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In this note we study several ways of turning a small category into a ringoid. We refer to such
processes as linearisation, for lack of a better name. Although this material is very abstract, our
main application is concrete: the category Mod(X) of sheaves of modules over a scheme X can be
viewed as a localisation of a category of modules over a ringoid, very naturally constructed from
the structure sheaf of the scheme.

We freely use the notation and concepts introduced in our notes on Algebra in a Category.
We allow noncommutative rings and noncommutative sheaves of rings. Throughout all additive
topologies are right additive topologies (notation of our Localisation of Ringoids notes).
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1 Quivers

Definition 1. A quiver is a tuple (Q,M, d) where Q is a nonempty set of vertices, M a set of
arrows and d : M −→ Q×Q is a function. A quiver is finite if it has a finite number of vertices.

If f is an arrow and d(f) = (i, j) then we say f begins at i and ends at j, and write f : i −→ j.
A composite arrow in the quiver Q is a nonempty sequence m1, . . . ,mp of arrows such that for
each i, mi ends where mi+1 begins. We write this composite arrow as mpmp−1 . . .m1, and say
that it begins where m1 beings and ends where mp ends. The collection of all composite arrows
beginning at i and ending at j is denoted by κ(i, j).

Definition 2 (Path category). We associate to any quiver Q a small category C(Q) called
the path category of Q. The objects of C(Q) are the vertices of Q and for vertices i, j the set of
morphisms i −→ j in C(Q) is defined by

Hom(i, j) =

{
κ(i, j) i 6= j,

κ(i, i) ∪ 1i i = j

Composition is defined by concatentation of sequences, with the 1i, i ∈ Q acting as identities.

Example 1. Consider the following examples of quivers and their categories:

1. If Q has a single vertex and no arrows, then C(Q) is the category with a single identity
morphism.

2. If Q has a single vertex and one arrow x, then C(Q) has a single object and endomorphisms

1, x, x2, x3, . . .

with composition defined by xnxm = xn+m. This is the monoid N.
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3. More generally, if Q has a single vertex and a set M of arrows, then C(Q) is the free monoid
on the letters of M .

Definition 3. A morphism F : Q −→ Q′ between two quivers (Q,M, d) and (Q′,M ′, d′) is a
pair F = (f, f ′) of functions f : Q −→ Q′ and f ′ : M −→ M ′ which maps any arrow i −→ j to
an arrow f(i) −→ f(j). Composition of morphisms is defined by composition of the component
functions, and this defines the category Qvr of quivers.

It is not difficult to check that the process Q 7→ C(Q) defines a functor Qvr −→ Cat from the
category of quivers to the category of small categories, and that this functor is left adjoint to the
forgetful functor Cat −→ Qvr.

2 Linearisation

Definition 4. Let R be a ring and C a small category. Define a category RC as follows: the
objects of RC are the objects of C, and for p, q ∈ C the set HomRC(p, q) is the free R-module on
the set HomC(p, q), realised as functions HomC(p, q) −→ R with finite support. We denote the
function with a single nonzero value r ∈ R on a morphism f by r · f .

Composition is defined by (r · g)(s · f) = rs · gf for f : p −→ q, g : q −→ s and r, s ∈ R. That
is, for α ∈ HomRC(p, q) and β ∈ HomRC(q, s) we define βα ∈ HomRC(p, s) by

βα(n) =
∑

f :p−→q
g:q−→s
gf=n

β(g)α(f)

For q ∈ C the function 1 · 1q is the identity in RC, and it is tedious but not difficult to check that
this composition is associative, and therefore that RC is a preadditive category. The map f 7→ 1 ·f
gives a faithful functor C −→ RC and we identify C with a subcategory of RC in this way. If R is
commutative, then the canonical left R-module structure on the morphism sets makes RC into an
R-algebroid.

Theorem 1. Let R be a ring and C a small category. Then there is a canonical isomorphism of
categories

Φ : ModRC −→ (ModR)C
op

Φ(F )(p) = F (p)

Proof. The abelian group F (p) is a right R-module via x · r = F (r · 1p)(x). For a morphism
f ∈ HomC(p, q) we define Φ(F )(f) = F (f), which is easily seen to be a morphism of R-modules.
Therefore Φ(F ) is a contravariant functor. For φ : F −→ F ′ in ModRC we define

Φ(φ) : Φ(F ) −→ Φ(F ′), Φ(φ)p = φp : F (p) −→ F ′(p′)

This is clearly a natural transformation, and it is a pointwise morphism of R-modules since

φp(x · r) = φp(F (r · 1p)(x)) = F ′(r · 1p)(φp(x)) = φp(x) · r

This defines the functor Φ, which is easily seen to be faithful. To see that it is full, notice that for
α ∈ HomRC(p, q) and F ∈ ModRC we have

F (α) = F (
∑

α(f) · f) =
∑

F (α(f) · f) =
∑

F (α(f) · 1p)F (f)

Since Φ is trivially distinct on objects, to complete the proof it suffices to show that Φ is onto
objects. Let a contravariant functor T : C −→ ModR be given. Define T ′ : RC −→ Ab by
T ′(p) = T (p), and for α ∈ HomRC(p, q) define T ′(α) : T (q) −→ T (p) by

T ′(α)(x) =
∑

f :p−→q

T (f)(x) · α(f)
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The only nontrivial property that needs checking is T ′(βα) = T ′(α)T ′(β) for β ∈ HomRC(q, r)
and α ∈ HomRC(p, q). This is notationally complicated but otherwise straightforward. Since
Φ(T ′) = T , this completes the proof.

