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Disclaimer: I am by no means a set theorist or any kind of expert. This is the record of my
search for peace of mind with respect to foundations in category theory. Perhaps my experience
will save another graduate student some frustration. There is a large literature on this subject, of
which I am largely ignorant. The reader might find [Isb66], [Kru65], [ML71], [Mak96] and [Son62]
useful.
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1 Introduction

One reason for the increase in importance of mathematical logic was the discovery of paradoxes
in naive set theory. There are many different axiomatic theories that can serve as a foundation
for set theory, some more obscure than others. The most popular form of axiomatic set theory is
Zermelo-Frankel (ZF) together with the Axiom of Choice (ZFC), with most modern research in set
theory on questions of independence and consistency carried out with respect to ZF. This form of
set theory is sufficient for many parts of mathematics, but in category theory (and therefore fields
like algebraic geometry where categorical techniques are prevalent) this is not enough, because we
need to talk about structures like the “category of all sets” which have no place in ZFC.

In many of the standard english references on category theory, little attention is paid to set-
theoretic problems. Notable exceptions are Schubert’s excellent book [Sch72] and also [AHS90].
In the author’s opinion, among all references on category theory [Sch72] comes the closest to a
complete, careful, working foundation for category theory. The available foundations that the
author is aware of are:

(a) An alternative version of set theory called NBG (due to von Neumann, Robinson, Bernays
and Gödel) which introduces classes to play the role of sets which are “too big” to exist
in ZF. A good reference is Chapter 4 of [Men97]. The author learnt category theory from
[Mit65], so began life believing in NBG. But if you’re careful you soon observe a whole raft
of things that need to be added to make NBG work, and in the end you might as well learn
about universes.

(b) Extend ZFC by adding a new axiom describing grothendieck universes. Intuitively speaking,
you fix a grothendieck universe U and call elements of U sets, while calling subsets of U
classes. We describe this approach in detail in Section 4. This is the approach preferred
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by the author, and seems to be the only serious foundation available for modern research
involving categories.

(c) The first two options are conversative, in that they seek to extend set theory by as little as
possible to make things work. More exotically, we can introduce categories as foundational
objects. This approach focuses on topoi as the fundamental logical objects (as well as the
connection with the more familiar world of naive set theory). While such a foundation shows
promise, it is not without its own problems [Hel03] and is probably not ready for “daily use”.

We begin this note by reminding the reader briefly about first order theories. For this and the
detailed treatment of NBG the careful reader should consult [Men97]. At some point we must
admit that mathematics is a game played with pencils and paper, and can never aspire to be “per-
fect”. Not least of all because every mathematician performs their work using an imperfect organic
processing device, and it is only this device which attaches meaning to the symbols on a page. Our
foundation of mathematics will make reference to concepts like “collection”,“finite”,“countable”
and “sequence” which will not be formalised. There will always be some level of ambiguity and
imperfection in our foundations: the aim is to reduce this to a minimum and then hopefully never
worry about it again. To this end, formal theories are described using a mathematically weak
portion of the English language.

2 First order theories

Underlying Philosophy 1. Mathematics consists of formal theories and interpretations of these
theories. The definition of a formal theory refers to the simplest innate capabilities of the human
mind, corresponding loosely to mental manipulation of discrete objects:

• The ability to conceive of individual objects

• The ability to group objects together into collections

• The ability to distinguish those objects of a collection which satisfy some condition

A formal theory is a conservative mental structure dealing with sequences of symbols and the
relations between these sequences (symbols being objects, sequences and relations both being
types of collections).

Definition 1. A formal theory S is defined by the following information:

1. A countable collection of symbols. A finite sequence of symbols of S is called an expression
of S.

2. There is a collection of expressions of S called the well formed formulas (wfs) of S. There
is usually an effective procedure to determine whether a given expression is a wf.

