Hensel’s Lemma

Daniel Murfet

April 8, 2005

Let A be a ring which is complete for its \mathfrak{a} topology, where \mathfrak{a} is an ideal. We show how certain relations occurring in the ring A/\mathfrak{a} (i.e., congruences mod \mathfrak{a}) may be “lifted” to analogous relations occurring in the ring A itself. The completeness of A is essential for this purpose. If $f \in A[x]$ then we denote by f^\wedge the image of f in $(A/\mathfrak{a})[x]$ under the canonical map $A[x] \longrightarrow (A/\mathfrak{a})[x]$.

Important 1. In Zariski & Samuel *complete* means that every Cauchy sequence converges, and *local* means a Noetherian ring with one maximal ideal. The only place where the Noetherian hypothesis is used in the following Theorem is to show that $\cap_s \mathfrak{m}^s = 0$, which is true for any Noetherian local ring (see Atiyah & Macdonald Corollary 10.19).

Alternatively, in Atiyah & Macdonald *complete* means that the morphism $A \longrightarrow \hat{A}$ is an isomorphism, which is equivalent to every Cauchy sequence converging and $\cap_s \mathfrak{m}^s = 0$, and *local* means any ring with one maximal ideal.

The hypothesis necessary for the proof of the Theorem are: A must have one maximal ideal \mathfrak{m}, admit a limit for every Cauchy sequence in the \mathfrak{m}-adic topology, and have $\cap_s \mathfrak{m}^s = 0$. So in anybody’s terminology, we require that A be a complete local ring.

Theorem 1 (Hensel’s Lemma). Let A be a complete local ring, \mathfrak{m} its maximal ideal, and $f \in A[x]$ a monic polynomial of degree $n \geq 1$. Suppose there are coprime monic polynomials $G, H \in (A/\mathfrak{m})[x]$ of respective degrees $r, n-r$ ($r \geq 0$) such that

$$f^\wedge = GH$$

Then there exist monic polynomials $g, h \in A[x]$ of degrees $r, n-r$ with

$$g = G, \quad h = H, \quad f = gh$$

Proof. We recursively construct monic polynomials $g_i, h_i \in A[x]$ such that $f \equiv g_i h_i \pmod{m^i[x]}$ for all $i \geq 1$, where $\overline{g_i} = G$ and $\overline{h_i} = H$. Moreover we will show that the residues of g_i, h_i are unique in the sense that if $\overline{g'} = G, \overline{h'} = H$ and $f \equiv g'h' \pmod{m^i[x]}$ then $g_i \equiv g'$ and $h_i \equiv h' \pmod{m^i[x]}$.

Given G, H choose representatives for the nonzero coefficients (making sure to choose 1 for $1 + \mathfrak{m}$). This defines two monic polynomials $g_1, h_1 \in A[x]$ of degrees $r, n-r$ with $\overline{g_1} = G$ and $\overline{h_1} = H$. Since

$$f^\wedge = GH = \overline{g_1 h_1}$$

We have $f \equiv g_1 h_1 \pmod{\mathfrak{m}[x]}$. Now assume that g_k and h_k have been constructed and shown unique for a certain $k \geq 1$. We must construct g_{k+1}, h_{k+1} and show they are unique. Our approach is to find $\delta, \epsilon \in \mathfrak{m}^k[x]$ of degrees $< r, n-r$ such that $g_{k+1} = g_k + \delta, h_{k+1} = h_k + \epsilon$ satisfy the necessary properties.

Since G, H are coprime they generate the unit ideal in $(A/\mathfrak{m})[x]$, so we can find polynomials $\alpha, \beta \in A[x]$ with

$$1 \equiv \alpha g_k + \beta h_k \pmod{\mathfrak{m}[x]} \quad (1)$$

We have $\Delta = f - g_k h_k \in \mathfrak{m}^k[x]$ by the inductive hypothesis. Multiplying by Δ we find that

$$\Delta \equiv \Delta \alpha g_k + \Delta \beta h_k \pmod{\mathfrak{m}^{k+1}[x]}.$$