Example 2. If G is a group considered as a category with one object, then ZG is a ring with ele-
ments

∑
g∈G agg and multiplication (

∑
g agg)(

∑
g bgg) =

∑
h(

∑
ij=k aibj)h. In this case Theorem

1 reduces to the following familiar fact

ModZG = AbGop

We now turn to a further generalisation of this construction which is treated briefly in [13], as
is Theorem 2. In the above, there was a fixed ring R with respect to which all the morphism sets
were free modules. More generally we can allow the ring to vary over the category C. To make
the notation clearer, if P is a presheaf on a category C and f : C −→ D then for x ∈ P (D) we
write x|f instead of P (f)(x).

Definition 5. Let C be a small category and R a presheaf of rings on C. Define a category RC
as follows: the objects of RC are the objects of C, and for p, q ∈ C the set HomRC(p, q) is the
free R(p)-module on the set HomC(p, q), realised as functions HomC(p, q) −→ R(p) with finite
support. We denote the function with a single nonzero value r ∈ R(p) on a morphism f : p −→ q
by r · f .

Composition is defined by (r · g)(s · f) = r|fs · gf for f : p −→ q, g : q −→ s and r ∈ R(q), s ∈
R(p). That is, for α ∈ HomRC(p, q) and β ∈ HomRC(q, s) we define βα ∈ HomRC(p, s) by

βα(n) =
∑

f :p−→q
g:q−→s
gf=n

β(g)|fα(f)

For q ∈ C the function 1 ·1q is the identity in RC, and one checks that RC is a preadditive category
in the same way as before. The map f 7→ 1 · f gives a faithful functor C −→ RC and we identify
C with a subcategory of RC in this way. Notice that for r ∈ R(q) and f : p −→ q we have
(r · 1q)f = r|f · f = f(r|f · 1p) and (r · 1p)(s · 1p) = rs · 1p for p ∈ C.

Theorem 2. Let C be a small category and R a presheaf of rings on C. Then there is a canonical
isomorphism of categories

Ψ : Mod(P (C);R) −→ ModRC
Ψ(M)(p) = M(p)

Proof. Let M be a presheaf of right R-modules in P (C). The contravariant functor Ψ(M) : RC −→
Ab is given by Ψ(M)(p) = M(p), where M(p) has the canonical abelian group structure. For a
morphism α ∈ HomRC(p, q) we define

Ψ(M)(α)(x) =
∑

f :p−→q

x|f · α(f)

It is not difficult to check that Ψ(M)(α) is a morphism of abelian groups, and it is clear that
Ψ(M)(1p) = 1. Checking that Ψ(M)(βα) = Ψ(M)(α)Ψ(M)(β) and Ψ(M)(α + β) = Ψ(M)(α) +
Ψ(M)(β) is tedious but straightforward. This defines the functor Ψ on objects. Now let φ :
M −→M ′ be a morphism of presheaves of right R-modules. This consists of a natural collection
φp : M(p) −→M ′(p) of morphisms of R(p)-modules. Define Ψ(φ) : Ψ(M) −→ Ψ(M ′) by

(Ψφ)p(x) = φp(x)

It is not hard to check that Ψ(φ) is a morphism of right RC-modules.
Therefore Ψ is a functor, which is clearly fully faithful and distinct on objects. To complete

the proof that Ψ is an isomorphism of categories, we only need to show that it is onto objects. To
this end, let F : RC −→ Ab be additive and contravariant. We define M ∈ Mod(P (C);R) in the
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obvious way: for p ∈ C, M(p) is F (p) and for f : p −→ q we set M(f) = F (1 · f). This makes M
into a presheaf of abelian groups on C. For p ∈ C we define the right R(p)-module structure on
M(p) by x · r = F (r · 1p)(x). It is easy to check this makes M into a presheaf of right R-modules,
with Ψ(M) = F . Therefore Ψ is an isomorphism and the proof is complete.

Corollary 3. Let C be a small category and R a presheaf of rings on C. Then Mod(P (C);R) and
(P (C);R)Mod are complete grothendieck abelian categories. The structures on both categories are
described as follows

Zero The zero object is the presheaf Z(p) = 0.

Kernel If φ : M −→ N is a morphism of presheaves of modules, then K(p) = Ker(φp) defines a
presheaf of modules, and the inclusion K −→M is the kernel of φ.

Cokernel If φ : M −→ N is a morphism of presheaves of modules, then C(p) = N(p)/Im(φp)
defines a presheaf of modules, and the projection N −→ C is the cokernel of φ.

