Linearised Categories

Daniel Murfet

October 5, 2006

In this note we study several ways of turning a small category into a ringoid. We refer to such processes as *linearisation*, for lack of a better name. Although this material is very abstract, our main application is concrete: the category $\mathfrak{Mod}(X)$ of sheaves of modules over a scheme X can be viewed as a localisation of a category of modules over a ringoid, very naturally constructed from the structure sheaf of the scheme.

We freely use the notation and concepts introduced in our notes on Algebra in a Category. We allow noncommutative rings and noncommutative sheaves of rings. Throughout all additive topologies are right additive topologies (notation of our Localisation of Ringoids notes).

Contents

1	Quivers	1
2	Linearisation	2
3	Graded Linearisation	6

1 Quivers

Definition 1. A quiver is a tuple (Q, M, d) where Q is a nonempty set of vertices, M a set of arrows and $d: M \longrightarrow Q \times Q$ is a function. A quiver is *finite* if it has a finite number of vertices.

If f is an arrow and d(f) = (i, j) then we say f begins at i and ends at j, and write $f: i \longrightarrow j$. A composite arrow in the quiver Q is a nonempty sequence m_1, \ldots, m_p of arrows such that for each i, m_i ends where m_{i+1} begins. We write this composite arrow as $m_p m_{p-1} \ldots m_1$, and say that it begins where m_1 beings and ends where m_p ends. The collection of all composite arrows beginning at i and ending at j is denoted by $\kappa(i, j)$.

Definition 2 (Path category). We associate to any quiver Q a small category $\mathcal{C}(Q)$ called the *path category* of Q. The objects of $\mathcal{C}(Q)$ are the vertices of Q and for vertices i, j the set of morphisms $i \longrightarrow j$ in $\mathcal{C}(Q)$ is defined by

$$Hom(i,j) = \begin{cases} \kappa(i,j) & i \neq j, \\ \kappa(i,i) \cup 1_i & i = j \end{cases}$$

Composition is defined by concatentation of sequences, with the $1_i, i \in Q$ acting as identities.

Example 1. Consider the following examples of quivers and their categories:

- 1. If Q has a single vertex and no arrows, then $\mathcal{C}(Q)$ is the category with a single identity morphism.
- 2. If Q has a single vertex and one arrow x, then $\mathcal{C}(Q)$ has a single object and endomorphisms

 $1, x, x^2, x^3, \dots$

with composition defined by $x^n x^m = x^{n+m}$. This is the monoid N.

3. More generally, if Q has a single vertex and a set M of arrows, then $\mathcal{C}(Q)$ is the free monoid on the letters of M.

Definition 3. A morphism $F : Q \longrightarrow Q'$ between two quivers (Q, M, d) and (Q', M', d') is a pair F = (f, f') of functions $f : Q \longrightarrow Q'$ and $f' : M \longrightarrow M'$ which maps any arrow $i \longrightarrow j$ to an arrow $f(i) \longrightarrow f(j)$. Composition of morphisms is defined by composition of the component functions, and this defines the category **Qvr** of quivers.

It is not difficult to check that the process $Q \mapsto C(Q)$ defines a functor $\mathbf{Qvr} \longrightarrow \mathbf{Cat}$ from the category of quivers to the category of small categories, and that this functor is left adjoint to the forgetful functor $\mathbf{Cat} \longrightarrow \mathbf{Qvr}$.

2 Linearisation

Definition 4. Let R be a ring and C a small category. Define a category RC as follows: the objects of RC are the objects of C, and for $p, q \in C$ the set $Hom_{RC}(p,q)$ is the free R-module on the set $Hom_{\mathcal{C}}(p,q)$, realised as functions $Hom_{\mathcal{C}}(p,q) \longrightarrow R$ with finite support. We denote the function with a single nonzero value $r \in R$ on a morphism f by $r \cdot f$.

Composition is defined by $(r \cdot g)(s \cdot f) = rs \cdot gf$ for $f : p \longrightarrow q, g : q \longrightarrow s$ and $r, s \in R$. That is, for $\alpha \in Hom_{R\mathcal{C}}(p,q)$ and $\beta \in Hom_{R\mathcal{C}}(q,s)$ we define $\beta \alpha \in Hom_{R\mathcal{C}}(p,s)$ by

$$\beta \alpha(n) = \sum_{\substack{f:p \longrightarrow q \\ g:q \longrightarrow s \\ gf = n}} \beta(g) \alpha(f)$$

For $q \in \mathcal{C}$ the function $1 \cdot 1_q$ is the identity in $R\mathcal{C}$, and it is tedious but not difficult to check that this composition is associative, and therefore that $R\mathcal{C}$ is a preadditive category. The map $f \mapsto 1 \cdot f$ gives a faithful functor $\mathcal{C} \longrightarrow R\mathcal{C}$ and we identify \mathcal{C} with a subcategory of $R\mathcal{C}$ in this way. If R is commutative, then the canonical left R-module structure on the morphism sets makes $R\mathcal{C}$ into an R-algebroid.

Theorem 1. Let R be a ring and C a small category. Then there is a canonical isomorphism of categories

$$\Phi : \mathbf{Mod}R\mathcal{C} \longrightarrow (\mathbf{Mod}R)^{\mathcal{C}^{op}}$$
$$\Phi(F)(p) = F(p)$$

Proof. The abelian group F(p) is a right *R*-module via $x \cdot r = F(r \cdot 1_p)(x)$. For a morphism $f \in Hom_{\mathcal{C}}(p,q)$ we define $\Phi(F)(f) = F(f)$, which is easily seen to be a morphism of *R*-modules. Therefore $\Phi(F)$ is a contravariant functor. For $\phi: F \longrightarrow F'$ in **Mod** $R\mathcal{C}$ we define

$$\Phi(\phi): \Phi(F) \longrightarrow \Phi(F'), \qquad \Phi(\phi)_p = \phi_p: F(p) \longrightarrow F'(p')$$

This is clearly a natural transformation, and it is a pointwise morphism of R-modules since

$$\phi_p(x \cdot r) = \phi_p(F(r \cdot 1_p)(x)) = F'(r \cdot 1_p)(\phi_p(x)) = \phi_p(x) \cdot r$$

This defines the functor Φ , which is easily seen to be faithful. To see that it is full, notice that for $\alpha \in Hom_{RC}(p,q)$ and $F \in \mathbf{Mod}RC$ we have

$$F(\alpha) = F(\sum \alpha(f) \cdot f) = \sum F(\alpha(f) \cdot f) = \sum F(\alpha(f) \cdot 1_p)F(f)$$

Since Φ is trivially distinct on objects, to complete the proof it suffices to show that Φ is onto objects. Let a contravariant functor $T : \mathcal{C} \longrightarrow \mathbf{Mod}R$ be given. Define $T' : R\mathcal{C} \longrightarrow \mathbf{Ab}$ by T'(p) = T(p), and for $\alpha \in Hom_{R\mathcal{C}}(p,q)$ define $T'(\alpha) : T(q) \longrightarrow T(p)$ by

$$T'(\alpha)(x) = \sum_{f:p \longrightarrow q} T(f)(x) \cdot \alpha(f)$$

The only nontrivial property that needs checking is $T'(\beta \alpha) = T'(\alpha)T'(\beta)$ for $\beta \in Hom_{RC}(q, r)$ and $\alpha \in Hom_{RC}(p,q)$. This is notationally complicated but otherwise straightforward. Since $\Phi(T') = T$, this completes the proof.