3. There is a collection of wfs called the axioms of S. Most often, one can effectively decide
whether a given wf is an axiom; in such a case, S is called an axiomatic theory.

4. There is a finite collection R1, . . . , Rn of relations among the wfs, called rules of inference.
For each Ri there is a unique positive integer j such that, for every collection of j wfs and
each wf B, one can effectively decide whether the given j wfs are in relation Ri to B, and
if so, B is said to follow from or to be a direct consequence of the given wfs by virtue of Ri.

A proof in S is a sequence B1, . . . ,Bk of wfs such that, for each i, either Bi is an axiom of S or
Bi is a direct consequence of some of the preceeding wfs in the sequence by virtue of one of the
rules of inference of S.

A theorem of S is a wf B of S such that B is the last wf of some proof in S. Such a proof
is called a proof of B in S. A wf C is said to be a consequence in S of a collection Γ of wfs if
and only if there is a sequence B1, . . . ,Bk of wfs such that C is Bk and, for each i, either Bi is
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an axiom or Bi is in Γ, or Bi is a direct consequence by some rule of inference of some of the
preceeding wfs in the sequence. Such a sequence is called a proof (or deduction) of C from Γ.
The members of Γ are called the hypotheses or premises of the proof.

Definition 2. A first order theory L is a formal theory of a certain type, as described below.

1. The symbols of L are given by:

(a) The propositional connectives ¬ and ⇒, and the universal quantifier symbol ∀.
(b) Punctuation marks: the left parenthesis ( the right parenthesis ) and the comma.

(c) Denumerably many individual variables x1, x2, . . ..

(d) A finite or denumerable, possibly empty, collection of function letters. Associated with
a function letter f is a positive integer n indicating the number of arguments.

(e) A finite or denumerable, possibly empty, collection of individual constants

(f) A non-empty collection of predicate letters. Associated with a predicate letter A is a
positive integer n indicating the number of arguments.

2. To define the wfs of L we first give two collections of expressions of L: the terms and the
atomic formulas. The terms are defined as follows:

(a) Variables and individual constants are terms.

(b) If f is a function letter with n arguments and t1, . . . , tn are terms, then f(t1, . . . , tn) is
a term.

(c) An expression is a term only if it can be shown to be a term on the basis of conditions
1 and 2.

An expression is an atomic formula if it is A(t1, . . . , tn) where A is a predicate letter with n
arguments and t1, . . . , tn are terms. The well-formed formulas of L are defined as follows:

(a) Every atomic formula is a wf.

(b) If B and C are wfs and y is a variable then (¬B), (B ⇒ C ) and ((∀y)B) are wfs.

(c) An expression is a wf only if it can be shown to be a wf on the basis of conditions 1
and 2.

In ((∀y)B) the wf B is called the scope of the quantifier (∀y). An occurrence of a variable
x is said to be bound in a wf B if either it is the occurrence of x in a quantifier (∀x) in B
or it lies within the scope of a quantifier (∀x) in B. Otherwise the occurrence is said to be
free in B. A variable is said to be free (bound) in a wf B if it has a free (bound) occurrence
in B.

If B is a wf and t is a term, then t is said to be free for the variable xi in B if no free
ocurrence of xi lies in B within the scope of any quantifier (∀xj), where xj is a variable in
t. That is, if t is substituted for all free occurrences of xi in B, no occurrence of a variable
in t becomes a bound occurrence in B.

3. We only require that the axioms of L include the following logical axioms for wfs B,C and
D of L

(A1) B ⇒ (C ⇒ B)

(A2) (B ⇒ (C ⇒ D)) ⇒ ((B ⇒ C ) ⇒ (B ⇒ D))

(A3) (¬C ⇒ ¬B) ⇒ ((¬C ⇒ B) ⇒ C )

(A4) (∀xi)B(xi) ⇒ B(t) if B(xi) is a wf of L and t is a term of L that is free for xi in B(xi).
Note here that t may be identical with xi so that all wfs (∀xi)B ⇒ B are axioms by
virtue of (A4).