Limits If D is a diagram of presheaves of modules, then define L(p) to be the limit of the diagram
D(p) of modules. This becomes a presheaf of modules and the projections L −→ Di are a
limit for the diagram.

Colimits If D is a diagram of presheaves of modules, then define C(p) to be the colimit of the
diagram D(p) of modules. This becomes a presheaf of modules and the injections Di −→ C
are a colimit for the diagram.

Proof. The fact that both categories are complete grothendieck abelian follows from Theorem
2 and (ALCAT,Lemma 6). Using the isomorphism of Theorem 2 and the fact that we know
structures are computed pointwise in module categories over ringoids, it is easy to check the
remaining items.

Definition 6. Let (C, J) be a small site and R a sheaf of rings on C. LetM be a sheaf of R-modules
(right or left). A submodule of M is a monomorphism of sheaves of R-modules φ : N −→M (right
or left) with the property that for every p ∈ C the map φp : N(p) −→ M(p) is the inclusion of a
subset. Every subobject of M is equivalent to a submodule. If N,N ′ are submodules of M then
N ≤ N ′ if and only if N(p) ⊆ N ′(p) for every p ∈ C.

Corollary 4. Let (C, J) be a small site and R a sheaf of rings on C. Then (ShJ(C);R)Mod and
Mod(ShJ(C);R) are complete grothendieck abelian categories. The structures on both categories
are described as follows

Zero The zero object is the presheaf Z(p) = 0.

Kernel If φ : M −→ N is a morphism of sheaves of modules, then K(p) = Ker(φp) defines a
sheaf of modules, and the inclusion K −→M is the kernel of φ.

Cokernel If φ : M −→ N is a morphism of sheaves of modules, then C(p) = N(p)/Im(φp)
defines a presheaf of modules, and the canonocal morphism N −→ C −→ aC is the cokernel
of φ.

Limits If D is a diagram of presheaves of modules, then define L(p) to be the limit of the diagram
D(p) of modules. This becomes a sheaf of modules and the projections L −→ Di are a limit
for the diagram.

Colimits If D is a diagram of presheaves of modules, then define C(p) to be the colimit of the
diagram D(p) of modules. This becomes a presheaf of modules and the morphisms Di −→
C −→ aC are a colimit for the diagram.

Image Let φ : M −→ N be a morphism of sheaves of modules and let I be the submodule of N
defined by n ∈ I(p) if and only if there exists T ∈ J(p) such that n|h ∈ Im(φq) for every
h : q −→ p in T . Then I −→ N is the image of φ.
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Inverse Image Let φ : M −→ N be a morphism of sheaves of modules and T −→ N a sub-
module of N . Then the inverse image φ−1T is the submodule of M defined by (φ−1T )(p) =
φ−1

p (T (p)).

Proof. Since (ShJ(C);R)Mod is a Giraud subcategory of (P (C);R)Mod and similarly for right
modules (ALCAT,Section 2) the claims are all easily checked (AC,Section 3).

Example 3. We now apply some of the results of our note on Rings with Several Objects to
ringoids of the form RC. Let C be a small category and R a presheaf of rings on C. The injective
cogenerator Q of ModRC is explicitly given in (RSO,Section 3). For p ∈ C this definition gives

Q(q) =
∏
p∈C

Qp(q) =
∏
p

HomAb (HomRC(p, q),Q/Z)

=
∏
p

HomAb(⊕f :p−→qR(p),Q/Z) =
∏

f :p−→q

HomAb(R(p),Q/Z)

In particular if S is a quiver, k is a ring, and C = C(S) then the category of k-representations
of the quiver S is equivalent to the category of modules over the ringoid kC. The above formula
shows that the injective cogenerator of the latter category is defined for a vertex q ∈ S by

Q(q) =
∏

Paths ending at q

HomAb(k,Q/Z)

Theorem 5. Let (C, J) be a small site and R a presheaf of rings on C. For p ∈ C define the
following subset of the right ideals at p in the ringoid RC

JR(p) = {a |S ⊆ a for some S ∈ J(p)}

We claim that JR is an additive topology on RC, and that if R is a sheaf of rings there is a
canonical isomorphism of categories

Ψ : Mod(ShJ(C);R) −→ Mod(RC, JR)
Ψ(M)(p) = M(p)

Proof. If a is a right ideal at p in RC, and f : p′ −→ p is any morphism of C that belongs to
a, then r · f belongs to a for all r ∈ R(p′), since r · f = f(r · 1). It is clear that Hp ∈ JR(p)
for every p ∈ C. To prove the stability condition, let α : p −→ q be a morphism in RC (which
we may as well assume is nonzero) and suppose a ∈ JR(q), so there is S ∈ J(q) with S ⊆ a. If
f1, . . . , fn ∈ HomC(p, q) is the support of α, then for g ∈ C we have

αg = (
∑

i

α(fi) · fi)g = α(f1)|g · f1g + · · ·+ α(fn)|g · fng (1)

If f∗i S denotes the pullback in C, then f∗i S ∈ J(p) for each i, since S is a cover and J is a topology.
It follows from (1) that α∗a ⊇

⋂n
i=1 f

∗
i S and therefore α∗a ∈ JR(p), as required.

