Hensel's Lemma

Daniel Murfet

April 8, 2005

Let A be a ring which is complete for its \mathfrak{a} topology, where \mathfrak{a} is an ideal. We show how certain relations occurring in the ring A/\mathfrak{a} (i.e., congruences mod \mathfrak{a}) may be "lifted" to analogous relations occurring in the ring A itself. The completeness of A is essential for this purpose. If $f \in A[x]$ then we denote by \overline{f} the image of f in $(A/\mathfrak{m})[x]$ under the canonical map $A[x] \longrightarrow (A/\mathfrak{m})[x]$.

Important 1. In Zariski & Samuel *complete* means that every Cauchy sequence converges, and *local* means a Notherian ring with one maximal ideal. The only place where the Noetherian hypothesis is used in the following Theorem is to show that $\bigcap_s \mathfrak{m}^s = 0$, which is true for any Noetherian local ring (see Atiyah & Macdonald Corollary 10.19).

Alternatively, in Atiyah & Macdonald *complete* means that the morphism $A \longrightarrow \widehat{A}$ is an isomorphism, which is equivalent to every Cauchy sequence converging and $\cap_s \mathfrak{m}^s = 0$, and *local* means any ring with one maximal ideal.

The hypothesis necessary for the proof of the Theorem are: A must have one maximal ideal \mathfrak{m} , admit a limit for every Cauchy sequence in the \mathfrak{m} -adic topology, and have $\cap_s \mathfrak{m}^s = 0$. So in anybody's terminology, we require that A be a complete local ring.

Theorem 1 (Hensel's Lemma). Let A be a complete local ring, \mathfrak{m} its maximal ideal, and $f \in A[x]$ a monic polynomial of degree $n \ge 1$. Suppose there are coprime monic polynomials $G, H \in (A/\mathfrak{m})[x]$ of respective degrees r, n - r $(r \ge 0)$ such that

$$\overline{f} = GH$$

Then there exist monic polynomials $g, h \in A[x]$ of degrees r, n - r with

$$\overline{g} = G, \quad \overline{h} = H, \quad f = gh$$

Proof. We recursively construct monic polynomials $g_i, h_i \in A[x]$ such that $f \equiv g_i h_i \pmod{\mathfrak{m}^i[x]}$ for all $i \geq 1$, where $\overline{g_i} = G$ and $\overline{h_i} = H$. Moreover we will show that the residues of g_i, h_i are unique in the sense that if $\overline{g'} = G, \overline{h'} = H$ and $f \equiv g'h' \pmod{\mathfrak{m}^i[x]}$ then $g_i \equiv g'$ and $h_i \equiv h' \pmod{\mathfrak{m}^i[x]}$.

Given G, H choose representatives for the nonzero coefficients (making sure to choose 1 for $1 + \mathfrak{m}$). This defines two monic polynomials $g_1, h_1 \in A[x]$ of degrees r, n - r with $\overline{g_1} = G$ and $\overline{h_1} = H$. Since

$$\overline{f} = GH = \overline{g_1 h_1}$$

We have $f \equiv g_1 h_1 \pmod{\mathfrak{m}[x]}$. Now assume that g_k and h_k have been constructed and shown unique for a certain $k \geq 1$. We must construct g_{k+1}, h_{k+1} and show they are unique. Our approach is to find $\delta, \epsilon \in \mathfrak{m}^k[x]$ of degrees $\langle r, n - r \rangle$ such that $g_{k+1} = g_k + \delta$, $h_{k+1} = h_k + \epsilon$ satisfy the necessary properties.

Since G, H are coprime they generate the unit ideal in $(A/\mathfrak{m})[x]$, so we can find polynomials $\alpha, \beta \in A[x]$ with

$$1 \equiv \alpha g_k + \beta h_k \mod \mathfrak{m}[x] \tag{1}$$

We have $\Delta = f - g_k h_k \in \mathfrak{m}^k[x]$ by the inductive hypothesis. Multiplying by Δ we find that $\Delta \equiv \Delta \alpha g_k + \Delta \beta h_k \pmod{\mathfrak{m}^{k+1}[x]}$. We want to replace $\Delta \alpha, \Delta \beta$ by polynomials with degrees < r, n - r. Since h_k is monic we may apply the division algorithm to produce $\gamma, \epsilon \in A[x]$ with