Example 2. If G is a group considered as a category with one object, then $\mathbb{Z}G$ is a ring with elements $\sum_{g \in G} a_g g$ and multiplication $(\sum_g a_g g)(\sum_g b_g g) = \sum_h (\sum_{ij=k} a_i b_j)h$. In this case Theorem 1 reduces to the following familiar fact

$$\mathbf{Mod}\mathbb{Z}G = \mathbf{Ab}^{G^{\mathrm{op}}}$$

We now turn to a further generalisation of this construction which is treated briefly in [13], as is Theorem 2. In the above, there was a fixed ring R with respect to which all the morphism sets were free modules. More generally we can allow the ring to vary over the category C. To make the notation clearer, if P is a presheaf on a category C and $f : C \longrightarrow D$ then for $x \in P(D)$ we write $x|_f$ instead of P(f)(x).

Definition 5. Let C be a small category and R a presheaf of rings on C. Define a category RC as follows: the objects of RC are the objects of C, and for $p, q \in C$ the set $Hom_{RC}(p,q)$ is the free R(p)-module on the set $Hom_{\mathcal{C}}(p,q)$, realised as functions $Hom_{\mathcal{C}}(p,q) \longrightarrow R(p)$ with finite support. We denote the function with a single nonzero value $r \in R(p)$ on a morphism $f: p \longrightarrow q$ by $r \cdot f$.

Composition is defined by $(r \cdot g)(s \cdot f) = r|_f s \cdot gf$ for $f : p \longrightarrow q, g : q \longrightarrow s$ and $r \in R(q), s \in R(p)$. That is, for $\alpha \in Hom_{RC}(p,q)$ and $\beta \in Hom_{RC}(q,s)$ we define $\beta \alpha \in Hom_{RC}(p,s)$ by

$$\beta\alpha(n) = \sum_{\substack{f:p \longrightarrow q \\ g:q \longrightarrow s \\ qf=n}} \beta(g)|_f \alpha(f)$$

For $q \in \mathcal{C}$ the function $1 \cdot 1_q$ is the identity in $R\mathcal{C}$, and one checks that $R\mathcal{C}$ is a preadditive category in the same way as before. The map $f \mapsto 1 \cdot f$ gives a faithful functor $\mathcal{C} \longrightarrow R\mathcal{C}$ and we identify \mathcal{C} with a subcategory of $R\mathcal{C}$ in this way. Notice that for $r \in R(q)$ and $f : p \longrightarrow q$ we have $(r \cdot 1_q)f = r|_f \cdot f = f(r|_f \cdot 1_p)$ and $(r \cdot 1_p)(s \cdot 1_p) = rs \cdot 1_p$ for $p \in \mathcal{C}$.

Theorem 2. Let C be a small category and R a presheaf of rings on C. Then there is a canonical isomorphism of categories

$$\Psi : \mathbf{Mod}(P(\mathcal{C}); R) \longrightarrow \mathbf{Mod}R\mathcal{C}$$
$$\Psi(M)(p) = M(p)$$

Proof. Let M be a presheaf of right R-modules in $P(\mathcal{C})$. The contravariant functor $\Psi(M) : R\mathcal{C} \longrightarrow \mathbf{Ab}$ is given by $\Psi(M)(p) = M(p)$, where M(p) has the canonical abelian group structure. For a morphism $\alpha \in Hom_{R\mathcal{C}}(p,q)$ we define

$$\Psi(M)(\alpha)(x) = \sum_{f:p \longrightarrow q} x|_f \cdot \alpha(f)$$

It is not difficult to check that $\Psi(M)(\alpha)$ is a morphism of abelian groups, and it is clear that $\Psi(M)(1_p) = 1$. Checking that $\Psi(M)(\beta\alpha) = \Psi(M)(\alpha)\Psi(M)(\beta)$ and $\Psi(M)(\alpha + \beta) = \Psi(M)(\alpha) + \Psi(M)(\beta)$ is tedious but straightforward. This defines the functor Ψ on objects. Now let ϕ : $M \longrightarrow M'$ be a morphism of presheaves of right *R*-modules. This consists of a natural collection $\phi_p: M(p) \longrightarrow M'(p)$ of morphisms of R(p)-modules. Define $\Psi(\phi): \Psi(M) \longrightarrow \Psi(M')$ by

$$(\Psi\phi)_p(x) = \phi_p(x)$$

It is not hard to check that $\Psi(\phi)$ is a morphism of right *RC*-modules.

Therefore Ψ is a functor, which is clearly fully faithful and distinct on objects. To complete the proof that Ψ is an isomorphism of categories, we only need to show that it is onto objects. To this end, let $F : R\mathcal{C} \longrightarrow \mathbf{Ab}$ be additive and contravariant. We define $M \in \mathbf{Mod}(P(\mathcal{C}); R)$ in the obvious way: for $p \in \mathcal{C}$, M(p) is F(p) and for $f : p \longrightarrow q$ we set $M(f) = F(1 \cdot f)$. This makes M into a presheaf of abelian groups on \mathcal{C} . For $p \in \mathcal{C}$ we define the right R(p)-module structure on M(p) by $x \cdot r = F(r \cdot 1_p)(x)$. It is easy to check this makes M into a presheaf of right R-modules, with $\Psi(M) = F$. Therefore Ψ is an isomorphism and the proof is complete. \Box

Corollary 3. Let C be a small category and R a presheaf of rings on C. Then Mod(P(C); R) and (P(C); R)Mod are complete grothendieck abelian categories. The structures on both categories are described as follows

- **Zero** The zero object is the presheaf Z(p) = 0.
- **Kernel** If $\phi : M \longrightarrow N$ is a morphism of presheaves of modules, then $K(p) = Ker(\phi_p)$ defines a presheaf of modules, and the inclusion $K \longrightarrow M$ is the kernel of ϕ .
- **Cokernel** If $\phi : M \longrightarrow N$ is a morphism of presheaves of modules, then $C(p) = N(p)/Im(\phi_p)$ defines a presheaf of modules, and the projection $N \longrightarrow C$ is the cokernel of ϕ .
- **Limits** If D is a diagram of presheaves of modules, then define L(p) to be the limit of the diagram D(p) of modules. This becomes a presheaf of modules and the projections $L \longrightarrow D_i$ are a limit for the diagram.
- **Colimits** If D is a diagram of presheaves of modules, then define C(p) to be the colimit of the diagram D(p) of modules. This becomes a presheaf of modules and the injections $D_i \longrightarrow C$ are a colimit for the diagram.

Proof. The fact that both categories are complete grothendieck abelian follows from Theorem 2 and (ALCAT,Lemma 6). Using the isomorphism of Theorem 2 and the fact that we know structures are computed pointwise in module categories over ringoids, it is easy to check the remaining items. \Box

Definition 6. Let (\mathcal{C}, J) be a small site and R a sheaf of rings on \mathcal{C} . Let M be a sheaf of R-modules (right or left). A submodule of M is a monomorphism of sheaves of R-modules $\phi : N \longrightarrow M$ (right or left) with the property that for every $p \in \mathcal{C}$ the map $\phi_p : N(p) \longrightarrow M(p)$ is the inclusion of a subset. Every subobject of M is equivalent to a submodule. If N, N' are submodules of M then $N \leq N'$ if and only if $N(p) \subseteq N'(p)$ for every $p \in \mathcal{C}$.

