
①MAG Lecture 1 : what is Algebraic Geometry ? magic
15/6/22

Algebraic geometry is the study of curves, surfaces and higher -dimensional object
defined by polynomial equations .

It is thehome of one of the deepest ideas in

mathematics
,
the duality between

spaces and Functions

✗ f : ✗→ e

things measurements

curves
, surfaces, . _ . polynomials, ideals, . .

.

geometry algebra
? computation / algorithms

we will develop this duality over 8 weeks, following D. Cox, J- Little and D. O
'

Shea

"
Ideals

,
Varieties and Algorithms

"

4th edition (here CLO) . The aim is to reach the Elimination

theorem
,
which is a good illustration of thepower of algebraic (and computational)

techniques to solve geometric problems . Along the way we will see topics including
Giobner bases, the Hilbert basis theorem, and Buchberger 's algorithm .

References to CLO look like : section 1.2
,
or § 1.2

, meaning section 2 of Chapter 1,

and Lemma 1.2.2 meaning Lemma 2 in section 1.2 .

From childhood we are exposed to the idea of space being imbued with a coordinate

system, and we learn to associate the letters x, y, 2- with the coordinate functions .

We say coordinate functions because x is not a real number
,
but the "measurement

"

of a point 's
"
x
" coordinate : a function that takes points as input and outputs real numbers .

•

P
✗ ( P) =3

i

i i i > x
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When we say
"
the equation of a circle is x2ty2=1

"

whatwe mean is that ifyou

test every point Pin the plane , by measuring its x - coordinate xlp), itsy -coordinate y (P ),
and then compare xlp)2tylP)

≥

to 1
,
the set of points that

"

pass
"
is ( by definition)

the circle of radius 1. We write

5- = { P I xlp )2+y(P)2= 1 } (2-1)
= [ P I xlp)2+ylpP-1=0 }

So what kind of thing is >ity
≥
-1 ? We could say

: it is a function
,
that on input Preturns

✗ ( P )
-

+ y(PT - 1. And this is true, but the expression x2ty2_ 7- does more than specify
the set of input/output pairs (13×1172+91172-1) , it specifies ante or algorithm

for computing the output. The expression ✗ IP)7y(P)≥-1+2-2 gives another

rule for computing the same function (of course there are less trivial examples ) .

Although we often conflate
"function

"
with "rule "

, strictly speaking a function is

just the input-outputpairs

1-

A function F :X→ Y is the set { (71--1×7) / ✗ EX }
,

( za )

Polynomials

Fine
,
so what is x2ty2-1 ? Itis a polynomial , which is a special kind of rule

for computing numbers (not a function, although any polynomial determines a function) .

To explain whata polynomial is, we consider some examples
✗
0 x1 x2 x3 x4

, . .

2×2+3×-2 10 1 2 3 4 - - .

. . .

- 2 3 2 0 0 - - -

- - /

← why not y2× ? (2-3)

x°y° x2y x2 y2
~ / \

3×2y t y2 +2×2+1 (0,0) (2,1 ) (2,0) (0,2)
- - -

1 3 2 \
. _ .
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We will refer to fields , forwhich you may read
Q
,
R or E

. Recall IN = {0,43 . . . }
.

Let K be a field
.

A polynomial f in n variables with coefficients in K is an

assignment of
"coefficients

"

coeff.(f, d) c- K to tuples ✗ = (di, . . .

,
dn ) C- IN? with

only finitely many tuples being assigned nonzero values .

A polynomial which assigns 1 to exactly one ✗ and 0 to the rest is called a monomial,
andwe denote itby xd (for some formal symbol d) .

Addition and multiplication

of polynomials is defined by

coeff ( ft 9, d) = coeff (f, d) + weff 19,2 )
(3.1 )

weft ( f- 9 , & ) = [ weff ( f. B)wefffg , 8)
Ttp =L

Kp c- IN

✗ c- k coeff ( If, d) = 7 weff ( f, a)

Two polynomials f, g are equal , written f- 9 , if they have the same coefficients,
we A- (f

,
d) = weft 19 ,d) for all & .

Given variable names
,
e.g. ✗y

- - -in
,

i

we define the polynomials Xi to be the monomials Kei where ei = (0, .
. _

, I , .
. . ,
0 )

.

We write 1 = x°- for the polynomial with weft 11,0-1=1, and it 7 c-K we also

write 7 for the polynomial 71 , i. e. we ff( 71, E)
= 7

.

Exercise 1.1 ( i ) ✗
✗
= XP '

- - - XP" where for me IN
,
and a polynomial

f
,
we write fm for ff_ .

Iii ) ✗
✗ XP = x ✗ +P where addition onÑ is coordinate - wise

.

1m )
Iii;) If d 't . . _

,
✗ are distinct elements of 1N

"

then

f- = a ,
xd

"'t - - - t am✗
✗
"'

is the polynomial with

coeff (f, ✗
" ' ) = ai for I ≤ i ≤ m.
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Def
"

The set of polynomials in n -variables is Pn
,
or if we want to fix names

forthe variables
,
K [xy . _ _ pen ]

.