For the transitivity condition suppose that a is a right ideal at q, while b ∈ JR(q) is such
that α∗a ∈ JR(p) for every α : p −→ q ∈ b. Let S ∈ J(q) be such that S ⊆ b, and for each
f : p −→ q ∈ S let Sf ∈ J(p) be the cover contained in f∗a. Then ∪f∈SfSf is a cover in J(q)
which is contained in a. This shows that a ∈ JR(q), which verifies the transitivity condition and
shows that JR is an additive topology.

By definition Mod(ShJ(C);R) is the full subcategory of Mod(P (C);R) consisting of those
presheaves of R-modules whose underlying presheaves of sets are J-sheaves. Using the isomor-
phism Ψ of Theorem 2, to complete the proof it suffices to show that M ∈ Mod(P (C);R) is a
J-sheaf iff. Ψ(M) is JR-closed. If f ∈ C then −|f denotes the action of M(f) or R(f), and if
α ∈ RC then − · α denotes the action of Ψ(M)(α). If r ∈ R(p) then − · r denotes the module
action of r on M(p).
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Suppose that M is a sheaf of right modules over R, let a ∈ JR(p) be an additive cover, and
suppose we have an additive matching family {xα}α∈a for Ψ(M). Let S ∈ J(p) be the cover
contained in a. Then {xh}h∈S is a matching family for M , and since M is a J-sheaf there is a
unique x ∈M(p) such that x|h = xh for h ∈ S. To show that x is an amalgamation of the family
{xα} we have to show that x ·α = xα for all α ∈ a. This is trivial for α = 0, so let α have support
f1, . . . , fn ∈ HomC(q, p). Since J is a grothendieck topology, the sieve T =

⋂n
i=1 f

∗
i S is a cover of

q in C. For g ∈ T we have αg =
∑

i α(fi)|g · fig, so

(x · α)|g = x · αg =
∑

i

x|fig · α(fi)|g =
∑

i

xfig · α(fi)|g

=
∑

i

xfig · (α(fi)|g · 1) =
∑

i

xα(fi)|g·fig = xαg = xα|g

Since T is a cover of q and M is a sheaf for J , it follows that xα = x · α, as required. Uniqueness
of x as an amalagamation of {xα} is obvious, so we have shown that Ψ(M) is JR-closed.

Conversely suppose that Ψ(M) is JR-closed, and that {xf}f∈S is a matching family for a cover
S ∈ J(p) in M . Let a be the right ideal at p in RC consisting of all morphisms α ∈ HomRC(q, p)
whose support is contained in S. It is clear that a ∈ JR(p). For α : q −→ p in a we define the
following element of M(q)

xα =
∑

f

xf · α(f)

Note that for f ∈ S this definition agrees with the matching family {xf}f∈S . We now check that
the collection {xα}α∈a is an additive matching family for Ψ(M). It is clear that xα+β = xα + xβ ,
so suppose that α : q −→ p belongs to a and let β : s −→ q be any morphism of RC. Then

xα · β =
∑

g

xα|g · β(g) =
∑
g,f

(xf · α(f))|g · β(g)

=
∑
g,f

(xf |g · α(f)|g) · β(g) =
∑
g,f

xfg · α(f)|gβ(g) = xαβ

This shows that {xα}α∈a is an additive matching family, which has a unique amalgamation x ∈
M(p) since Ψ(M) is JR-closed. Clearly x is also an amalgamation for {xf}f∈S , which is unique
since if y|f = xf for all f ∈ S then for α : q −→ p ∈ a we would have

y · α =
∑

f

y|f · α(f) =
∑

f

xf · α(f) = xα

which would imply that y = x. We have shown that M is J-closed, which completes the proof.

3 Graded Linearisation

Throughout this section a Z-graded ring is a not necessarily commutative ring S together with
subgroups Sd for d ∈ Z such that S =

⊕
d∈Z Sd as an abelian group, and SdSe ⊆ Sd+e for all

d, e ∈ Z and 1 ∈ S0. See (LOR,Section 8) for the definition of left and right graded S-modules.

Definition 7. Let S be a Z-graded ring and C a small category. Define a category S ◦ C as
follows: the objects of S ◦ C are ordered pairs (d, p) where d ∈ Z and p ∈ C, which we will often
denote by pd. For p, q ∈ C and d, e ∈ Z the set HomS◦C(pd, qe) is the abelian group of functions
HomC(p, q) −→ Se−d with finite support and the pointwise operations. We denote the function
with a single nonzero value r ∈ Se−d on a morphism f by r · f .