Corollary 4. Let (\mathcal{C}, J) be a small site and R a sheaf of rings on \mathcal{C} . Then $(Sh_J(\mathcal{C}); R)$ **Mod** and $\mathbf{Mod}(Sh_J(\mathcal{C}); R)$ are complete grothendieck abelian categories. The structures on both categories are described as follows

- **Zero** The zero object is the presheaf Z(p) = 0.
- **Kernel** If $\phi : M \longrightarrow N$ is a morphism of sheaves of modules, then $K(p) = Ker(\phi_p)$ defines a sheaf of modules, and the inclusion $K \longrightarrow M$ is the kernel of ϕ .
- **Cokernel** If $\phi : M \longrightarrow N$ is a morphism of sheaves of modules, then $C(p) = N(p)/Im(\phi_p)$ defines a presheaf of modules, and the canonocal morphism $N \longrightarrow C \longrightarrow \mathbf{a}C$ is the cokernel of ϕ .
- **Limits** If D is a diagram of presheaves of modules, then define L(p) to be the limit of the diagram D(p) of modules. This becomes a sheaf of modules and the projections $L \longrightarrow D_i$ are a limit for the diagram.
- **Colimits** If D is a diagram of presheaves of modules, then define C(p) to be the colimit of the diagram D(p) of modules. This becomes a presheaf of modules and the morphisms $D_i \longrightarrow C \longrightarrow \mathbf{a}C$ are a colimit for the diagram.
- **Image** Let $\phi : M \longrightarrow N$ be a morphism of sheaves of modules and let I be the submodule of N defined by $n \in I(p)$ if and only if there exists $T \in J(p)$ such that $n|_h \in Im(\phi_q)$ for every $h: q \longrightarrow p$ in T. Then $I \longrightarrow N$ is the image of ϕ .

Inverse Image Let $\phi : M \longrightarrow N$ be a morphism of sheaves of modules and $T \longrightarrow N$ a submodule of N. Then the inverse image $\phi^{-1}T$ is the submodule of M defined by $(\phi^{-1}T)(p) = \phi_p^{-1}(T(p))$.

Proof. Since $(Sh_J(\mathcal{C}); R)$ **Mod** is a Giraud subcategory of $(P(\mathcal{C}); R)$ **Mod** and similarly for right modules (ALCAT, Section 2) the claims are all easily checked (AC, Section 3).

Example 3. We now apply some of the results of our note on Rings with Several Objects to ringoids of the form RC. Let C be a small category and R a presheaf of rings on C. The injective cogenerator Q of ModRC is explicitly given in (RSO, Section 3). For $p \in C$ this definition gives

$$\begin{aligned} Q(q) &= \prod_{p \in \mathcal{C}} Q_p(q) = \prod_p Hom_{\mathbf{Ab}} \left(Hom_{R\mathcal{C}}(p,q), \mathbb{Q}/\mathbb{Z} \right) \\ &= \prod_p Hom_{\mathbf{Ab}}(\oplus_{f:p \longrightarrow q} R(p), \mathbb{Q}/\mathbb{Z}) = \prod_{f:p \longrightarrow q} Hom_{\mathbf{Ab}}(R(p), \mathbb{Q}/\mathbb{Z}) \end{aligned}$$

In particular if S is a quiver, k is a ring, and C = C(S) then the category of k-representations of the quiver S is equivalent to the category of modules over the ringoid kC. The above formula shows that the injective cogenerator of the latter category is defined for a vertex $q \in S$ by

$$Q(q) = \prod_{\text{Paths ending at } q} Hom_{\mathbf{Ab}}(k, \mathbb{Q}/\mathbb{Z})$$

Theorem 5. Let (\mathcal{C}, J) be a small site and R a presheaf of rings on \mathcal{C} . For $p \in \mathcal{C}$ define the following subset of the right ideals at p in the ringoid $R\mathcal{C}$

$$J_R(p) = \{ \mathfrak{a} \, | \, S \subseteq \mathfrak{a} \text{ for some } S \in J(p) \}$$

We claim that J_R is an additive topology on RC, and that if R is a sheaf of rings there is a canonical isomorphism of categories

$$\Psi: \mathbf{Mod}(Sh_J(\mathcal{C}); R) \longrightarrow \mathbf{Mod}(R\mathcal{C}, J_R)$$
$$\Psi(M)(p) = M(p)$$

Proof. If \mathfrak{a} is a right ideal at p in $R\mathcal{C}$, and $f: p' \longrightarrow p$ is any morphism of \mathcal{C} that belongs to \mathfrak{a} , then $r \cdot f$ belongs to \mathfrak{a} for all $r \in R(p')$, since $r \cdot f = f(r \cdot 1)$. It is clear that $H_p \in J_R(p)$ for every $p \in \mathcal{C}$. To prove the stability condition, let $\alpha : p \longrightarrow q$ be a morphism in $R\mathcal{C}$ (which we may as well assume is nonzero) and suppose $\mathfrak{a} \in J_R(q)$, so there is $S \in J(q)$ with $S \subseteq \mathfrak{a}$. If $f_1, \ldots, f_n \in Hom_{\mathcal{C}}(p,q)$ is the support of α , then for $g \in \mathcal{C}$ we have

$$\alpha g = \left(\sum_{i} \alpha(f_i) \cdot f_i\right)g = \alpha(f_1)|_g \cdot f_1g + \dots + \alpha(f_n)|_g \cdot f_ng \tag{1}$$

If f_i^*S denotes the pullback in \mathcal{C} , then $f_i^*S \in J(p)$ for each *i*, since *S* is a cover and *J* is a topology. It follows from (1) that $\alpha^*\mathfrak{a} \supseteq \bigcap_{i=1}^n f_i^*S$ and therefore $\alpha^*\mathfrak{a} \in J_R(p)$, as required.

For the transitivity condition suppose that \mathfrak{a} is a right ideal at q, while $\mathfrak{b} \in J_R(q)$ is such that $\alpha^*\mathfrak{a} \in J_R(p)$ for every $\alpha : p \longrightarrow q \in \mathfrak{b}$. Let $S \in J(q)$ be such that $S \subseteq \mathfrak{b}$, and for each $f : p \longrightarrow q \in S$ let $S_f \in J(p)$ be the cover contained in $f^*\mathfrak{a}$. Then $\bigcup_{f \in S} fS_f$ is a cover in J(q) which is contained in \mathfrak{a} . This shows that $\mathfrak{a} \in J_R(q)$, which verifies the transitivity condition and shows that J_R is an additive topology.

