi$, the empty set.

Lemma CLO 1.2.2 If $V, W \subseteq \mathbb{A}^{n}$ are affine varieties, so are $V \cup W$ and $V \cap W$.

Proof If $V=\mathbb{V}\left(f_{1}, \ldots, f_{s}\right), W=\mathbb{V}\left(g_{2}, \ldots, g_{t}\right)$ then $V \cap W=\mathbb{V}\left(f_{1}, \ldots, f_{s}, g_{1}, \ldots, g t\right)$, so one claim is clear. For the other, we claim

$$
V \cup W=\mathbb{V}\left(\left\{f_{i} g_{j}\right\}_{1 \leq i \leq s,} 1 \leq j \leq t\right)
$$

The inclusion \subseteq is clear. For the reverse inclusion, suppose

$$
\underline{a} \in \mathbb{V}\left(\left\{f_{i} g_{j}\right\}_{i, j}\right)
$$

If $\underline{a} \in W$ then were done. Otherwise for $1 \leq i \leq s$

$$
f_{i}(\underline{a}) g_{1}(\underline{a})=\cdots=f_{i}(\underline{a}) g_{t}(\underline{a})=0
$$

If $f_{i}(\underline{a}) \neq 0$ then we deduce $\underline{a} \in W$, a contradiction, so $f_{i}(\underline{a})=0$. Since this holds for arbitracy i, we have $\underline{a} \in V$.

Hence finite unions and intenections of affine varieties are affine varieties. In the remainder of this lecture we study examples.

Examples

Consider the surface $V=W\left(x^{2}-y^{2} z^{2}+z^{3}\right)$. Given a polynomial $f=x^{2}-y^{2} z^{2}+z^{3}$ in multiple variables it is not at all clear how to "sketch" $V=\mathbb{V}(f)$. Let us try some simple things, like intersecting V with a plane. This itself is a bit interesting, since a plane is an affine variety! For $c \in \mathbb{R}$ set

$$
H_{c}=\{(a, b, c) \mid a, b \in \mathbb{R}\}=W(z-c)
$$

Hence $V \cap H_{c}=\mathbb{V}\left(x^{2}-y^{2} z^{2}+z^{3}, z-c\right)$, which you should be able to see is $V_{c}=V\left(x^{2}-y^{2} c^{2}+c^{3}\right)$.

What do these "slices" V_{c} look like? If $c<0$ then

$$
\begin{aligned}
x^{2}-y^{2} c^{2}+c^{3} & =0 \\
& \Longleftrightarrow x^{2}-(|c| y)^{2}=|c|^{3}
\end{aligned}
$$

is a hyperbola meeting the x-axis at $\pm|c|^{3 / 2}$. When $c=0$ we have $x^{2}=0$, so just the y-axis, and for $c>0$ we have

$$
\begin{aligned}
& x^{2}-y^{2} c^{2}+c^{3}=0 \\
& \Longleftrightarrow(c y)^{2}-x^{2}=c^{3}
\end{aligned}
$$

another family of hyperbolas meeting the y-axis at $\pm c^{1 / 2}$.

The graph from CLO is:

We see how the surface intenects itself along the y-axis: near the point P, V does not locally look like an open ball in \mathbb{R}^{2}, but more like an " X " shape with a cartesian product with $(0,1)$. This explains why V is a natural object of algebraic geometry and not differential geometry. We say V is singular

You might wonder how this plot was generated. In fact V has a convenient parametrisation by parameters u, v in the following sense:

Let $\varphi:[-1,]^{2} \longrightarrow \mathbb{R}^{3}$ be the function

$$
\varphi(u, t)=\left(t\left(u^{2}-t^{2}\right), u, u^{2}-t^{2}\right)
$$

and set $Z:=\operatorname{Im} Y=\left\{\mathcal{Y}(u, t) \mid u, t \in[-1,1]^{2}\right\}$, the image of \mathcal{J}. Then $Z \subseteq V$ since if $x=t\left(u^{2}-t^{2}\right), y=u, z=u^{2}-t^{2}$ then

$$
\begin{aligned}
x^{2}-y^{2} z^{2}+z^{3} & =t^{2}\left(u^{2}-t^{2}\right)^{2}-u^{2}\left(u^{2}-t^{2}\right)^{2}+\left(u^{2}-t^{2}\right)^{3} \\
& =\left(t^{2}-u^{2}\right)\left(u^{2}-t^{2}\right)^{2}+\left(u^{2}-t^{2}\right)^{3} \\
& =\left(t^{2}-u^{2}\right)^{3}-\left(t^{2}-u^{2}\right)^{3}=0
\end{aligned}
$$

One can show $Z=V$ (see $E x$ CLO 1.3.11), and we call ρ a parametrisation of V. Note how this parametrisation "slices" along the y-axis instead. What kind of curves do we get in the $x z$ plane when we do this?

Note how

- V is much easier to visualise when we have a parametrisation, but
- checking if $P \in V$ is much easier using the "implicit" form of the surface given by $x^{2}-y^{2} z^{2}+z^{3}=0$.

This leads to two questions which will be among the motivations for this course:

Parametrisation Does a given affine variety admit a parametrisation? (In general, $\left.\begin{array}{c}\text { no }\end{array}\right)$

Implicitisation Given a parametric representation of an affine variety, can we determine a set of defining equations?

