Hensel's Lemma

Daniel Murfet

April 8, 2005

Let A be a ring which is complete for its \mathfrak{a} topology, where \mathfrak{a} is an ideal. We show how certain relations occurring in the ring A / \mathfrak{a} (i.e., congruences $\bmod \mathfrak{a}$) may be "lifted" to analogous relations occurring in the ring A itself. The completeness of A is essential for this purpose. If $f \in A[x]$ then we denote by \bar{f} the image of f in $(A / \mathfrak{m})[x]$ under the canonical map $A[x] \longrightarrow(A / \mathfrak{m})[x]$.

Important 1. In Zariski \& Samuel complete means that every Cauchy sequence converges, and local means a Notherian ring with one maximal ideal. The only place where the Noetherian hypothesis is used in the following Theorem is to show that $\cap_{s} \mathfrak{m}^{s}=0$, which is true for any Noetherian local ring (see Atiyah \& Macdonald Corollary 10.19).

Alternatively, in Atiyah \& Macdonald complete means that the morphism $A \longrightarrow \widehat{A}$ is an isomorphism, which is equivalent to every Cauchy sequence converging and $\cap_{s} \mathfrak{m}^{s}=0$, and local means any ring with one maximal ideal.

The hypothesis necessary for the proof of the Theorem are: A must have one maximal ideal \mathfrak{m}, admit a limit for every Cauchy sequence in the \mathfrak{m}-adic topology, and have $\cap_{s} \mathfrak{m}^{s}=0$. So in anybody's terminology, we require that A be a complete local ring.

Theorem 1 (Hensel's Lemma). Let A be a complete local ring, \mathfrak{m} its maximal ideal, and $f \in A[x]$ a monic polynomial of degree $n \geq 1$. Suppose there are coprime monic polynomials $G, H \in(A / \mathfrak{m})[x]$ of respective degrees $r, n-r(r \geq 0)$ such that

$$
\bar{f}=G H
$$

Then there exist monic polynomials $g, h \in A[x]$ of degrees $r, n-r$ with

$$
\bar{g}=G, \quad \bar{h}=H, \quad f=g h
$$

Proof. We recursively construct monic polynomials $g_{i}, h_{i} \in A[x]$ such that $f \equiv g_{i} h_{i}\left(\bmod \mathfrak{m}^{i}[x]\right)$ for all $i \geq 1$, where $\overline{g_{i}}=G$ and $\overline{h_{i}}=H$. Moreover we will show that the residues of g_{i}, h_{i} are unique in the sense that if $\overline{g^{\prime}}=G, \overline{h^{\prime}}=H$ and $f \equiv g^{\prime} h^{\prime}\left(\bmod \mathfrak{m}^{i}[x]\right)$ then $g_{i} \equiv g^{\prime}$ and $h_{i} \equiv h^{\prime}$ $\left(\bmod \mathfrak{m}^{i}[x]\right)$.

Given G, H choose representatives for the nonzero coefficients (making sure to choose 1 for $1+\mathfrak{m})$. This defines two monic polynomials $g_{1}, h_{1} \in A[x]$ of degrees $r, n-r$ with $\overline{g_{1}}=G$ and $\overline{h_{1}}=H$. Since

$$
\bar{f}=G H=\overline{g_{1} h_{1}}
$$

We have $f \equiv g_{1} h_{1}(\bmod \mathfrak{m}[x])$. Now assume that g_{k} and h_{k} have been constructed and shown unique for a certain $k \geq 1$. We must construct g_{k+1}, h_{k+1} and show they are unique. Our approach is to find $\delta, \epsilon \in \mathfrak{m}^{k}[x]$ of degrees $<r, n-r$ such that $g_{k+1}=g_{k}+\delta, h_{k+1}=h_{k}+\epsilon$ satisfy the necessary properties.

Since G, H are coprime they generate the unit ideal in $(A / \mathfrak{m})[x]$, so we can find polynomials $\alpha, \beta \in A[x]$ with

$$
\begin{equation*}
1 \equiv \alpha g_{k}+\beta h_{k} \quad \bmod \mathfrak{m}[x] \tag{1}
\end{equation*}
$$

We have $\Delta=f-g_{k} h_{k} \in \mathfrak{m}^{k}[x]$ by the inductive hypothesis. Multiplying by Δ we find that $\Delta \equiv \Delta \alpha g_{k}+\Delta \beta h_{k}\left(\bmod \mathfrak{m}^{k+1}[x]\right)$. We want to replace $\Delta \alpha, \Delta \beta$ by polynomials with degrees $<r, n-r$. Since h_{k} is monic we may apply the division algorithm to produce $\gamma, \epsilon \in A[x]$ with
$\operatorname{deg}(\epsilon)<n-r$ and $\Delta \alpha=\gamma h_{k}+\epsilon$. Since $\Delta \alpha \in \mathfrak{m}^{k}[x]$ we have $0 \equiv \gamma h_{k}+\epsilon\left(\bmod \mathfrak{m}^{k}[x]\right)$. Since h_{k} is monic it has degree $n-r$ in $\left(A / \mathfrak{m}^{k}\right)[x]$ and so the uniqueness of the division algorithm in $\left(A / \mathfrak{m}^{k}\right)[x]$ implies that $\gamma, \epsilon \in \mathfrak{m}^{k}[x]$. Then