Composition is defined by (r·g)(s·f) = rs·gf for f : p −→ q, g : q −→ s and r ∈ Sa−e, s ∈ Se−d.
That is, for α ∈ HomS◦C(pd, qe) and β ∈ HomS◦C(qe, sa) we define βα ∈ HomS◦C(pd, sa) by

βα(n) =
∑

f :p−→q
g:q−→s
gf=n

β(g)α(f)
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For qd ∈ S ◦C the function 1 ·1q is the identity, and it is not difficult to check that this composition
is associative and that S ◦ C is a preadditive category. For each morphism f ∈ HomC(p, q) and
e ∈ Z we have the morphism 1 · f ∈ HomS◦C(pe, qe), which we denote by fe. For each e ∈ Z the
map f 7→ fe gives a faithful functor C −→ S ◦ C.

Definition 8. Let (C, J) be a small site and S a sheaf of Z-graded rings. Define a category S ◦ C
as follows: the objects of S ◦ C are ordered pairs (d, p) where d ∈ Z and p ∈ C, which we will often
denote by pd. For p, q ∈ C and d, e ∈ Z the set HomS◦C(pd, qe) is the abelian group of functions
HomC(p, q) −→ Se−d(p) with finite support and the pointwise operations. We denote the function
with a single nonzero value r ∈ Se−d(p) on a morphism f by r · f .

Composition is defined by (r ·g)(s ·f) = r|fs ·gf for f : p −→ q, g : q −→ s and r ∈ Sa−e(q), s ∈
Se−d(p). That is, for α ∈ HomS◦C(pd, qe) and β ∈ HomS◦C(qe, sa) we define βα ∈ HomS◦C(pd, sa)
by

βα(n) =
∑

f :p−→q
g:q−→s
gf=n

β(g)|fα(f)

For q ∈ C the function 1·1q is the identity in S◦C, and one checks that S◦C is a preadditive category.
For each morphism f ∈ HomC(p, q) and e ∈ Z we have the morphism 1 · f ∈ HomS◦C(pe, qe),
which we denote by fe. The map f 7→ fe gives a faithful functor C −→ S ◦ C for every e ∈ Z.
Notice that for r ∈ Sd(q) and f : p −→ q we have (r · 1q)fe = r|f · f = fd+e(r|f · 1p) and
(r · 1p)(s · 1p) = rs · 1p for p ∈ C and homogenous r, s. We also have u · f = fd(u · 1p) where
u ∈ Sd−e(p) and u · f : pe −→ qd.

Lemma 6. Let (C, J) be a small site and M a sheaf of abelian groups together with subsheaves
of abelian groups Mn, n ∈ Z such that the morphisms Mn −→ M are a coproduct of sheaves of
abelian groups. Then

(i) For p ∈ C the induced morphism
⊕

n∈Z Mn(p) −→M(p) is injective.

(ii) For p ∈ C and x ∈ M(p) there is T ∈ J(p) such that for every h : q −→ p ∈ T , we have
x|h ∈

∑
n∈Z Mn(q).

Proof. Let Q denote the canonical pointwise coproduct of the presheaves of abelian groups Mn,
so that Q(p) =

⊕
n∈Z Mn(p). Let φ : Q −→ M be the morphism induced by the inclusions

Mn −→M , so that for q ∈ C we have Im(φq) =
∑

nMn(q). The coproduct
⊕

nMn in Ab(ShJ(C))
is the plus construction applied twice to Q. Let φ′ : Q+ −→ M and φ′′ : Q++ −→ M be the
unique morphisms of presheaves of abelian groups making the respective triangles in the following
diagram commute

Q

φ

!!C
CC

CC
CC

CC

��
Q+

φ′ //

��

M

Q++

φ′′

9A{{{{{{{{

{{{{{{{{

By assumption φ′′ is an isomorphism, and since Q is a separated sheaf the morphism Q −→ Q++

is a monomorphism of presheaves of abelian groups, and therefore so is the composite φ which
proves (i).

(ii) If x ∈ M(p) there is {xf | f ∈ S} in Q++(p) mapping to x. Using the explicit definition
of φ′′ this means that x|f = φ′(xf ) for every f ∈ S. Applying the definition again, for every
f : q −→ p in S there is Sf ∈ J(q) such that x|fg = φ(xf,g) for every g : s −→ q ∈ Sf , where xf,g

is some element of Q(s). Set T = ∪f∈SfSf . Then T ∈ J(p) has the required property.
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Theorem 7. Let (C, J) be a small site and S a sheaf of Z-graded rings on C. For p ∈ C and d ∈ Z
define the following subset of the right ideals at pd in the ringoid S ◦ C

JS(pd) = {a |Td ⊆ a for some T ∈ J(p)}

where Td = {fd | f ∈ T}. We claim that JS is an additive topology on S ◦ C, and that there is a
canonical equivalence of categories

Φ : GrMod(ShJ(C);S) −→ Mod(S ◦ C, JS)
Φ(M)(pd) = M−d(p)

Proof. Note that if a is a right ideal at pd in S ◦ C, and if f : q −→ p is a morphism of C with
fd ∈ a, then for r ∈ Sd−e(q) the morphism r · f belongs to HomS◦C(qe, pd) since r · f = fd(r · 1q).
First we show that JS defines an additive topology on S ◦ C.