\textit{deg}(\epsilon) < n - r \text{ and } \Delta \alpha = \gamma h_k + \epsilon. \text{ Since } \Delta \alpha \in m^{k}[x] \text{ we have } 0 \equiv \gamma h_k + \epsilon \mod m^{k}[x]. \text{ Since } h_k \text{ is monic it has degree } n - r \text{ in } (A/m^{k})[x] \text{ and so the uniqueness of the division algorithm in } (A/m^[k])[x] \text{ implies that } \gamma, \epsilon \in m^{k}[x]. \text{ Then }

\[\Delta \equiv \epsilon g_k + \delta h_k \mod m^{k+1}[x]\]

\text{(2)}

where \(\delta = \gamma g_k + \Delta \beta \in m^{k}[x]. \) Since \(\Delta \) and \(\epsilon g_k \) both have degree \(< n, \) so does \(\delta h_k, \) which implies that the degree of \(\delta \) is \(< r. \) Considering the degrees of \(\delta, \epsilon \) we see that the polynomials \(g_{k+1} = g_k + \delta \) and \(h_{k+1} = h_k + \epsilon \) are monic of degrees \(r, n - r. \) Further (calculating \(\mod m^{k+1}[x] \))

\[g_{k+1}h_{k+1} \equiv g_k h_k + \epsilon g_k + \delta h_k + \delta \epsilon \equiv g_k h_k + \Delta \equiv f\]

Since \(\delta \epsilon \in m^{2k}[x] \) and \(2k \geq k + 1. \) The fact that \(\delta, \epsilon \in m^{k}[x] \) implies that \(g_{k+1} = G \) and \(h_{k+1} = H. \) So it only remains to prove uniqueness.

Suppose \(g', h' \) are monic polynomials of degrees \(r, n - r \) such that \(g' = G, h' = H \) and \(f \equiv g'h' \mod m^{k+1}[x]. \) Then \(\epsilon' = h' - h_k, \delta' = g' - g_k \) have degrees \(< n - r, r. \) Then by the inductive hypothesis the residues of \(g_k, h_k \) are unique, so \(\epsilon', \delta' \in m^{k}[x]. \) Hence \(\epsilon' \delta' \in m^{k+1}[x]. \) Calculating \(\mod m^{k+1}[x] \)

\[0 \equiv f - g'h' \equiv f - g_k h_k - \delta' h_k - \epsilon' g_k - \epsilon' \delta' \equiv \Delta - (\epsilon' g_k + \delta' h_k)\]

Subtracting this from (2) we have

\[0 \equiv \mu g_k + \nu h_k \mod m^{k+1}[x]\]

Where \(\mu = \epsilon - \epsilon' \) and \(\nu = \delta - \delta' \) have degrees \(< n - r, r. \) Multiplying through by \(\alpha \) and using the fact that by (2), \(\alpha g_k + \beta h_k - 1 = m \in m[x], \) we have

\[\mu \equiv (\mu \beta - \alpha \nu) h_k - \mu m \mod m^{k+1}[x]\]

But \(\mu \in m^{k}[x] \) and \(m \in m[x], \) so it follows that \(\mu \) is a multiple of \(h_k \) in \((A/m^{k+1})[x]. \) But in \((A/m^{k+1})[x] \) the polynomial \(\mu \) has degree \(< n - r \) and \(h_k \) has degree \(n - r. \) Hence \(\mu \equiv 0 \mod m^{k+1}[x]. \) Similarly \(\nu \equiv 0. \) Hence, calculating mod \(m^{k+1}[x] \)

\[h_k \equiv h_k + \epsilon' \equiv h_k + \epsilon \equiv h_{k+1}\]

And similarly \(g' \equiv g_{k+1}, \) which completes the proof of uniqueness.

If \(1 \leq i < j \) then \(f - g_i h_j \in m^{i}[x] \subseteq m^{j}[x] \) so \(f \equiv g_i h_j \mod m^{j}[x]. \) Hence by uniqueness \(g_i \equiv g_j \) and \(h_i \equiv h_j \mod m^{j}[x]. \) This implies that the sequences of coefficients are Cauchy in \(A \) and hence converge to coefficients \(a_0, \ldots, a_{r-1} \) (for the \(g_i \)) and \(b_0, \ldots, b_{n-r-1} \) (for the \(h_i \)). Set

\[g = a_0 + a_1 x + \ldots + a_{r-1} x^{r-1} + x^{r} \]

\[h = b_0 + b_1 x + \ldots + b_{n-r-1} x^{n-r-1} + x^{n-r}\]