By definition $\operatorname{Mod}(Sh_J(\mathcal{C}); R)$ is the full subcategory of $\operatorname{Mod}(P(\mathcal{C}); R)$ consisting of those presheaves of *R*-modules whose underlying presheaves of sets are *J*-sheaves. Using the isomorphism Ψ of Theorem 2, to complete the proof it suffices to show that $M \in \operatorname{Mod}(P(\mathcal{C}); R)$ is a *J*-sheaf iff. $\Psi(M)$ is J_R -closed. If $f \in \mathcal{C}$ then $-|_f$ denotes the action of M(f) or R(f), and if $\alpha \in R\mathcal{C}$ then $- \cdot \alpha$ denotes the action of $\Psi(M)(\alpha)$. If $r \in R(p)$ then $- \cdot r$ denotes the module action of r on M(p). Suppose that M is a sheaf of right modules over R, let $\mathfrak{a} \in J_R(p)$ be an additive cover, and suppose we have an additive matching family $\{x_\alpha\}_{\alpha \in \mathfrak{a}}$ for $\Psi(M)$. Let $S \in J(p)$ be the cover contained in \mathfrak{a} . Then $\{x_h\}_{h \in S}$ is a matching family for M, and since M is a J-sheaf there is a unique $x \in M(p)$ such that $x|_h = x_h$ for $h \in S$. To show that x is an amalgamation of the family $\{x_\alpha\}$ we have to show that $x \cdot \alpha = x_\alpha$ for all $\alpha \in \mathfrak{a}$. This is trivial for $\alpha = 0$, so let α have support $f_1, \ldots, f_n \in Hom_{\mathcal{C}}(q, p)$. Since J is a grothendieck topology, the sieve $T = \bigcap_{i=1}^n f_i^* S$ is a cover of q in \mathcal{C} . For $g \in T$ we have $\alpha g = \sum_i \alpha(f_i)|_g \cdot f_i g$, so

$$(x \cdot \alpha)|_g = x \cdot \alpha g = \sum_i x|_{f_i g} \cdot \alpha(f_i)|_g = \sum_i x_{f_i g} \cdot \alpha(f_i)|_g$$
$$= \sum_i x_{f_i g} \cdot (\alpha(f_i)|_g \cdot 1) = \sum_i x_{\alpha(f_i)|_g \cdot f_i g} = x_{\alpha g} = x_{\alpha}|_g$$

Since T is a cover of q and M is a sheaf for J, it follows that $x_{\alpha} = x \cdot \alpha$, as required. Uniqueness of x as an amalagamation of $\{x_{\alpha}\}$ is obvious, so we have shown that $\Psi(M)$ is J_R -closed.

Conversely suppose that $\Psi(M)$ is J_R -closed, and that $\{x_f\}_{f\in S}$ is a matching family for a cover $S \in J(p)$ in M. Let \mathfrak{a} be the right ideal at p in $R\mathcal{C}$ consisting of all morphisms $\alpha \in Hom_{R\mathcal{C}}(q, p)$ whose support is contained in S. It is clear that $\mathfrak{a} \in J_R(p)$. For $\alpha : q \longrightarrow p$ in \mathfrak{a} we define the following element of M(q)

$$x_{\alpha} = \sum_{f} x_{f} \cdot \alpha(f)$$

Note that for $f \in S$ this definition agrees with the matching family $\{x_f\}_{f \in S}$. We now check that the collection $\{x_\alpha\}_{\alpha \in \mathfrak{a}}$ is an additive matching family for $\Psi(M)$. It is clear that $x_{\alpha+\beta} = x_\alpha + x_\beta$, so suppose that $\alpha : q \longrightarrow p$ belongs to \mathfrak{a} and let $\beta : s \longrightarrow q$ be any morphism of \mathcal{RC} . Then

$$\begin{aligned} x_{\alpha} \cdot \beta &= \sum_{g} x_{\alpha}|_{g} \cdot \beta(g) = \sum_{g,f} (x_{f} \cdot \alpha(f))|_{g} \cdot \beta(g) \\ &= \sum_{g,f} (x_{f}|_{g} \cdot \alpha(f)|_{g}) \cdot \beta(g) = \sum_{g,f} x_{fg} \cdot \alpha(f)|_{g} \beta(g) = x_{\alpha\beta} \end{aligned}$$

This shows that $\{x_{\alpha}\}_{\alpha \in \mathfrak{a}}$ is an additive matching family, which has a unique amalgamation $x \in M(p)$ since $\Psi(M)$ is J_R -closed. Clearly x is also an amalgamation for $\{x_f\}_{f \in S}$, which is unique since if $y|_f = x_f$ for all $f \in S$ then for $\alpha : q \longrightarrow p \in \mathfrak{a}$ we would have

$$y \cdot \alpha = \sum_{f} y|_{f} \cdot \alpha(f) = \sum_{f} x_{f} \cdot \alpha(f) = x_{\alpha}$$

which would imply that y = x. We have shown that M is J-closed, which completes the proof. \Box

3 Graded Linearisation

Throughout this section a \mathbb{Z} -graded ring is a not necessarily commutative ring S together with subgroups S_d for $d \in \mathbb{Z}$ such that $S = \bigoplus_{d \in \mathbb{Z}} S_d$ as an abelian group, and $S_d S_e \subseteq S_{d+e}$ for all $d, e \in \mathbb{Z}$ and $1 \in S_0$. See (LOR,Section 8) for the definition of left and right graded S-modules.

Definition 7. Let S be a \mathbb{Z} -graded ring and C a small category. Define a category $S \circ C$ as follows: the objects of $S \circ C$ are ordered pairs (d, p) where $d \in \mathbb{Z}$ and $p \in C$, which we will often denote by p_d . For $p, q \in C$ and $d, e \in \mathbb{Z}$ the set $Hom_{S \circ C}(p_d, q_e)$ is the abelian group of functions $Hom_{\mathcal{C}}(p,q) \longrightarrow S_{e-d}$ with finite support and the pointwise operations. We denote the function with a single nonzero value $r \in S_{e-d}$ on a morphism f by $r \cdot f$.

Composition is defined by $(r \cdot g)(s \cdot f) = rs \cdot gf$ for $f : p \longrightarrow q, g : q \longrightarrow s$ and $r \in S_{a-e}, s \in S_{e-d}$. That is, for $\alpha \in Hom_{S \circ \mathcal{C}}(p_d, q_e)$ and $\beta \in Hom_{S \circ \mathcal{C}}(q_e, s_a)$ we define $\beta \alpha \in Hom_{S \circ \mathcal{C}}(p_d, s_a)$ by

$$\beta\alpha(n) = \sum_{\substack{f:p \longrightarrow q \\ g:q \longrightarrow s \\ gf = n}} \beta(g)\alpha(f)$$

For $q_d \in S \circ \mathcal{C}$ the function $1 \cdot 1_q$ is the identity, and it is not difficult to check that this composition is associative and that $S \circ \mathcal{C}$ is a preadditive category. For each morphism $f \in Hom_{\mathcal{C}}(p,q)$ and $e \in \mathbb{Z}$ we have the morphism $1 \cdot f \in Hom_{S \circ \mathcal{C}}(p_e, q_e)$, which we denote by f_e . For each $e \in \mathbb{Z}$ the map $f \mapsto f_e$ gives a faithful functor $\mathcal{C} \longrightarrow S \circ \mathcal{C}$.

Definition 8. Let (\mathcal{C}, J) be a small site and S a sheaf of \mathbb{Z} -graded rings. Define a category $S \circ \mathcal{C}$ as follows: the objects of $S \circ \mathcal{C}$ are ordered pairs (d, p) where $d \in \mathbb{Z}$ and $p \in \mathcal{C}$, which we will often denote by p_d . For $p, q \in \mathcal{C}$ and $d, e \in \mathbb{Z}$ the set $Hom_{S \circ \mathcal{C}}(p_d, q_e)$ is the abelian group of functions $Hom_{\mathcal{C}}(p,q) \longrightarrow S_{e-d}(p)$ with finite support and the pointwise operations. We denote the function with a single nonzero value $r \in S_{e-d}(p)$ on a morphism f by $r \cdot f$.