(A5) (∀xi)(B ⇒ C ) ⇒ (B ⇒ (∀xi)C ) if B contains no free occurrences of xi.
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4. There are precisely two rules of inference:

(a) Modus ponens: C follows from B and B ⇒ C .

(b) Generalisation: (∀xi)B follows from B.

Underlying Philosophy 2. A first other theory is meant to describe formal manipulations of
imaginary symbols. Of course, in practice (for example in the first other theory of sets) we say
that the variables “stand for” sets, and the wfs of the theory “say things” about sets. So a formal
theory of sets is an attempt to be as unbiased as possible about what is and what is not true
about sets.

3 ZFC

Before we study grothendieck universes, let us first agree on what we mean by ZFC. The first
order theory ZFC has two predicate letters A,B but no function letter, or individual constants.
Traditionally the variables are given by uppercase letters X1, X2, . . . (As usual, we shall use X, Y, Z
to represent arbitrary variables). We shall abbreviate A(X, Y ) by X ∈ Y and B(X, Y ) by X = Y .
Intuitively ∈ is thought of as the membership relation and the values of the variables are to be
thought of as sets (in ZFC we have no concept of “class”). The proper axioms are as follows (there
are an infinite number of axioms since an axiom scheme is used):

Axiom of Extensionality Two sets are the same if and only if they have the same elements

∀A,∀B : A = B ⇔ (∀C : C ∈ A ⇔ C ∈ B)

Axiom of Empty Set There is a set with no elements. By the previous axiom, it must be
unique and we denote it ∅

∃∅,∀A : ¬(A ∈ ∅)

Axiom of Pairing If x, y are sets, then there exists a set containing x, y as its only elements,
which we denote {x, y}. Therefore given any set x there is a set {x} = {x, x} containing
just the set x

∀A,∀B,∃C,∀D : D ∈ C ⇔ (D = A ∨D = B)

Axiom of Union For any set x, there is a set y such that the elements of y are precisely the
elements of the elements of x

∀A,∃B,∀C : C ∈ B ⇔ (∃D : C ∈ D ∧D ∈ A)

Axiom of Infinity There exists a set x such that ∅ is in x and whenever y is in x, so is y ∪ {y}

∃N : ∅ ∈ N ∧ (∀A : A ∈ N ⇒ A ∪ {A} ∈ N)

Axiom of Power Set Every set has a power set. That is, for any set x there exists a set y, such
that the elements of y are precisely the subsets of x.

∀A,∃PA,∀B : B ∈ PA ⇔ (∀C : C ∈ B ⇒ C ∈ A)

Axiom of Comprehension Given any set and any wf B(x) with x free, there is a subset of the
original set containing precisely those elements x for which B(x) holds (this is an axiom
schema)

∀A,∃B,∀C : C ∈ B ⇔ C ∈ A ∧B(C)

Here we make the technical assumption that the variables A,B,C do not occur in B.
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Axiom of Replacement Given any set and any mapping, formally defined as a wf B(x, y) with
x, y free such that B(x, y1) and B(x, y2) implies y1 = y2, there is a set containing precisely
the images of the original set’s elements (this is an axiom schema)

(∀X,∃!Y : B(X, Y )) ⇒ ∀A,∃B,∀C : C ∈ B ⇔ ∃D : D ∈ A ∧B(D,C)

Axiom of Foundation A foundation member of a set x is y ∈ x such that y∩x is empty. Every
nonempty set has a foundation member.

∃A(A ∈ B) ⇒ ∃A(A ∈ B ∧ ¬∃C(C ∈ A ∧ C ∈ B))

Axiom of Choice Given any set of mutually disjoint nonempty sets, there exists at least one set
that contains exactly one element in common with each of the nonempty sets.