$$
\begin{equation*}
\Delta \equiv \epsilon g_{k}+\delta h_{k} \quad \bmod \mathfrak{m}^{k+1}[x] \tag{2}
\end{equation*}
$$

where $\delta=\gamma g_{k}+\Delta \beta \in \mathfrak{m}^{k}[x]$. Since Δ and ϵg_{k} both have degree $<n$, so does δh_{k}, which implies that the degree of δ is $<r$. Considering the degrees of δ, ϵ we see that the polynomials $g_{k+1}=g_{k}+\delta$ and $h_{k+1}=h_{k}+\epsilon$ are monic of degrees $r, n-r$. Further (calculating mod $\mathfrak{m}^{k+1}[x]$)

$$
\begin{aligned}
g_{k+1} h_{k+1} & \equiv g_{k} h_{k}+\epsilon g_{k}+\delta h_{k}+\delta \epsilon \\
& \equiv g_{k} h_{k}+\Delta \\
& \equiv f
\end{aligned}
$$

Since $\delta \epsilon \in \mathfrak{m}^{2 k}[x]$ and $2 k \geq k+1$. The fact that $\delta, \epsilon \in \mathfrak{m}^{k}[x]$ implies that $\overline{g_{k+1}}=G$ and $\overline{h_{k+1}}=H$. So it only remains to prove uniqueness.

Suppose g^{\prime}, h^{\prime} are monic polynomials of degrees $r, n-r$ such that $\overline{g^{\prime}}=G, \overline{h^{\prime}}=H$ and $f \equiv g^{\prime} h^{\prime}$ $\left(\bmod \mathfrak{m}^{k+1}[x]\right)$. Then $\epsilon^{\prime}=h^{\prime}-h_{k}, \delta^{\prime}=g^{\prime}-g_{k}$ have degrees $<n-r, r$. Then by the inductive hypothesis the residues of g_{k}, h_{k} are unique, so $\epsilon^{\prime}, \delta^{\prime} \in \mathfrak{m}^{k}[x]$. Hence $\epsilon^{\prime} \delta^{\prime} \in \mathfrak{m}^{k+1}[x]$. Calculating $\bmod \mathfrak{m}^{k+1}[x]$

$$
\begin{aligned}
0 & \equiv f-g^{\prime} h^{\prime} \equiv f-g_{k} h_{k}-\delta^{\prime} h_{k}-\epsilon^{\prime} g_{k}-\epsilon^{\prime} \delta^{\prime} \\
& \equiv \Delta-\left(\epsilon^{\prime} g_{k}+\delta^{\prime} h_{k}\right)
\end{aligned}
$$

Subtracting this from (??) we have

$$
0 \equiv \mu g_{k}+\nu h_{k} \quad \bmod \mathfrak{m}^{k+1}[x]
$$

Where $\mu=\epsilon-\epsilon^{\prime}$ and $\nu=\delta-\delta^{\prime}$ have degrees $<n-r, r$. Multiplying through by α and using the fact that by (??), $\alpha g_{k}+\beta h_{k}-1=m \in \mathfrak{m}[x]$, we have

$$
\mu \equiv(\mu \beta-\alpha \nu) h_{k}-\mu m \quad \bmod \mathfrak{m}^{k+1}[x]
$$

But $\mu \in \mathfrak{m}^{k}[x]$ and $m \in \mathfrak{m}[x]$, so it follows that μ is a multiple of h_{k} in $\left(A / \mathfrak{m}^{k+1}\right)[x]$. But in $\left(A / \mathfrak{m}^{k+1}\right)[x]$ the polynomial μ has degree $<n-r$ and h_{k} has degree $n-r$. Hence $\mu \equiv 0(\bmod$ $\left.\mathfrak{m}^{k+1}[x]\right)$. Similarly $\nu \equiv 0$. Hence, calculating $\bmod \mathfrak{m}^{k+1}[x]$

$$
h^{\prime} \equiv h_{k}+\epsilon^{\prime} \equiv h_{k}+\epsilon \equiv h_{k+1}
$$

And similarly $g^{\prime} \equiv g_{k+1}$, which completes the proof of uniqueness.
If $1 \leq i<j$ then $f-g_{j} h_{j} \in \mathfrak{m}^{j}[x] \subseteq \mathfrak{m}^{i}[x]$ so $f \equiv g_{j} h_{j}\left(\bmod \mathfrak{m}^{i}[x]\right)$. Hence by uniqueness $g_{i} \equiv g_{j}$ and $h_{i} \equiv h_{j}\left(\bmod \mathfrak{m}^{i}[x]\right)$. This implies that the sequences of coefficients are Cauchy in A and hence converge to coefficients a_{0}, \ldots, a_{r-1} (for the g_{i}) and b_{0}, \ldots, b_{n-r-1} (for the h_{i}). Set

$$
\begin{aligned}
& g=a_{0}+a_{1} x+\ldots+a_{r-1} x^{r-1}+x^{r} \\
& h=b_{0}+b_{1} x+\ldots+b_{n-r-1} x^{n-r-1}+x^{n-r}
\end{aligned}
$$

It is easy to see that $\bar{g}=G$ and $\bar{h}=H$ by using the convergence of the coefficients and the fact that $\overline{g_{k}}=G, \overline{h_{k}}=H$ for all $k \geq 1$. We complete the proof by showing that $f=g h$.