Composition is defined by $(r \cdot g)(s \cdot f) = r|_f s \cdot gf$ for $f : p \longrightarrow q, g : q \longrightarrow s$ and $r \in S_{a-e}(q), s \in S_{e-d}(p)$. That is, for $\alpha \in Hom_{S \circ \mathcal{C}}(p_d, q_e)$ and $\beta \in Hom_{S \circ \mathcal{C}}(q_e, s_a)$ we define $\beta \alpha \in Hom_{S \circ \mathcal{C}}(p_d, s_a)$ by

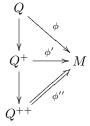
$$\beta\alpha(n) = \sum_{\substack{f:p \longrightarrow q \\ g:q \longrightarrow s \\ gf = n}} \beta(g)|_f \alpha(f)$$

For $q \in \mathcal{C}$ the function $1 \cdot 1_q$ is the identity in $S \circ \mathcal{C}$, and one checks that $S \circ \mathcal{C}$ is a preadditive category. For each morphism $f \in Hom_{\mathcal{C}}(p,q)$ and $e \in \mathbb{Z}$ we have the morphism $1 \cdot f \in Hom_{S \circ \mathcal{C}}(p_e, q_e)$, which we denote by f_e . The map $f \mapsto f_e$ gives a faithful functor $\mathcal{C} \longrightarrow S \circ \mathcal{C}$ for every $e \in \mathbb{Z}$. Notice that for $r \in S_d(q)$ and $f : p \longrightarrow q$ we have $(r \cdot 1_q)f_e = r|_f \cdot f = f_{d+e}(r|_f \cdot 1_p)$ and $(r \cdot 1_p)(s \cdot 1_p) = rs \cdot 1_p$ for $p \in \mathcal{C}$ and homogenous r, s. We also have $u \cdot f = f_d(u \cdot 1_p)$ where $u \in S_{d-e}(p)$ and $u \cdot f : p_e \longrightarrow q_d$.

Lemma 6. Let (\mathcal{C}, J) be a small site and M a sheaf of abelian groups together with subsheaves of abelian groups $M_n, n \in \mathbb{Z}$ such that the morphisms $M_n \longrightarrow M$ are a coproduct of sheaves of abelian groups. Then

- (i) For $p \in \mathcal{C}$ the induced morphism $\bigoplus_{n \in \mathbb{Z}} M_n(p) \longrightarrow M(p)$ is injective.
- (ii) For $p \in \mathcal{C}$ and $x \in M(p)$ there is $T \in J(p)$ such that for every $h : q \longrightarrow p \in T$, we have $x|_h \in \sum_{n \in \mathbb{Z}} M_n(q)$.

Proof. Let Q denote the canonical pointwise coproduct of the presheaves of abelian groups M_n , so that $Q(p) = \bigoplus_{n \in \mathbb{Z}} M_n(p)$. Let $\phi : Q \longrightarrow M$ be the morphism induced by the inclusions $M_n \longrightarrow M$, so that for $q \in \mathcal{C}$ we have $Im(\phi_q) = \sum_n M_n(q)$. The coproduct $\bigoplus_n M_n$ in $Ab(Sh_J(\mathcal{C}))$ is the plus construction applied twice to Q. Let $\phi' : Q^+ \longrightarrow M$ and $\phi'' : Q^{++} \longrightarrow M$ be the unique morphisms of presheaves of abelian groups making the respective triangles in the following diagram commute



By assumption ϕ'' is an isomorphism, and since Q is a separated sheaf the morphism $Q \longrightarrow Q^{++}$ is a monomorphism of presheaves of abelian groups, and therefore so is the composite ϕ which proves (i).

(*ii*) If $x \in M(p)$ there is $\{\mathbf{x}_f | f \in S\}$ in $Q^{++}(p)$ mapping to x. Using the explicit definition of ϕ'' this means that $x|_f = \phi'(\mathbf{x}_f)$ for every $f \in S$. Applying the definition again, for every $f: q \longrightarrow p$ in S there is $S_f \in J(q)$ such that $x|_{fg} = \phi(x_{f,g})$ for every $g: s \longrightarrow q \in S_f$, where $x_{f,g}$ is some element of Q(s). Set $T = \bigcup_{f \in S} fS_f$. Then $T \in J(p)$ has the required property. \Box **Theorem 7.** Let (\mathcal{C}, J) be a small site and S a sheaf of \mathbb{Z} -graded rings on \mathcal{C} . For $p \in \mathcal{C}$ and $d \in \mathbb{Z}$ define the following subset of the right ideals at p_d in the ringoid $S \circ \mathcal{C}$

$$J_S(p_d) = \{ \mathfrak{a} \, | \, T_d \subseteq \mathfrak{a} \text{ for some } T \in J(p) \}$$

where $T_d = \{f_d \mid f \in T\}$. We claim that J_S is an additive topology on $S \circ C$, and that there is a canonical equivalence of categories

$$\Phi : \mathbf{GrMod}(Sh_J(\mathcal{C}); S) \longrightarrow \mathbf{Mod}(S \circ \mathcal{C}, J_S)$$
$$\Phi(M)(p_d) = M_{-d}(p)$$

Proof. Note that if \mathfrak{a} is a right ideal at p_d in $S \circ C$, and if $f : q \longrightarrow p$ is a morphism of C with $f_d \in \mathfrak{a}$, then for $r \in S_{d-e}(q)$ the morphism $r \cdot f$ belongs to $Hom_{S \circ C}(q_e, p_d)$ since $r \cdot f = f_d(r \cdot 1_q)$. First we show that J_S defines an additive topology on $S \circ C$.

It is clear that J_S contains the maximal right ideal at p_d . To check the stability condition, let $\alpha : q_e \longrightarrow p_d$ be a morphism in $S \circ C$, which we may as well assume is nonzero with support $f_1, \ldots, f_n \in Hom_{\mathcal{C}}(q, p)$, and let $\mathfrak{a} \in J_S(p_d)$ contain T_d for some $T \in J(p)$. For $g \in C$ we have

$$\alpha g_e = \left(\sum_i \alpha(f_i) \cdot f_i\right) g_e = \alpha(f_1)|_g \cdot f_1 g + \dots + \alpha(f_n)|_g \cdot f_n g$$
(2)

If f_i^*T denotes the pullback in \mathcal{C} , then $f_i^*T \in J(q)$ for each *i*, since *T* is a cover and *J* is a topology. Therefore $Q = \bigcap_{i=1}^n f_i^*T$ belongs to J(q). It follows from (2) that $\alpha^*\mathfrak{a} \supseteq Q_e$ and therefore $\alpha^*\mathfrak{a} \in J_S(q_e)$, as required.

For the transitivity condition, suppose that \mathfrak{a} is a right ideal at p_d , while $\mathfrak{b} \in J_S(p_d)$ is such that $\alpha^*\mathfrak{a} \in J_S(q_e)$ for every $\alpha : q_e \longrightarrow p_d \in \mathfrak{b}$. Let $T \in J(p)$ be such that $T_d \subseteq \mathfrak{b}$, and for each $f : q \longrightarrow p \in T$ let $T_f \in J(q)$ be the cover with $(T_f)_d \subseteq f_d^*\mathfrak{a}$. Then $Q = \bigcup_{f \in T} fT_f$ is a cover in J(p) with $Q_d \subseteq \mathfrak{a}$. Therefore $\mathfrak{a} \in J_S(p_d)$, which shows that J_S is an additive topology.