4 Grothendieck Universes

Whatever foundation we use for category theory, it must somehow provide us with a notion
of “big sets”. In Grothendieck’s approach, one fixes a particular set U (called the universe)
and thinks of elements of U as “normal sets”, subsets of U as “classes”, and all other sets as
“unimaginably massive”. The original (and to the author’s knowledge, only) complete reference for
grothendieck universes is SGA4, although the definition is given in [Sch72] and various other places.
The presentation in this section closely follows SGA4, up to the definition of the “conglomerate
convention”.

Definition 3. A grothendieck universe (or just a universe) is a nonempty set U with the following
properties:

U1. If x ∈ U and y ∈ x then y ∈ U (that is, if x ∈ U then x ⊆ U ).

U2. If x, y ∈ U then {x, y} ∈ U .

U3. If x ∈ U , then P(x) ∈ U .

U4. If I ∈ U and {xi}i∈I is a family of elements of U , then the union
⋃

i∈I xi belongs to U .

Remark 1. From these axioms, one deduces the following properties

• If x ∈ U then {x} ∈ U .

• if x is a subset of y ∈ U , then x ∈ U (in particular ∅ ∈ U ).

• If x, y ∈ U then the Kuratowski ordered pair (x, y) = {x, {x, y}} is an element of U .

• If x, y ∈ U then x ∪ y and x× y are elements of U .

• If x, y ∈ U then the set of all functions x −→ y belongs to U .

• If I ∈ U and {xi}i∈I is a family of elements of U , then the sets
∏

i∈I xi,
∐

i∈I xi both
belong to U . If I is nonempty then

⋂
i∈I xi ∈ U .

• If x ∈ U then x ∪ {x} ∈ U , and therefore N ⊆ U (you can’t say in general that N ∈ U ).
Therefore any finite union, product and disjoint union of elements of U belongs to U . In
particular every finite subset of U belongs to U .

• If x ∈ U then the union set of x belongs to U .
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We can therefore perform all the usual operations of the theory of sets beginning with the
elements of a universe without the final result escaping our universe. To be more precise, the
axioms of ZFC strictly limit the ways you can produce new sets from known ones. Looking at the
axioms, only the Axiom of Replacement can produce a set outside our universe (beginning with
sets inside the universe), although one could argue that the Axiom of Infinity also “produces” the
set N, which may not belong to U . To get around the latter difficulty, we add the following axiom
to ZFC (write Unv(X) to mean that the set X is a universe)

UA. Every set is contained in some universe

∀A∃U : Unv(U ) ∧A ∈ U

Definition 4. The first order theory ZFCU is the first order theory ZFC together with the axiom
UA. We also refer to this as ZFC with universes. An infinite universe is a universe U with N ∈ U .
By UA there is at least one infinite universe. Throughout our notes, all universes will be infinite.

Remark 2. Let U be a grothendieck universe. Then by our convention U contains N, and
therefore also Z, Q, R, C and all structures built from these using the theory of sets.

Definition 5. Let U be a grothendieck universe. An U -set is an element of U . An U -group
(resp. U -abelian group) is a group (resp. abelian group) in the usual sense whose underlying
set belongs to U . In this way we define U -rings, U -algebras, U -topological spaces, etc. An
U -class is a subset of U . Therefore we have the set P(U ) of all U -classes. In our notes we will
usually fix a grothendieck universe U and then use the following notation convention, called the
conglomerate convention for U (CCU ):

CCU ZFC
set U -set

class U -class
conglomerate set

group U -group
abelian group U -abelian group

ring U -ring
topological space U -topological space

...
...

While this convention is in force we use it exclusively: that is, we never refer to conglomerates
as “sets” in the usual fashion of ZFC. In this notation we have the class U of all sets, and the
conglomerate P(U ) of all classes, but there is no “collection” of all conglomerates.

• Any set is a class, and any class is a conglomerate.