It is easy to see that \(\overline{g} = G, \overline{h} = H \) by using the convergence of the coefficients and the fact that \(\overline{g_k} = G, \overline{h_k} = H \) for all \(k \geq 1. \) We complete the proof by showing that \(f = gh. \)

Firstly, note that for \(0 \leq i \leq n - 1 \)

\[(gh)_i - (g_k h_k)_i = \sum_{j=0}^{i} (g_j h_{i-j} - g_k h_{k,i-j})\]

\[= \sum_{j=0}^{i} (g_j - g_k) h_{i-j} + \sum_{j=0}^{i} g_k (h_{i-j} - h_{k,i-j})\]

2
Hence $(g_k h_k)_i \to (gh)_i$ for all $0 \leq i \leq n - 1$. But
\[f_i - (gh)_i = f_i - (g_k h_k)_i + (g_k h_k)_i - (gh)_i, \]
And $f_i - (g_k h_k)_i \in \mathfrak{m}^k$ by construction. Hence $f_i - (gh)_i \in \cap s \mathfrak{m}^s$. But $\cap s \mathfrak{m}^s$ is zero in a Noetherian local ring (see Atiyah & Macdonald Corollary 10.19), and consequently $f = gh$, as required.

Recall that for a polynomial $f(x) \in A[x]$ over an arbitrary ring, an element $a \in A[x]$ is a simple root of f if $x - a$ divides $f(x)$ but $(x - a)^2$ does not divide $f(x)$.

Corollary 2. Let A be a complete local ring, \mathfrak{m} its maximal ideal, and $f(x)$ a monic polynomial over A. Suppose that $\overline{f}(x)$ admits a simple root $\alpha \in A/\mathfrak{m}$. Then there exists an element a of A, having α as \mathfrak{m}-residue, and such that $f(a) = 0$. Moreover, a is a simple root of $f(x)$.

Proof. Write $\overline{f}(x) = (x - \alpha)G(x)$ where $G(x)$ is prime to $x - \alpha$. Then the Theorem shows the existence of monic polynomials $x - a, g(x)$ with $\overline{a} = \alpha$ and $\overline{g}(x) = G(x)$ such that $f(x) = (x - a)g(x)$. If a were a multiple root of $f(x)$ then we could write $f(x) = (x - a)^2 h(x)$ for some polynomial $h(x)$. But then $\overline{f}(x) = (x - \alpha)^2 \overline{h}(x)$ would imply that α is a multiple root of $\overline{f}(x)$, contradicting our assumption.

Example 1. There are many applications of Hensel’s Lemma. We highlight a few simple ones:

1. Let \mathfrak{m} be the maximal ideal (5) in \mathbb{Z}, and let A be the \mathfrak{m}-adic completion of \mathbb{Z}. Then A is a complete local ring whose maximal ideal $\widehat{\mathfrak{m}}$ consists of all Cauchy sequences $(a_i)_{i \geq 1}$ with each a_i a multiple of 5. The residue field of A is $GF(5)$ since

\[A/\widehat{\mathfrak{m}} \cong \mathbb{Z}/\mathfrak{m} = \mathbb{Z}_5 \]

The polynomial $x^2 + 1$ has two simple roots in $GF(5)$, namely the classes of 2 and 3. Thus it has two simple roots in the 5-adic integers.

2. Let A be the \mathfrak{m}-adic completion of $\mathbb{C}[z]$ where $\mathfrak{m} = (z)$. Then A is the complete local ring $\mathbb{C}[[z]]$ with maximal ideal (z). Consider the polynomial $f(x) = x^2 - (1 + z) \in A[x]$. Note that

\[\mathbb{C}[[z]]/(z) \cong \mathbb{C}[z]/(z) \cong \mathbb{C} \]

Since $f(x) = (x - 1)(x + 1)$ in $(A/\mathfrak{m})[x]$, Hensel’s Lemma implies that there are power series $\alpha(z), \beta(z) \in \mathbb{C}[[z]]$ with $x^2 - (1 + z) = (x - \alpha(z))(x - \beta(z))$ and $\alpha(z) = 1$, $\beta(z) = -1$. Reducing coefficients modulo (z) amounts to looking at only the constant term, so that $\alpha(z) = 1 + \ldots$ and $\beta(z) = -1 + \ldots$. So Hensel’s Lemma implies the existence of power series square roots for $1 + z$.

3