It is clear that JS contains the maximal right ideal at pd. To check the stability condition,
let α : qe −→ pd be a morphism in S ◦ C, which we may as well assume is nonzero with support
f1, . . . , fn ∈ HomC(q, p), and let a ∈ JS(pd) contain Td for some T ∈ J(p). For g ∈ C we have

αge = (
∑

i

α(fi) · fi)ge = α(f1)|g · f1g + · · ·+ α(fn)|g · fng (2)

If f∗i T denotes the pullback in C, then f∗i T ∈ J(q) for each i, since T is a cover and J is a
topology. Therefore Q =

⋂n
i=1 f

∗
i T belongs to J(q). It follows from (2) that α∗a ⊇ Qe and

therefore α∗a ∈ JS(qe), as required.
For the transitivity condition, suppose that a is a right ideal at pd, while b ∈ JS(pd) is such

that α∗a ∈ JS(qe) for every α : qe −→ pd ∈ b. Let T ∈ J(p) be such that Td ⊆ b, and for each
f : q −→ p ∈ T let Tf ∈ J(q) be the cover with (Tf )d ⊆ f∗d a. Then Q = ∪f∈T fTf is a cover in
J(p) with Qd ⊆ a. Therefore a ∈ JS(pd), which shows that JS is an additive topology.

Now we have to define the functor Φ. Let M be a sheaf of graded right R-modules and define
a right S ◦ C-module Φ(M) on objects by Φ(M)(pd) = M−d(p) (note the inverted “grading”). For
a morphism α ∈ HomS◦C(qe, pd) we define

Φ(M)(α) : M−d(p) −→M−e(q)

Φ(M)(α)(x) =
∑

f :q−→p

x|f · α(f)

It is not hard to check that with this definition, Φ(M) is a right S ◦ C-module. Notice that
Φ(M)(fd)(x) = x|f for f : q −→ p. If ψ : M −→ N is a morphism of sheaves of graded right
R-modules, define

Φ(ψ) : Φ(M) −→ Φ(N)
Φ(ψ)pd

: M−d(p) −→ N−d(p)
x 7→ ψp(x)

This is a morphism of right S ◦ C-modules, and to show that Φ is a well-defined functor it only
remains to show that Φ(M) is JS-closed. As in the proof of Theorem 5 we denote the presheaf
restriction on M,R by −|f and write − · α and − · r for the module action of S ◦ C on Φ(M) and
R on M respectively.

Let a ∈ JS(pd) and suppose we have an additive matching family {xα}α∈a for Φ(M). To be
clear, note that if α : qe −→ pd then xα ∈ M−e(q). Let T ∈ J(p) be such that Td ⊆ a and set
xh = xhd

for h ∈ T . Then {xh}h∈T is a matching family for the sheaf of abelian groups M−d,
which therefore has a unique amalgamation x ∈ M−d(p) = Φ(M)(pd). To show that x is the
unique amalgamation of the family {xα} we have to show that x · α = xα for all α ∈ a. This
follows in the same way as in the proof of Theorem 5. Therefore Φ(M) is JS-closed.

It only remains to show that Φ is an equivalence. It is easy to check that Φ is faithful. To see
that it is full, let γ : Φ(M) −→ Φ(N) be a morphism of right S ◦ C-modules. For every d ∈ Z and
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p ∈ C, γp−d
: Md(p) −→ Nd(p) is a morphism of abelian groups. Together these give a morphism of

sheaves of abelian groups Γd : Md −→ Nd, which induce a morphism of sheaves of abelian groups
Γ =

⊕
d∈Z Γd : M −→ N . To show this is a morphism of sheaves of graded right S-modules it

suffices to show it is a morphism of right S-modules. Using Lemma 6 we reduce to checking that
Γn+d,p(m · s) = Γn,p(m) · s for p ∈ C, m ∈Mn(p) and s ∈ Sd(p). But

Γn+d,p(m · s) = γp−n−d
(m · s) = γp−n−d

(m · (s · 1))
= γp−n

(m) · (s · 1) = γp−n
(m) · s = Γn,p(m) · s

It is clear that Φ(Γ) = γ, so Φ is full.
To complete the proof, it only remains to show that Φ is representative. Let F be a JS-closed

right S ◦ C-module and for fixed n ∈ Z define a presheaf of abelian groups Mn on C by

Mn(p) = F (p−n)
m|f = m · f−n

we claim that Mn is a sheaf of abelian groups. Let S ∈ J(p) be given, together with a matching
family {xf}f∈S for Mn. Let a ∈ JS(p−n) be the right ideal consisting of all morphisms whose
support belongs to S. For α : qe −→ p−n ∈ a we define

xα =
∑

f :q−→p
f∈S

xf · (α(f) · 1q)

This defines an additive matching family {xα}α∈a which agrees with {xf} on morphisms α = hn

for h ∈ S. Since F is JS-closed, there is a unique amalgamation x ∈ F (p−n) = Mn(p) which is
a unique amalgamation for {xf}f∈S as well. This shows that Mn is a J-sheaf. Let M be the
coproduct of presheaves of abelian groups