Firstly, note that for $0 \leq i \leq n-1$

$$
\begin{aligned}
(g h)_{i}-\left(g_{k} h_{k}\right)_{i} & =\sum_{j=0}^{i}\left(g_{j} h_{i-j}-g_{k, j} h_{k, i-j}\right) \\
& =\sum_{j=0}^{i}\left(g_{j}-g_{k, j}\right) h_{i-j}+\sum_{j=0}^{i} g_{k, j}\left(h_{i-j}-h_{k, i-j}\right)
\end{aligned}
$$

Hence $\left(g_{k} h_{k}\right)_{i} \longrightarrow(g h)_{i}$ for all $0 \leq i \leq n-1$. But

$$
f_{i}-(g h)_{i}=f_{i}-\left(g_{k} h_{k}\right)_{i}+\left(g_{k} h_{k}\right)_{i}-(g h)_{i}
$$

And $f_{i}-\left(g_{k} h_{k}\right)_{i} \in \mathfrak{m}^{k}$ by construction. Hence $f_{i}-(g h)_{i} \in \cap_{s} \mathfrak{m}^{s}$. But $\cap_{s} \mathfrak{m}^{s}$ is zero in a Noetherian local ring (see Atiyah \& Macdonald Corollary 10.19), and consequenty $f=g h$, as required.

Recall that for a polynomial $f(x) \in A[x]$ over an arbitrary ring, an element $a \in A[x]$ is a simple root of f if $x-a$ divides $f(x)$ but $(x-a)^{2}$ does not divide $f(x)$.
Corollary 2. Let A be a complete local ring, \mathfrak{m} its maximal ideal, and $f(x)$ a monic polynomial over A. Suppose that $\bar{f}(x)$ admits a simple root $\alpha \in A / \mathfrak{m}$. Then there exists an element a of A, having α as \mathfrak{m}-residue, and such that $f(a)=0$. Moreover, a is a simple root of $f(x)$.

Proof. Write $\bar{f}(x)=(x-\alpha) G(x)$ where $G(x)$ is prime to $x-\alpha$. Then the Theorem shows the existence of monic polynomials $x-a, g(x)$ with $\bar{a}=\alpha$ and $\bar{g}(x)=G(x)$ such that $f(x)=$ $(x-a) g(x)$. If a were a multiple root of $f(x)$ then we could write $f(x)=(x-a)^{2} h(x)$ for some polynomial $h(x)$. But then $\bar{f}(x)=(x-\alpha)^{2} \bar{h}(x)$ would imply that α is a multiple root of $\bar{f}(x)$, contradicting our assumption.

Example 1. There are many applications of Hensel's Lemma. We highlight a few simple ones:
(1) Let \mathfrak{m} be the maximal ideal (5) in \mathbb{Z}, and let A be the \mathfrak{m}-adic completion of \mathbb{Z}. Then A is a complete local ring whose maximal ideal $\widehat{\mathfrak{m}}$ consists of all Cauchy sequences $\left(a_{i}\right)_{i \geq 1}$ with each a_{i} a multiple of 5 . The residue field of A is $G F(5)$ since

$$
A / \widehat{\mathfrak{m}} \cong \mathbb{Z} / \mathfrak{m}=\mathbb{Z}_{5}
$$

The polynomial $x^{2}+1$ has two simple roots in $G F(5)$, namely the classes of 2 and 3 . Thus it has two simple roots in the 5 -adic integers.
(2) Let A be the \mathfrak{m}-adic completion of $\mathbb{C}[z]$ where $\mathfrak{m}=(z)$. Then A is the complete local ring $\mathbb{C}[[z]]$ with maximal ideal (z). Consider the polynomial $f(x)=x^{2}-(1+z) \in A[x]$. Note that

$$
\mathbb{C}[[z]] /(z) \cong \mathbb{C}[z] /(z) \cong \mathbb{C}
$$

Since $f(x)=(x-1)(x+1)$ in $(A / \mathfrak{m})[x]$, Hensel's Lemma implies that there are power series $\alpha(z), \beta(z) \in \mathbb{C}[[z]]$ with $x^{2}-(1+z)=(x-\alpha(z))(x-\beta(z))$ and $\overline{\alpha(z)}=1, \overline{\beta(z)}=-1$. Reducing coefficients modulo (z) amounts to looking at only the constant term, so that $\alpha(z)=1+\ldots$ and $\beta(z)=-1+\ldots$. So Hensel's Lemma implies the existence of power series square roots for $1+z$.