Now we have to define the functor Φ . Let M be a sheaf of graded right R-modules and define a right $S \circ C$ -module $\Phi(M)$ on objects by $\Phi(M)(p_d) = M_{-d}(p)$ (note the inverted "grading"). For a morphism $\alpha \in Hom_{S \circ C}(q_e, p_d)$ we define

$$\begin{split} \Phi(M)(\alpha) &: M_{-d}(p) \longrightarrow M_{-e}(q) \\ \Phi(M)(\alpha)(x) &= \sum_{f:q \longrightarrow p} x|_f \cdot \alpha(f) \end{split}$$

It is not hard to check that with this definition, $\Phi(M)$ is a right $S \circ C$ -module. Notice that $\Phi(M)(f_d)(x) = x|_f$ for $f : q \longrightarrow p$. If $\psi : M \longrightarrow N$ is a morphism of sheaves of graded right R-modules, define

$$\Phi(\psi) : \Phi(M) \longrightarrow \Phi(N)$$

$$\Phi(\psi)_{p_d} : M_{-d}(p) \longrightarrow N_{-d}(p)$$

$$x \mapsto \psi_p(x)$$

This is a morphism of right $S \circ C$ -modules, and to show that Φ is a well-defined functor it only remains to show that $\Phi(M)$ is J_S -closed. As in the proof of Theorem 5 we denote the presheaf restriction on M, R by $-|_f$ and write $- \cdot \alpha$ and $- \cdot r$ for the module action of $S \circ C$ on $\Phi(M)$ and R on M respectively.

Let $\mathfrak{a} \in J_S(p_d)$ and suppose we have an additive matching family $\{x_\alpha\}_{\alpha \in \mathfrak{a}}$ for $\Phi(M)$. To be clear, note that if $\alpha : q_e \longrightarrow p_d$ then $x_\alpha \in M_{-e}(q)$. Let $T \in J(p)$ be such that $T_d \subseteq \mathfrak{a}$ and set $x_h = x_{h_d}$ for $h \in T$. Then $\{x_h\}_{h \in T}$ is a matching family for the sheaf of abelian groups M_{-d} , which therefore has a unique amalgamation $x \in M_{-d}(p) = \Phi(M)(p_d)$. To show that x is the unique amalgamation of the family $\{x_\alpha\}$ we have to show that $x \cdot \alpha = x_\alpha$ for all $\alpha \in \mathfrak{a}$. This follows in the same way as in the proof of Theorem 5. Therefore $\Phi(M)$ is J_S -closed.

It only remains to show that Φ is an equivalence. It is easy to check that Φ is faithful. To see that it is full, let $\gamma : \Phi(M) \longrightarrow \Phi(N)$ be a morphism of right $S \circ C$ -modules. For every $d \in \mathbb{Z}$ and

 $p \in \mathcal{C}, \gamma_{p_{-d}} : M_d(p) \longrightarrow N_d(p)$ is a morphism of abelian groups. Together these give a morphism of sheaves of abelian groups $\Gamma_d : M_d \longrightarrow N_d$, which induce a morphism of sheaves of abelian groups $\Gamma = \bigoplus_{d \in \mathbb{Z}} \Gamma_d : M \longrightarrow N$. To show this is a morphism of sheaves of graded right S-modules it suffices to show it is a morphism of right S-modules. Using Lemma 6 we reduce to checking that $\Gamma_{n+d,p}(m \cdot s) = \Gamma_{n,p}(m) \cdot s$ for $p \in \mathcal{C}, m \in M_n(p)$ and $s \in S_d(p)$. But

$$\Gamma_{n+d,p}(m \cdot s) = \gamma_{p_{-n-d}}(m \cdot s) = \gamma_{p_{-n-d}}(m \cdot (s \cdot 1))$$
$$= \gamma_{p_{-n}}(m) \cdot (s \cdot 1) = \gamma_{p_{-n}}(m) \cdot s = \Gamma_{n,p}(m) \cdot s$$

It is clear that $\Phi(\Gamma) = \gamma$, so Φ is full.

To complete the proof, it only remains to show that Φ is representative. Let F be a J_S -closed right $S \circ C$ -module and for fixed $n \in \mathbb{Z}$ define a presheaf of abelian groups M_n on C by

$$M_n(p) = F(p_{-n})$$
$$m|_f = m \cdot f_{-n}$$

we claim that M_n is a sheaf of abelian groups. Let $S \in J(p)$ be given, together with a matching family $\{x_f\}_{f \in S}$ for M_n . Let $\mathfrak{a} \in J_S(p_{-n})$ be the right ideal consisting of all morphisms whose support belongs to S. For $\alpha : q_e \longrightarrow p_{-n} \in \mathfrak{a}$ we define

$$x_{\alpha} = \sum_{\substack{f:q \longrightarrow p \\ f \in S}} x_f \cdot (\alpha(f) \cdot 1_q)$$

This defines an additive matching family $\{x_{\alpha}\}_{\alpha \in \mathfrak{a}}$ which agrees with $\{x_f\}$ on morphisms $\alpha = h_n$ for $h \in S$. Since F is J_S -closed, there is a unique amalgamation $x \in F(p_{-n}) = M_n(p)$ which is a unique amalgamation for $\{x_f\}_{f \in S}$ as well. This shows that M_n is a J-sheaf. Let M be the coproduct of presheaves of abelian groups

$$M = \bigoplus_{n \in \mathbb{Z}} M_n$$
$$M(p) = \bigoplus_{n \in \mathbb{Z}} F(p_{-n})$$

Make the coproduct of presheaves of abelian groups $A = \bigoplus_{n \in \mathbb{Z}} S_n$ into a presheaf of rings in the canonical way (see (ALCAT, Section 2)). Then M becomes a presheaf of right A-modules by defining for $p \in C$, $(m_n) \in M(p)$ and $s \in A(p)$

$$\{(m_n)\cdot(s_n)\}_i=\sum_{x+y=i}m_x\cdot(s_y\cdot 1_p)$$

The sheaf of abelian groups $\mathbf{a}M$ is then canonically a sheaf of right modules over $\mathbf{a}A$, which is a sheaf of \mathbb{Z} -graded rings isomorphic as a sheaf of \mathbb{Z} -graded rings to S (ALCAT,Section 2). Since $\mathbf{Ab}(Sh_J(\mathcal{C}))$ is a Giraud subcategory of $\mathbf{Ab}(P(\mathcal{C}))$, the morphisms $M_n \longrightarrow M \longrightarrow \mathbf{a}M$ are a coproduct in $\mathbf{Ab}(Sh_J(\mathcal{C}))$ (ALCAT,Section 2), (AC,Proposition 63) and with these subsheaves of abelian groups, $\mathbf{a}M$ becomes a sheaf of graded right S-modules via $\mathbf{a}A \cong S$. It is not difficult to check that $\Phi(\mathbf{a}M) \cong F$, which completes the proof.

Definition 9. Let (\mathcal{C}, J) be a small site and S a sheaf of \mathbb{Z} -graded rings on \mathcal{C} . If M is a sheaf of graded S-modules (right or left) then a graded submodule of M is an S-submodule $\phi : N \longrightarrow M$ with the property that the collection of subsheaves of abelian groups $\phi^{-1}M_n \longrightarrow N$ is a coproduct of sheaves of abelian groups. Together with these subsheaves it is clear that N is a sheaf of graded S-modules and ϕ a morphism of sheaves of graded S-modules.

Lemma 8. Let (\mathcal{C}, J) be a small site and S a sheaf of \mathbb{Z} -graded rings on \mathcal{C} . Let $\phi : N \longrightarrow M$ be a morphism of sheaves of graded S-modules (right or left). Then N is a graded submodule of M if and only if it is a submodule of M.