M =
⊕
n∈Z

Mn

M(p) =
⊕
n∈Z

F (p−n)

Make the coproduct of presheaves of abelian groups A =
⊕

n∈Z Sn into a presheaf of rings in
the canonical way (see (ALCAT,Section 2)). Then M becomes a presheaf of right A-modules by
defining for p ∈ C, (mn) ∈M(p) and s ∈ A(p)

{(mn) · (sn)}i =
∑

x+y=i

mx · (sy · 1p)

The sheaf of abelian groups aM is then canonically a sheaf of right modules over aA, which is a
sheaf of Z-graded rings isomorphic as a sheaf of Z-graded rings to S (ALCAT,Section 2). Since
Ab(ShJ(C)) is a Giraud subcategory of Ab(P (C)), the morphisms Mn −→ M −→ aM are a
coproduct in Ab(ShJ(C)) (ALCAT,Section 2), (AC,Proposition 63) and with these subsheaves of
abelian groups, aM becomes a sheaf of graded right S-modules via aA ∼= S. It is not difficult to
check that Φ(aM) ∼= F , which completes the proof.

Definition 9. Let (C, J) be a small site and S a sheaf of Z-graded rings on C. If M is a sheaf of
graded S-modules (right or left) then a graded submodule of M is an S-submodule φ : N −→ M
with the property that the collection of subsheaves of abelian groups φ−1Mn −→ N is a coproduct
of sheaves of abelian groups. Together with these subsheaves it is clear that N is a sheaf of graded
S-modules and φ a morphism of sheaves of graded S-modules.

Lemma 8. Let (C, J) be a small site and S a sheaf of Z-graded rings on C. Let φ : N −→ M be
a morphism of sheaves of graded S-modules (right or left). Then N is a graded submodule of M
if and only if it is a submodule of M .
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Proof. One implication is trivial. Suppose that N is a submodule of M . To show it is a graded
submodule we need only show that Nn = φ−1Mn for every n ∈ Z. It is clear that Nn ⊆ φ−1Mn.
So suppose that p ∈ C and x ∈ N(p) is such that φp(x) ∈Mn(p). By Lemma 6 there is T ∈ J(p)
such that for every h : q −→ p in T we have x|h ∈

∑
iNi(q). Since the sum

∑
iNi(q) is direct by

Lemma 6 (i) there are well-defined xh,i ∈ Ni(q) such that x|h =
∑

i xh,i. Then by assumption∑
i

φq(xh,i) = φp(x)|h ∈Mn(q)

Part (i) of Lemma 6 and the fact that φ is a monomorphism implies that xh,i = 0 for i 6= n,
so x|h ∈ Nn(q). Since Nn is a subsheaf of N and T a cover of p, this shows that x ∈ Nn(p) as
required.

Remark 1. The argument of the above proof shows further that if φ : N −→M is any morphism
of sheaves of graded S-modules (right or left) and y ∈Mn(p) belongs to the image of φp : N(p) −→
M(p), then there is T ∈ J(p) such that for every h : q −→ p in T we have y|h = φq(x) for some
x ∈ Nn(q).

Corollary 9. Let (C, J) be a small site and S a sheaf of Z-graded rings on C. Then the internal
graded module categories (ShJ(C);S)GrMod and GrMod(ShJ(C);S) are complete grothendieck
abelian. The structures on both categories are described as follows

Zero The zero object is the sheaf Z(p) = 0 with Zn = 0 for all n ∈ Z.

Kernel If φ : M −→ N is a morphism of sheaves of graded S-modules then the subgroups Kn(p) =
Ker(φp) ∩Mn(p) define a subsheaf of abelian groups Kn ⊆ K of the kernel K −→ M of
sheaves of modules, and these subsheaves make K a sheaf of graded S-modules and K −→M
the kernel of φ.

Cokernel If φ : M −→ N is a morphism of sheaves of graded S-modules, let µ : N −→ Q be the
cokernel of sheaves of modules. Let Qn be the subsheaf of abelian groups given by the image
of the composite Nn −→ N −→ Q. Then Q is a sheaf of graded S-modules and µ is the
cokernel of φ.

Coproduct Let {Mi}i∈I be a nonempty family of sheaves of graded S-modules and
⊕

iMi the
coproduct of sheaves of S-modules. The morphisms (Mi)n −→Mi −→

⊕
iMi are a coprod-

uct of sheaves of abelian groups, and
⊕

iMi is a sheaf of graded S-modules with degree n
subsheaf the image of

⊕
i(Mi)n −→

⊕
iMi.

Image If φ : M −→ N is a morphism of sheaves of graded S-modules then the image I −→ N of
sheaves of modules is a graded submodule of N , and is the image of φ.

Exact Sequence A sequence of sheaves of graded S-modules M ′ −→M −→M ′′ is exact if and
only if it is exact as a sequence of sheaves of S-modules.