• Call a class proper if it is not a set. Then a class is proper if and only if it is not contained
in any other class (which agrees with the notion of proper class in NBG). If X, Y are classes
then so are X ∪ Y, X × Y and X ∩ Y . If I is a set then any I-indexed union, product or
intersection of classes is a class.

• By the Axiom of Comprehension, we can form the conglomerate of all classes with a certain
property.

• By the Axiom of Choice, given a conglomerate of disjoint nonempty classes, we can produce
a class which contains precisely one element from each of the classes. Of course the usual
Axiom of Choice for sets applies: given a set of disjoint nonempty sets, there is a set
containing precisely one elements from each of the sets.

Remark 3. Apparently UA is equivalent to the existence of inaccessible cardinals, and is therefore
logically independent of ZFC. For details see [Bou72].
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Now that we have described in detail our logical foundation, it remains to give the definition
of a category. In Section 4.1 we give our approach to the definition of a category and show how
this framework solves many of the set-theoretic issues that come up in the “daily life” of someone
doing algebraic geometry. In Section 4.2 we outline the approach taken in SGA4, and explain why
we have chosen to do things differently.

4.1 Categories

Return for a moment to the notation of ZFC. Firstly we define a category just as an algebraic
object similar to a group or a ring (AC,Definition 1), with no mention of universes. We only
need to introduce fancy set-theoretic ideas to satisfy our desire to talk about the category of “all
sets”, “all groups” or “all topological spaces”. It is the choice of a grothendieck universe U which
furnishes us with such concepts, by allowing us to form the U-classes of all U-sets, U-groups and
U-topological spaces.

An U-category (AC,Definition 6) is a category whose objects and morphisms form U-classes,
and whose morphisms sets are U-sets. The categories of all U-sets, U-groups, U-topological spaces
etc. are all U-categories. In fact, throughout our notes we not only fix the universe U and adopt
the CCU as described above, we also agree that all categories are U-categories unless otherwise
specified. This is the meaning that the word “category” has throughout the development of
(AC,Section 1), and in most of our other notes. One should see Section 4.2 for a discussion of a
way in which one naturally encounters categories which are not U-categories, and how to avoid
this problem.

Let us now describe how ZFCU solves set-theoretic problems occurring naturally in algebraic
geometry and category theory. Some examples are:

• Let C be a small category, D any category with binary products. Then the category of all
covariant functors C −→ D has binary products. Given functors F,G the construction works
by choosing, for every C ∈ C, a product F (C) × G(C) in D. This requires the application
of a powerful axiom of choice, not even available in standard NBG. In ZFCU there is no
problem, since we have AC for conglomerates. For details see Lemma 1 below.

• Here are some other examples where AC for conglomerates is needed:

(i) In proving an abelian category with enough projectives has a simultaneous assignment
of projective resolutions to every object (even if we have available a canonical projective
generator, if there are no canonical coproducts one must still simultaneously choose
coproducts out of which to project).

(ii) In proving basic facts about equivalences of categories.

(iii) In describing “taking limits” as a functor on diagrams, which leads to the easy proof
that limits preserve limits.

• There are situations where we need collections larger than the classes provided by NBG.
For example, given a ringed space (X,OX) an important invariant is the Picard group of
all isomorphism classes of invertible sheaves on X under the tensor product. The class of
all invertible sheaves on X is proper, so within NBG it is impossible to even talk about the
“collection” of equivalence classes, since each equivalence class will be a proper class which
can therefore not belong to any other class. In ZFCU there is no problem, since we have
conglomerates.

Fix a universe U and adopt the conglomerate convention, so in particular all categories are
U-categories. To be perfectly clear, we elaborate on the first point above.