Proof. One implication is trivial. Suppose that N is a submodule of M. To show it is a graded submodule we need only show that $N_n = \phi^{-1}M_n$ for every $n \in \mathbb{Z}$. It is clear that $N_n \subseteq \phi^{-1}M_n$. So suppose that $p \in \mathcal{C}$ and $x \in N(p)$ is such that $\phi_p(x) \in M_n(p)$. By Lemma 6 there is $T \in J(p)$ such that for every $h: q \longrightarrow p$ in T we have $x|_h \in \sum_i N_i(q)$. Since the sum $\sum_i N_i(q)$ is direct by Lemma 6 (i) there are well-defined $x_{h,i} \in N_i(q)$ such that $x|_h = \sum_i x_{h,i}$. Then by assumption

$$\sum_{i} \phi_q(x_{h,i}) = \phi_p(x)|_h \in M_n(q)$$

Part (i) of Lemma 6 and the fact that ϕ is a monomorphism implies that $x_{h,i} = 0$ for $i \neq n$, so $x|_h \in N_n(q)$. Since N_n is a subsheaf of N and T a cover of p, this shows that $x \in N_n(p)$ as required.

Remark 1. The argument of the above proof shows further that if $\phi : N \longrightarrow M$ is any morphism of sheaves of graded S-modules (right or left) and $y \in M_n(p)$ belongs to the image of $\phi_p : N(p) \longrightarrow M(p)$, then there is $T \in J(p)$ such that for every $h : q \longrightarrow p$ in T we have $y|_h = \phi_q(x)$ for some $x \in N_n(q)$.

Corollary 9. Let (\mathcal{C}, J) be a small site and S a sheaf of \mathbb{Z} -graded rings on \mathcal{C} . Then the internal graded module categories $(Sh_J(\mathcal{C}); S)$ **GrMod** and **GrMod** $(Sh_J(\mathcal{C}); S)$ are complete grothendieck abelian. The structures on both categories are described as follows

Zero The zero object is the sheaf Z(p) = 0 with $Z_n = 0$ for all $n \in \mathbb{Z}$.

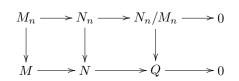
- **Kernel** If $\phi : M \longrightarrow N$ is a morphism of sheaves of graded S-modules then the subgroups $K_n(p) = Ker(\phi_p) \cap M_n(p)$ define a subsheaf of abelian groups $K_n \subseteq K$ of the kernel $K \longrightarrow M$ of sheaves of modules, and these subsheaves make K a sheaf of graded S-modules and $K \longrightarrow M$ the kernel of ϕ .
- **Cokernel** If $\phi : M \longrightarrow N$ is a morphism of sheaves of graded S-modules, let $\mu : N \longrightarrow Q$ be the cokernel of sheaves of modules. Let Q_n be the subsheaf of abelian groups given by the image of the composite $N_n \longrightarrow N \longrightarrow Q$. Then Q is a sheaf of graded S-modules and μ is the cokernel of ϕ .
- **Coproduct** Let $\{M_i\}_{i \in I}$ be a nonempty family of sheaves of graded S-modules and $\bigoplus_i M_i$ the coproduct of sheaves of S-modules. The morphisms $(M_i)_n \longrightarrow M_i \longrightarrow \bigoplus_i M_i$ are a coproduct of sheaves of abelian groups, and $\bigoplus_i M_i$ is a sheaf of graded S-modules with degree n subsheaf the image of $\bigoplus_i (M_i)_n \longrightarrow \bigoplus_i M_i$.
- **Image** If $\phi : M \longrightarrow N$ is a morphism of sheaves of graded S-modules then the image $I \longrightarrow N$ of sheaves of modules is a graded submodule of N, and is the image of ϕ .
- **Exact Sequence** A sequence of sheaves of graded S-modules $M' \longrightarrow M \longrightarrow M''$ is exact if and only if it is exact as a sequence of sheaves of S-modules.

Proof. It follows immediately from (LOR,Corollary 17), Theorem 7 and (ALCAT,Lemma 7) that both categories are complete grothendieck abelian. In what follows, fix a morphism $\phi : M \longrightarrow N$ of sheaves of graded S-modules.

Let $K_n(p) = Ker(\phi_p) \cap M_n(p)$ be the sheaf of abelian groups described above. We claim that the kernel K of $\phi : M \longrightarrow N$ considered as a morphism of sheaves of S-modules, together with the subsheaves K_n , is a sheaf of graded S-modules. This follows from the fact that $Ab(Sh_J(\mathcal{C}))$ is grothendieck abelian, so taking coproducts preserves kernels. It is now easy to see that $K \longrightarrow M$ is a morphism of sheaves of graded S-modules and is the kernel of ϕ .

Now for the cokernel. The cokernel $\mu : N \longrightarrow Q$ of sheaves of modules is also the cokernel of sheaves of abelian groups. For each n let $\mu_n : N_n \longrightarrow N_n/M_n$ be the cokernel of $\phi_n : M_n \longrightarrow N_n$ in the category of sheaves of abelian groups. Then for every n we have a commutative diagram

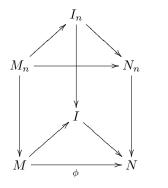
with exact rows in $\mathbf{Ab}(Sh_J(\mathcal{C}))$



Since coproducts preserve cokernels it follows that the morphisms $N_n/M_n \longrightarrow Q$ are a coproduct of sheaves of abelian groups, and it is not difficult to check that Q together with the images of these subsheaves is a sheaf of graded S-modules, and moreover that $\mu : N \longrightarrow Q$ is the cokernel of ϕ .

For the coproduct, it is clear that the morphisms $(M_i)_n \longrightarrow M_n \longrightarrow \bigoplus_i M_i$ are a coproduct of sheaves of abelian groups, hence so are the induced morphisms $\bigoplus_i (M_i)_n \longrightarrow \bigoplus_i M_i$ for $n \in \mathbb{Z}$. Let $(\bigoplus_i M_i)_n$ denote the image of this morphism of sheaves of abelian groups. Then it is not hard to check the morphisms $M_i \longrightarrow \bigoplus_i M_i$ are a coproduct of sheaves of graded S-modules.

For the image, let $I \longrightarrow N$ be the image of ϕ considered as a morphism of sheaves of S-modules. Since the epimorphism $M \longrightarrow I$ is the cokernel of the kernel of ϕ , it follows from the above construction of the cokernel that I together with the subsheaves of abelian groups given by the images of $M_n \longrightarrow M \longrightarrow I$ is a sheaf of graded S-modules and $M \longrightarrow I$ is an epimorphism of sheaves of graded S-modules. For $n \in \mathbb{Z}$ denote by I_n the image of $\phi_n : M_n \longrightarrow N_n$. It follows from Remark 1 that $I_n = I \cap N_n$. So we have a commutative diagram



(3)

Therefore $I \longrightarrow N$ is a monomorphism of sheaves of graded S-modules and we have shown that this morphism is the image of ϕ .

Remark 2. Let (\mathcal{C}, J) be a small site and S a sheaf of \mathbb{Z} -graded rings on \mathcal{C} . If M is a sheaf of graded S-modules (right or left) then every subobject of M is equivalent to a graded submodule. If N, N' are graded submodules of M then $N \leq N'$ if and only if $N(p) \subseteq N'(p)$ for every $p \in \mathcal{C}$.