Proof. It follows immediately from (LOR,Corollary 17), Theorem 7 and (ALCAT,Lemma 7) that
both categories are complete grothendieck abelian. In what follows, fix a morphism φ : M −→ N
of sheaves of graded S-modules.

Let Kn(p) = Ker(φp)∩Mn(p) be the sheaf of abelian groups described above. We claim that
the kernel K of φ : M −→ N considered as a morphism of sheaves of S-modules, together with
the subsheaves Kn, is a sheaf of graded S-modules. This follows from the fact that Ab(ShJ(C)) is
grothendieck abelian, so taking coproducts preserves kernels. It is now easy to see that K −→M
is a morphism of sheaves of graded S-modules and is the kernel of φ.

Now for the cokernel. The cokernel µ : N −→ Q of sheaves of modules is also the cokernel of
sheaves of abelian groups. For each n let µn : Nn −→ Nn/Mn be the cokernel of φn : Mn −→ Nn

in the category of sheaves of abelian groups. Then for every n we have a commutative diagram
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with exact rows in Ab(ShJ(C))

Mn

��

// Nn

��

// Nn/Mn

��

// 0

M // N // Q // 0

Since coproducts preserve cokernels it follows that the morphisms Nn/Mn −→ Q are a coproduct
of sheaves of abelian groups, and it is not difficult to check that Q together with the images of
these subsheaves is a sheaf of graded S-modules, and moreover that µ : N −→ Q is the cokernel
of φ.

For the coproduct, it is clear that the morphisms (Mi)n −→ Mn −→
⊕

iMi are a coproduct
of sheaves of abelian groups, hence so are the induced morphisms

⊕
i(Mi)n −→

⊕
iMi for n ∈ Z.

Let (
⊕

iMi)n denote the image of this morphism of sheaves of abelian groups. Then it is not hard
to check the morphisms Mi −→

⊕
iMi are a coproduct of sheaves of graded S-modules.

For the image, let I −→ N be the image of φ considered as a morphism of sheaves of S-
modules. Since the epimorphism M −→ I is the cokernel of the kernel of φ, it follows from the
above construction of the cokernel that I together with the subsheaves of abelian groups given by
the images of Mn −→ M −→ I is a sheaf of graded S-modules and M −→ I is an epimorphism
of sheaves of graded S-modules. For n ∈ Z denote by In the image of φn : Mn −→ Nn. It follows
from Remark 1 that In = I ∩Nn. So we have a commutative diagram

In

  B
BB

BB
BB

B

��

Mn

��

//

==||||||||
Nn

��

I

!!C
CC

CC
CC

C

M
φ

//

=={{{{{{{{
N

(3)

Therefore I −→ N is a monomorphism of sheaves of graded S-modules and we have shown that
this morphism is the image of φ.

Remark 2. Let (C, J) be a small site and S a sheaf of Z-graded rings on C. If M is a sheaf of
graded S-modules (right or left) then every subobject of M is equivalent to a graded submodule.
If N,N ′ are graded submodules of M then N ≤ N ′ if and only if N(p) ⊆ N ′(p) for every p ∈ C.

Corollary 10. Let (C, J) be a small site, S a sheaf of Z-graded rings and φ : M −→ N a morphism
of sheaves of graded S-modules (right or left). Then φ is a monomorphism, epimorphism or
isomorphism if and only if it has this property as a morphism of sheaves of S-modules (equivalently,
as a morphism of sheaves of abelian groups). In particular

• φ is a monomorphism ⇔ φp is injective for all p ∈ C.

• φ is an epimorphism ⇐ φp is surjective for all p ∈ C.

• φ is an isomorphism ⇔ φp is bijective for all p ∈ C.

Proof. This is immediate from the fact that the category of sheaves of graded S-modules is abelian
(therefore balanced) and the kernels and cokernels agree with those of sheaves of modules, which
agree with the kernels and cokernels for sheaves of abelian groups.

Lemma 11. Let (C, J) be a small site, S a sheaf of Z-graded rings and φ : M −→ N a morphism
of sheaves of graded S-modules (right or left). Then
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• φ is a monomorphism ⇔ φn : Mn −→ Nn is a monomorphism for all n ∈ Z.

• φ is an epimorphism ⇔ φn : Mn −→ Nn is a epimorphism for all n ∈ Z.

• φ is an isomorphism ⇔ φn : Mn −→ Nn is a isomorphism for all n ∈ Z.

Proof. The implications⇐ all follow from Corollary 10 and the fact that coproducts in Ab(ShJ(C))
are exact. If φ is a monomorphism (resp. isomorphism) it is not difficult to check that φn is a
monomorphism (resp. isomorphism) of sheaves of abelian groups. Suppose that φ is an epimor-
phism. Then the image I −→ N is an isomorphism. But using (3) we see that In −→ Nn is
an isomorphism for n ∈ Z. Since this is the image of φn : Mn −→ Nn it follows that φn is an
epimorphism for all n ∈ Z.
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[1] M. Artin, “Théorèmes de représentabilité pour les espaces algébriques”, Les Presses de
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