 $deg(\epsilon) < n - r$ and $\Delta \alpha = \gamma h_k + \epsilon$. Since $\Delta \alpha \in \mathfrak{m}^k[x]$ we have $0 \equiv \gamma h_k + \epsilon \pmod{\mathfrak{m}^k[x]}$. Since h_k is monic it has degree n - r in $(A/\mathfrak{m}^k)[x]$ and so the uniqueness of the division algorithm in $(A/\mathfrak{m}^k)[x]$ implies that $\gamma, \epsilon \in \mathfrak{m}^k[x]$. Then

$$\Delta \equiv \epsilon g_k + \delta h_k \mod \mathfrak{m}^{k+1}[x] \tag{2}$$

where $\delta = \gamma g_k + \Delta \beta \in \mathfrak{m}^k[x]$. Since Δ and ϵg_k both have degree $\langle n, so does \delta h_k$, which implies that the degree of δ is $\langle r$. Considering the degrees of δ , ϵ we see that the polynomials $g_{k+1} = g_k + \delta$ and $h_{k+1} = h_k + \epsilon$ are monic of degrees r, n - r. Further (calculating mod $\mathfrak{m}^{k+1}[x]$)

$$g_{k+1}h_{k+1} \equiv g_k h_k + \epsilon g_k + \delta h_k + \delta \epsilon$$
$$\equiv g_k h_k + \Delta$$
$$\equiv f$$

Since $\delta \epsilon \in \mathfrak{m}^{2k}[x]$ and $2k \ge k+1$. The fact that $\delta, \epsilon \in \mathfrak{m}^k[x]$ implies that $\overline{g_{k+1}} = G$ and $\overline{h_{k+1}} = H$. So it only remains to prove uniqueness.

Suppose g', h' are monic polynomials of degrees r, n-r such that $\overline{g'} = G, \overline{h'} = H$ and $f \equiv g'h'$ (mod $\mathfrak{m}^{k+1}[x]$). Then $\epsilon' = h' - h_k, \, \delta' = g' - g_k$ have degrees < n - r, r. Then by the inductive hypothesis the residues of g_k, h_k are unique, so $\epsilon', \delta' \in \mathfrak{m}^k[x]$. Hence $\epsilon'\delta' \in \mathfrak{m}^{k+1}[x]$. Calculating mod $\mathfrak{m}^{k+1}[x]$

$$0 \equiv f - g'h' \equiv f - g_k h_k - \delta' h_k - \epsilon' g_k - \epsilon' \delta'$$

$$\equiv \Delta - (\epsilon' g_k + \delta' h_k)$$

Subtracting this from (??) we have

$$0 \equiv \mu g_k + \nu h_k \qquad \text{mod } \mathfrak{m}^{k+1}[x]$$

Where $\mu = \epsilon - \epsilon'$ and $\nu = \delta - \delta'$ have degrees $\langle n - r, r$. Multiplying through by α and using the fact that by (??), $\alpha g_k + \beta h_k - 1 = m \in \mathfrak{m}[x]$, we have

$$\mu \equiv (\mu\beta - \alpha\nu)h_k - \mu m \mod \mathfrak{m}^{k+1}[x]$$

But $\mu \in \mathfrak{m}^k[x]$ and $m \in \mathfrak{m}[x]$, so it follows that μ is a multiple of h_k in $(A/\mathfrak{m}^{k+1})[x]$. But in $(A/\mathfrak{m}^{k+1})[x]$ the polynomial μ has degree < n - r and h_k has degree n - r. Hence $\mu \equiv 0 \pmod{\mathfrak{m}^{k+1}[x]}$. Similarly $\nu \equiv 0$. Hence, calculating mod $\mathfrak{m}^{k+1}[x]$

$$h' \equiv h_k + \epsilon' \equiv h_k + \epsilon \equiv h_{k+1}$$

And similarly $g' \equiv g_{k+1}$, which completes the proof of uniqueness.

If $1 \leq i < j$ then $f - g_j h_j \in \mathfrak{m}^j[x] \subseteq \mathfrak{m}^i[x]$ so $f \equiv g_j h_j \pmod{\mathfrak{m}^i[x]}$. Hence by uniqueness $g_i \equiv g_j$ and $h_i \equiv h_j \pmod{\mathfrak{m}^i[x]}$. This implies that the sequences of coefficients are Cauchy in A and hence converge to coefficients a_0, \ldots, a_{r-1} (for the g_i) and b_0, \ldots, b_{n-r-1} (for the h_i). Set

$$g = a_0 + a_1 x + \dots + a_{r-1} x^{r-1} + x^r$$

$$h = b_0 + b_1 x + \dots + b_{n-r-1} x^{n-r-1} + x^{n-r}$$

It is easy to see that $\overline{g} = G$ and $\overline{h} = H$ by using the convergence of the coefficients and the fact that $\overline{g_k} = G$, $\overline{h_k} = H$ for all $k \ge 1$. We complete the proof by showing that f = gh.