The setof polynomials k[✗ is - - -in] is a commutative ring , which just means that you can add
and multiply polynomials in a way that satisfies the usual algebraic properties for integers .

We will not dwell on these properties here, but simply highlight that multiplication
distributes over addition f- (9th ) = fgtfh .

DEI Given f.get [✗ ii. . -in] we say fdividesg ( written ft 9) if there exists he k[×, - - -in]

with g
= fh

Example 1.1 Ii ) ✗2+92-1 C- k[×, y]

( ii) 2×2+3×-2 C- k[×]

( iii ) 3×2y t y2 + 2×2 + I C- k [×, y]

Civ) 2×+3✗ = 5x E K[
×]

(v ) 1- txt it ✗
3
+ - - - ¢ K [×]

Lemma 1.1 If f- c- k[ ✗y . . -in] and A- = {✗ c- IN
" / coefflf, d) ≠ 0} then

f- = [ ✗ ≤Aaaat where a ✗ = coefflf, a) .

Proof By def
"

welt( Ea and
, f) = { ✗ wefflaxxt , p )

= Ea a ✗ weff (ok , p )
= {

✗
an S

✗¥ Kroneckerdelta
,
1 if ✗=P

and 0 otherwise
=

ap

so the LHS and RHS have the same coefficients . ☐

Generally we write polynomials f as Ex a✗ ✗
✗

where it is understood the ✗ are

all distinct and there are only finitely many of them .
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If ✗ = (di, . . _

,
dn) C- IN

"

we write 121=2 ,
t - - - tan

.

DEI Let f c- K [ ×, . .

,
✗n]

.

Then with f = Ex a ✗ act

• If a ✗ ≠ 0 we call a ✗at a term of f.

• If f -1-0 the total degree off is max { 121 I aint o }
.

Example 1.2 3×29 + 92+2×2 + 1 has four terms and total degree 3 .

Now we know to thinkof polynomials as finite data structures assigning coefficients ax

to tuples ✗ C- IN
"

. There is an associated polynomial function :

DEI Given f- C- kfxy . - -in] define F : kⁿ→ K by , if f
=Eaaxx ?

Far . . -in) = [ aa÷¥¥ⁿ
As a set

,
F is { ( ≤ , Fl ≤)) ) ≤ c- K" } which is infinite if K is . We will often elide

the distinction between f- and F and just write f for both .

This seems like itmight be

confusing, because if g is another polynomial with function G then

• f- = 9 means equality as polynomials ( i. e. weff( f, a) = coeff / 9, a) for all d)

• F = G means equality as functions ( 1- e. 5-(e) = G(E) for all c- c- K" )

clearly f- = 9 implies 5- = G. The convene is also true :



Piff . Q means P⇒Q and Q⇒ P ⑥
" convene

" ma⑦

Preposition CLO 1.1.5 Let K be an infinite field and f- c- 121×1 , . . - in] with function
F : kn-7k

.
Then f- = 0 if and only if F= 0 .

Proof we prove the convene by induction on n .
If n = 1 then a nonzero polynomial of degree m

has at most m roots /we will reprove this later) . Suppose F= 0 but that f -1-0 . Then

f- has degree m say,
and hence at most m roots

,
but F =0 so f- has > m roots

(since Khas > m distinct elements )
,
a contradiction

.

For the inductive step suppose the convene holds for n ≤ N and let f- C- [Xi, - -
-

/ ✗Nti] .

Suppose that F = 0 .

We can collect terms to write, forsome m≥ 0,

m

i

f = [ gi (✗ is . _

, ✗N ) anti
,

i = 0

where gi c- klxi, . .
-

, XN]
.

For ≤ = ( co - - -

s CN ) c- kN we have the polynomial

m
i

h≤ : = f-( Cy .
- -

, CN , XN + , ) = [ 9 i Icy . - -

,
Civ )✗Ntl E K [ ✗ N + I]

i = 0

¥2

since F = 0, the function H ≤ associated to he is zero, H ≤
= 0.

But by the

base case then we have h≤ = 0 as a polynomial, so 9 i (E) = 0 for 0 ≤ i ≤m .

Since ≤ was arbitrary this shows the functions Gi associated to go are zero
,

and by the inductive hypothesis gi
= 0 hence f- 0 . ☐

Corollary CLO I - I -6 Let k be an infinite field
, fig c- KIK, . -

-in ] with functions F, G .

Then f- = 9 if and only if F = G .

Proof Apply the Proposition to f- g. ☐
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Affine varieties

we have said algebraicgeometry is the study of curves, surfaces and higher -dimensional

objects defined by solutions of systems of polynomial equations .

These are called varieties .

Given a field K we write Ants or just /An for n -dimensional affine space

1A
"
= kn = { lay . . .