Lemma 1. Let C be a category with binary products, and denote the object and morphism classes
by O,M respectively. Then there exists a function f : O × O −→ M ×M which maps a pair of
objects (A,C) to a product (u, v).
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Proof. When we say the tuple (u, v) is a product, we mean the morphisms u : D −→ A, u :
D −→ C are a product in C. Let Q be the conglomerate of pairs (u, v) in M × M which are
a product in C. In the usual way (using the Axiom of Replacement) we can define a function
g : O×O −→ P(Q) which maps a pair (C,D) to the conglomerate of all pairs (u, v) consisting of
morphisms u : D −→ A, u : D −→ C which are a product. The conglomerate Im(g) is nonempty
and all its elements are disjoint and nonempty, so we can apply the Axiom of Choice to produce
a function c : Im(g) −→ M × M choosing a particular product. The composite f = cg is the
required function.

Remark 4. To summarise, throughout our notes we work in the first order theory ZFCU and
fix a universe U containing Z. With respect to this universe we adopt the conglomerate notation
convention, so that set, class and conglomerate have specific meaning. All categories are U-
categories unless specified otherwise. If we wish to adopt the notation of ZFC (“calling a set a
set”) we will say so explicitly.

4.2 Categories in SGA4

Throughout this section we work in notation of ZFC. That is, the conglomerate convention is
not in force and a category is an algebraic object as defined in (AC,Definition 1). In SGA4
grothendieck universes are defined as above, but the development of category theory proceeds
along different lines. To avoid confusing notation, the categories called “U-categories” in SGA4
will here be referred to as “U-gategories”. Here are the relevant definitions from SGA4. As before,
all universes are assumed to be infinite.

Definition 6. Let U be a universe. A set X is U-small if there is some U-set Y and a bijection
X ∼= Y . A group, ring, topological space etc. is U-small if its underlying set is U-small. A category
is U-small if its object and morphisms sets O, M are U-small.

Definition 7. Let U be a universe. A category C is a U-gategory if for every pair of objects X, Y
the set HomC(X, Y ) is U-small.

Remark 5. Observe that the set of objects is not required to be a U-class, or even to be bijective
to a U-class. This is not so serious, since the set-theoretic arguments occurring in category theory
rarely rely on smallness conditions on the class of objects. The important increase in generality
is that instead of requiring the morphism sets to be U-sets, they only have to be bijective to a
U-set. This might seem innocuous (after all, one of the basic lessons of category theory is that we
shouldn’t distinguish isomorphic objects) but it introduces irritating technical problems.

Remark 6. Given categories C,D let [C,D] denote the category of covariant functors C −→ D.
Then

(i) If C,D belong to the universe U (resp. are U-small) then [C,D] is an element of the universe
(resp. is U-small).

(ii) If C is U-small and D is a U-gategory, then [C,D] is a U-gategory.

Remark 7. Here is one way in which U-gategories arise naturally. Given an abelian category A
we can form the derived category D(A). One key technical point in this definition is the formation
of a “category of fractions”. Let C be a U-category and Σ a set of morphisms to “invert”. We form
a category C[Σ−1] in which the morphisms of Σ become isomorphisms. For bad Σ the morphism
sets of C[Σ−1] are not even necessarily U-small. With enough hypothesis, we can show that the
morphism sets of C[Σ−1] are U-small, but they are not necessarily U-sets. So even if we start with
U-category, we can end up with a U-gategory.

The philosophy expressed in SGA4 is that one should replace U-categories by U-gategories
throughout. This has the advantage that our “categories” are closed under constructions like
categories of fractions. It also has a serious technical disadvantage. Let U-Sets be the U-category
of all U-sets. If C is a U-category then every object X gives rise to a covariant functor HomC(X,−) :

8

file:"AbelianCategories.pdf"


C −→ U-Sets which is widely used. But if C is a U-gategory with objects X, Y then HomC(X, Y )
does not necessarily belong to U-Sets, so we cannot define HomC(X,−) in the naive way. Instead
we have to introduce a new axiom UB to ZFCU and and replace the set HomC(X, Y ) by a certain
U-set (see SGA4.I Construction-définition 1.3 for details).
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