Firstly, note that for $0 \le i \le n-1$

$$(gh)_{i} - (g_{k}h_{k})_{i} = \sum_{j=0}^{i} (g_{j}h_{i-j} - g_{k,j}h_{k,i-j})$$
$$= \sum_{j=0}^{i} (g_{j} - g_{k,j})h_{i-j} + \sum_{j=0}^{i} g_{k,j}(h_{i-j} - h_{k,i-j})$$

Hence $(g_k h_k)_i \longrightarrow (gh)_i$ for all $0 \le i \le n-1$. But

$$f_i - (gh)_i = f_i - (g_k h_k)_i + (g_k h_k)_i - (gh)_i$$

And $f_i - (g_k h_k)_i \in \mathfrak{m}^k$ by construction. Hence $f_i - (gh)_i \in \cap_s \mathfrak{m}^s$. But $\cap_s \mathfrak{m}^s$ is zero in a Noetherian local ring (see Atiyah & Macdonald Corollary 10.19), and consequenty f = gh, as required. \Box

Recall that for a polynomial $f(x) \in A[x]$ over an arbitrary ring, an element $a \in A[x]$ is a simple root of f if x - a divides f(x) but $(x - a)^2$ does not divide f(x).

Corollary 2. Let A be a complete local ring, \mathfrak{m} its maximal ideal, and f(x) a monic polynomial over A. Suppose that $\overline{f}(x)$ admits a simple root $\alpha \in A/\mathfrak{m}$. Then there exists an element a of A, having α as \mathfrak{m} -residue, and such that f(a) = 0. Moreover, a is a simple root of f(x).

Proof. Write $\overline{f}(x) = (x - \alpha)G(x)$ where G(x) is prime to $x - \alpha$. Then the Theorem shows the existence of monic polynomials x - a, g(x) with $\overline{a} = \alpha$ and $\overline{g}(x) = G(x)$ such that f(x) = (x - a)g(x). If a were a multiple root of f(x) then we could write $f(x) = (x - a)^2h(x)$ for some polynomial h(x). But then $\overline{f}(x) = (x - \alpha)^2\overline{h}(x)$ would imply that α is a multiple root of $\overline{f}(x)$, contradicting our assumption.

Example 1. There are many applications of Hensel's Lemma. We highlight a few simple ones:

(1) Let \mathfrak{m} be the maximal ideal (5) in \mathbb{Z} , and let A be the \mathfrak{m} -adic completion of \mathbb{Z} . Then A is a complete local ring whose maximal ideal $\widehat{\mathfrak{m}}$ consists of all Cauchy sequences $(a_i)_{i\geq 1}$ with each a_i a multiple of 5. The residue field of A is GF(5) since

$$A/\widehat{\mathfrak{m}}\cong\mathbb{Z}/\mathfrak{m}=\mathbb{Z}_5$$

The polynomial $x^2 + 1$ has two simple roots in GF(5), namely the classes of 2 and 3. Thus it has two simple roots in the 5-adic integers.

(2) Let A be the m-adic completion of $\mathbb{C}[z]$ where $\mathfrak{m} = (z)$. Then A is the complete local ring $\mathbb{C}[[z]]$ with maximal ideal (z). Consider the polynomial $f(x) = x^2 - (1+z) \in A[x]$. Note that

$$\mathbb{C}[[z]]/(z) \cong \mathbb{C}[z]/(z) \cong \mathbb{C}$$

Since f(x) = (x-1)(x+1) in $(A/\mathfrak{m})[x]$, Hensel's Lemma implies that there are power series $\alpha(z), \beta(z) \in \mathbb{C}[[z]]$ with $x^2 - (1+z) = (x - \alpha(z))(x - \beta(z))$ and $\overline{\alpha(z)} = 1, \overline{\beta(z)} = -1$. Reducing coefficients modulo (z) amounts to looking at only the constant term, so that $\alpha(z) = 1 + \ldots$ and $\beta(z) = -1 + \ldots$ So Hensel's Lemma implies the existence of power series square roots for 1 + z.