,
an ) I aiek I ≤ i ≤ n }

.

The purpose of the notation is to emphasise K
"

as an object of algebraic geometry,
as opposedto a vector space , for example .

DEI Let fy .
. .

, fs E k [✗ is .
- -in]

.

Then we define

( fi, .
.
_

, fs ) = { a- C-AT 1 fi (e) = 0 for I ≤ i ≤ s }

and call this the affine variety determined by fy . . _

,
fs

.

This depends only

on the set { fi, .
.

_

,
fs }
,
so orderdoes notmatter.

Tor themoment we only allow finite systems of equations fi, _ .
- ifs

.

But watch this space
!

Remark If f- = 0 then ☒(f) = It, so 1A
"

is an affine variety .

If f- = 1 then since 0 ≠ 1 (careful now !) N (f) = ∅ ,
the empty set .

Lemma CLO 1.2.2 If Y, W ≤ AT are affine varieties, so are Vu W and VnW
.

Proof If 11=14 ( fi, .
.
-ifs) , W = ☒( 91 - . -19 t ) then Vnw = ☒ (fi, . . -

, fs, 9 ,
,

. . _

, 9t )
,

so one claim is clear
.

For the other
,
we claim

y u w = ☒ ( { figj } ,≤ i≤ s , I≤j ≤t ) .
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The inclusion ≤ is clear
.

Forthe reverse inclusion
, suppose

a- C- ☒ ( { fig ; } i.j )

If a- C-W then we're done
.

Otherwise for I≤ i. ≤ s

fi (a) g , (a) = - - - = fi (E) gt /E) = 0 .

If fi (a) =/ 0 then we deduce a-C- W, a contradiction, so fi (a)
= 0

.

Since this

holds for arbitrary i, we have 9- C- V. ☐

Hence finite unions and intersections of affine varieties are affine varieties .

In the remainder

of this lecture we study examples .

Examples

consider the surface V = ( x2- y 22-2+2-3 ) .

Given a polynomial f- = ✗
2-
y22-2+2-3

in multiple variables it is not at all clear how to
"sketch

"

V = N /f)
.

Let us try some

simple things , like intersecting V with a plane .
This itself is a bit interesting , since

aplane is an affine variety ! For ce IR set

H = { la , b.c) I a , b c- R} = ☒ ( z - c)
L

Hence V N He = ☒ ( x2- y22-2+2-3, Z -c), which you should be able to
see is Vc#( x2_ y2c2 + c3 ) .

•

- i
-

÷
,

-

z=c

i

t
-
-

-

-

"
K
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What do these "slices
" K look like ? If c < 0 then

x2-YI + c.3 = 0

⇔ x2 _ ( Icty )
≥

= 143

is a hyperbola meeting the x-axis at ± 14% .

When o_0 we have ✗2--0,

so just the y-axis, and for c > 0 we have

✗ 2- y2c2 + (3 = 0

⇔ ( ey )
≥

- x2 = [ 3

another family of hyperbolas meeting the y-axis at ±c
"
?

2-

^
- -

-
--

- - - - - -

:-.
:

-

- - - -

i
- - - - . iii.2- = 0

> y

✗

<

- -
-
--

-
- - - - -

2- = -4
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The graph from CLO is :

•

[
p

We see how the surface intersects itself along the y-axis : near the point P,
V does not locally look like an open ball in R2, but more like an

"X
"

shape with a
Cartesian product with 10, 1) this explains why V is a natural object ofalgebraic
geometry and notdiHe geometry .

We say V is singular .

You might wonder how this plotwas generated .

In fact V has a convenient

parametisation by parameters u, V in the following sense :



①
m④

Let 9 :[-1, ☐→ 1123 be the function

9 ( u, t ) = ( Hui-E) , u, u2- t2 )

and set 2 : = Imy = { Y lust) lust c- [- bit 2) , the image of Y . Then

2 ≤V since if ✗ = t / u2- t2 )
, y
= 4
,
2- = U2- t

2 then

✗2- y 22-2+2-3 = -12 ( U2- t2)2- U2 ( u2- t2)
-

+ (42-1-2)
>

= ( T2- U2) ( U2- t2)
2

+ ( u2- t2)
3

= ( t 2- a2)3- ( th- 443 = 0 .

One can show 2=4 (tee F- ✗ CLO 1.3.11 )
,
and we call 9 a parametisation of V.

Note how this paiametrisation
"slices " along the y-axis instead . Whatkind of curves

do weget in the ✗2 plane when we do this ?

Note how

• V is much easier to visualise when we have aparametisation, but

• checking if PEV is much easier using the
" implicit

"

form of the

surfacegiven by x2- y 22-2+2-3
= 0 .

This leads to two questions which will be among the motivations forthis course :

Parametrisation Does agiven affine variety admit aparametrisation ? (
±" ʳwᵈ')
I

Implicitisation Given a parametric representation of an affine variety, can yes !
we determine a set of defining equations ? we'll prove it .