Corollary 10. Let (\mathcal{C}, J) be a small site, S a sheaf of \mathbb{Z} -graded rings and $\phi : M \longrightarrow N$ a morphism of sheaves of graded S-modules (right or left). Then ϕ is a monomorphism, epimorphism or isomorphism if and only if it has this property as a morphism of sheaves of S-modules (equivalently, as a morphism of sheaves of abelian groups). In particular

- ϕ is a monomorphism $\Leftrightarrow \phi_p$ is injective for all $p \in C$.
- ϕ is an epimorphism $\Leftarrow \phi_p$ is surjective for all $p \in C$.
- ϕ is an isomorphism $\Leftrightarrow \phi_p$ is bijective for all $p \in C$.

Proof. This is immediate from the fact that the category of sheaves of graded S-modules is abelian (therefore balanced) and the kernels and cokernels agree with those of sheaves of modules, which agree with the kernels and cokernels for sheaves of abelian groups. \Box

Lemma 11. Let (\mathcal{C}, J) be a small site, S a sheaf of \mathbb{Z} -graded rings and $\phi : M \longrightarrow N$ a morphism of sheaves of graded S-modules (right or left). Then

- ϕ is a monomorphism $\Leftrightarrow \phi_n : M_n \longrightarrow N_n$ is a monomorphism for all $n \in \mathbb{Z}$.
- ϕ is an epimorphism $\Leftrightarrow \phi_n : M_n \longrightarrow N_n$ is a epimorphism for all $n \in \mathbb{Z}$.
- ϕ is an isomorphism $\Leftrightarrow \phi_n : M_n \longrightarrow N_n$ is a isomorphism for all $n \in \mathbb{Z}$.

Proof. The implications \Leftarrow all follow from Corollary 10 and the fact that coproducts in $\operatorname{Ab}(Sh_J(\mathcal{C}))$ are exact. If ϕ is a monomorphism (resp. isomorphism) it is not difficult to check that ϕ_n is a monomorphism (resp. isomorphism) of sheaves of abelian groups. Suppose that ϕ is an epimorphism. Then the image $I \longrightarrow N$ is an isomorphism. But using (3) we see that $I_n \longrightarrow N_n$ is an isomorphism for $n \in \mathbb{Z}$. Since this is the image of $\phi_n : M_n \longrightarrow N_n$ it follows that ϕ_n is an epimorphism for all $n \in \mathbb{Z}$.

References

- M. Artin, "Théorèmes de représentabilité pour les espaces algébriques", Les Presses de l'université de Montreal (1973).
- [2] M. Artin, "Geometry of quantum planes", Contemporary Mathematics Vol.124 (1992).
- [3] M. Artin, J. J. Zhang, "Noncommutative projective schemes", preprint (1994).
- [4] F. Borceux, "Handbook of Categorical Algebra", Cambridge University Press Vol. 1-3 (1994).
- [5] F. Borceux, B. Veit, "Subobject Classifier for Algebraic Structures", Journal of algebra Vol. 112 (1988), 306-314.
- [6] F. Borceux, G. Van den Bossche, "Algebra in a Localic Topos with Applications to Ring Theory", Springer-Verlag, Lecture Notes in Mathematics No. 1038 (1983).
- [7] P. Cartier, "A Mad Day's Work: From Grothendieck to Connes and Kontsevich, The Evolution of Concepts of Space and Symmetry", Bulletin of the American Mathematical Society Vol. 38 No. 4, 389-408.
- [8] A. Connes, "Noncommutative Geometry", Academic Press (1994).
- [9] A. Connes, "Noncommutative differential geometry and the structure of spacetime", *Deformation Theory and Symplectic Geometry*, Edited by Sternheimer et al. (1997), 1-33.
- [10] V.G. Drinfeld, "Quantum Groups", Proc. Int. Cong. Math. (1986), 798-820.
- [11] B. Eckmann, A. Schopf, "Über injektive Moduln", Arch. Math. Vol. 4 (1953), 75-78.
- [12] R. Fossum, P. Griffith, I. Reiten "Trivial extensions of Abelian categories: homological algebra of trivial extensions of abelian categories with applications to ring theory", Springer (1975).
- [13] D. Howe, "Module categories over topoi", Journal of Pure and Applied Algebra Vol. 21 (1981), 161-165.
- [14] P. Gabriel, "Des catégories abéliennes", Bull. Soc. Math. France Vol. 90 (1962), 323-449.
- [15] I.M. Gelfand, M.A. Naimark, "On the imbedding of normed rings into the ring of operators in Hilbert space", Mat.Sb. Vol. 12 (1943), 197-213.
- [16] A. Grothendieck, "Sur quelques points d'algébre homologique", Tohoku Math. J. (2) Vol. 9 (1957), 119-221
- [17] A. Grothendieck, "Elements de geometrie algebrique", Springer (1971).
- [18] N. Popescu, P. Gabriel, "Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes", C.R. Acad. Sci. Paris 258 (1964), 4188-4190.

- [19] R. Hartshorne, "Algebraic Geometry", Springer, Graduate Texts in Mathematics No. 52 (1977).
- [20] S. Mac Lane "Duality for Groups", Bull. Amer. Math. Soc. Vol. 56 (1950), 485-516.
- [21] S. Mac Lane, I. Moerdijk, "Sheaves in Geometry and Logic: A first introduction to topos theory", Springer-Verlag (1991).
- [22] Yuri I. Manin, "Quantum Groups and Noncommutative Geometry", *Publications du C.R.M*, Univ. de Montreal (1988).
- [23] Yuri I. Manin, "Topics in Noncommutative Geometry", Princeton University Press (1991).
- [24] E. Mendelson, "Introduction to Mathematical Logic", Chapman & Hall (1997)
- [25] B. Mitchell, "Theory of Categories", Academic Press (1965).
- [26] B. Mitchell, "Rings with Several Objects", Advances in Mathematics Vol. 8 (1972), 1-161.
- [27] B. Mitchell, "A Quick Proof of the Gabriel-Popesco Theorem", Journal of Pure and Applied Algebra Vol. 20 (1981), 313-315.
- [28] F. Van Oystaeyen, L. Willaert, "Grothendieck topology, Coherent sheaves and Serre's theorem for schematic algebras", J. Pure and Applied Algebra Vol. 104 (1995), 109-122.
- [29] A. L. Rosenberg, "Reconstruction of Schemes", MPI (1996).
- [30] H. Schubert, "Categories", Springer-Verlag (1972).
- [31] J.P. Serre, "Faisceaux algébriques cohérents", Annals of Math. Vol. 62 (1955).
- [32] P. Smith, "Noncommutative Algebraic Geometry", Online notes: http://www.math.washington.edu/~smith/Research/nag.pdf
- [33] B. Stenström, "Rings of Quotients: An Introduction to Methods of Rings Theory", Springer-Verlag (1975).
- [34] R. Street, "Ideals, Radicals, and Structure of Additive Categories", Applied Categorical Structures Vol. 3 (1995), 139-149.
- [35] S. Sun, A. Dhillon, "Prime spectra of additive categories", Journal of Pure and Applied Algebra Vol. 122 (1997), 135-157.
- [36] A.B. Verevkin, "On a noncommutative analogue of the category of coherent sheaves on a projective scheme", *Amer. Math. Soc. Transl. (2)* Vol.151 (1992).
- [37] A.B. Verevkin, "Serre injective sheaves", Math. Zametki Vol. 52 (1992), 35-41.