Ext

Daniel Murfet

May 16, 2006

Contents

1	Ext using Injectives	1
	1.1 Calculations using Injective Presentations	4
2	Ext using Projectives	4
	2.1 Calculations using Projective Presentations	6
3	Balancing Ext	7
4	Properties of Ext	9
	4.1 Ext for Linear Categories	9
	4.2 Dimension Shifting	10
	4.3 Ext and Coproducts	11
5	Ext for Commutative Rings	11
	5.1 Coextension	12
6	Another Characterisation of Derived Functors	12

1 Ext using Injectives

If \mathcal{A} is an abelian category, then Hom(A, -) is a covariant, additive, kernel preserving functor $\mathcal{A} \longrightarrow \mathbf{Ab}$ and Hom(-, B) is a contravariant, additive functor which maps cokernels to kernels. Throughout this section \mathcal{A} will be an abelian category with enough injectives.

Definition 1. The right derived functors of Hom(A, -) are called the *Ext* groups.

$$Ext^{i}(A,B) = R^{i}Hom(A,-)(B)$$

The functor $Ext^i(A, -) : \mathcal{A} \longrightarrow \mathbf{Ab}$ is additive and covariant for $i \ge 0$. Since Hom(A, -) is left exact the functors $Ext^0(A, -)$ and Hom(A, -) are naturally equivalent. We simply write Ext(A, -) for $Ext^1(A, -)$.

The group $Ext^i(A, B)$ is only determined up to isomorphism, and to calculate it we find an injective resolution $0 \longrightarrow B \longrightarrow I^0 \longrightarrow I^1 \cdots$ and calculate the cohomology of the sequence

$$0 \longrightarrow Hom(A, I^0) \longrightarrow Hom(A, I^1) \longrightarrow Hom(A, I^2) \longrightarrow \cdots$$

We think of Ext^i as assigning to any pair of objects A, B an isomorphism class of abelian groups, which has the following properties:

- For any injective object I we have $Ext^i(A, I) = 0$ for $i \neq 0$, since this is a property of any right derived functor.
- For any projective object P we have $Ext^i(P, B) = 0$ for $i \neq 0$, since the higher right derived functors of the exact functor Hom(P, -) are zero.

For any exact sequence

$$0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$$

there are canonical morphisms $\omega^0 : Hom(A, B'') \longrightarrow Ext(A, B')$ and $\omega^n : Ext^n(A, B'') \longrightarrow Ext^{n+1}(A, B')$ for n > 1 such that the following sequence is long exact

$$0 \longrightarrow Hom(A, B') \longrightarrow Hom(A, B) \longrightarrow Hom(A, B'') \longrightarrow$$
$$\longrightarrow Ext(A, B') \longrightarrow Ext(A, B) \longrightarrow Ext(A, B'') \longrightarrow$$
$$\longrightarrow Ext^{2}(A, B') \longrightarrow Ext^{2}(A, B) \longrightarrow Ext^{2}(A, B'') \longrightarrow \cdots$$

This sequence is called the *long exact Ext sequence in the second variable*. It is natural, in the sense that if we have a commutative diagram with exact rows

Then the following diagrams commute for $n \ge 1$

$$\begin{array}{cccc} Hom(A,B'') &\longrightarrow Ext(A,B') && Ext^n(A,B'') &\longrightarrow Ext^{n+1}(A,B') \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ Hom(A,C'') &\longrightarrow Ext(A,C') && Ext^n(A,C'') &\longrightarrow Ext^{n+1}(A,C') \end{array}$$

Let $\alpha : A \longrightarrow A'$ be a morphism, and let α also denote the associated natural transformation $Hom(A', -) \longrightarrow Hom(A, -)$. Let \mathcal{I} be a fixed assignment of injective resolutions. Then there is a natural transformation $\mathbb{R}^n \alpha : \mathbb{R}^n Hom(A', -) \longrightarrow \mathbb{R}^n Hom(A, -)$ and we denote by $Ext^n(\alpha, B)$ the morphism $(\mathbb{R}^n \alpha)_B : Ext^n(A', B) \longrightarrow Ext^n(A, B)$. Notice that for another morphism $\gamma : A' \longrightarrow A'', (\mathbb{R}^n \alpha)(\mathbb{R}^n \gamma) = \mathbb{R}^n(\gamma \alpha)$ so for any object B

$$Ext^{n}(\alpha, B)Ext^{n}(\gamma, B) = Ext^{n}(\gamma\alpha, B)$$

This defines a contravariant additive functor $Ext^n(-, B) : \mathcal{A} \longrightarrow \mathbf{Ab}$. For any exact sequence $0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$ we have the following commutative diagram for $n \ge 0$

$$\cdots \longrightarrow Ext^{n}(A',B') \longrightarrow Ext^{n}(A',B) \longrightarrow Ext^{n}(A',B'') \xrightarrow{\omega^{n}} Ext^{n+1}(A',B') \longrightarrow \cdots$$

$$Ext^{n}(\alpha,B') \downarrow \qquad Ext^{n}(\alpha,B) \downarrow \qquad Ext^{n}(\alpha,B'') \downarrow \qquad Ext^{n+1}(\alpha,B') \downarrow \qquad \cdots$$

$$\cdots \longrightarrow Ext^{n}(A,B') \longrightarrow Ext^{n}(A,B) \longrightarrow Ext^{n}(A,B'') \xrightarrow{\omega^{n}} Ext^{n+1}(A,B') \longrightarrow \cdots$$

$$(1)$$

Proposition 1. For $n \ge 0$ and morphisms $\alpha : A \longrightarrow A'$ and $\beta : B \longrightarrow B'$

$$Ext^{n}(A,\beta)Ext^{n}(\alpha,B) = Ext^{n}(\alpha,B')Ext^{n}(A',\beta)$$
⁽²⁾

It follows that Ext^n defines a functor $\mathcal{A}^{op} \times \mathcal{A} \longrightarrow \mathbf{Ab}$ for $n \geq 0$, with $Ext^n(\alpha, \beta) : Ext^n(A', B) \longrightarrow Ext^n(A, B')$ given by the equivalent expressions in (2). The partial functors are the functors $Ext^n(A, -)$ and $Ext^n(-, B)$ defined above.

Proof. This follows for arbitrary α and monomorphisms (or epimorphisms) β by commutativity of (1). Since \mathcal{A} has epi-mono factorisations it then follows for arbitrary β . The bifunctor Ext^n is defined relative to an assignment of injective resolutions \mathcal{I} . If \mathcal{J} is another such assignment then the associated bifunctor is canonically naturally equivalent to the one defined for \mathcal{I} .

For a short exact sequence $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ the corresponding sequence of natural transformations $Hom(A'', -) \longrightarrow Hom(A, -) \longrightarrow Hom(A', -)$ is exact on injectives. So for $n \ge 0$ and any object B there are canonical connecting morphisms $\omega^n : Ext^n(A', B) \longrightarrow Ext^{n+1}(A'', B)$ fitting in to a long exact sequence

$$\cdots \longrightarrow Ext^{n}(A'',B) \longrightarrow Ext^{n}(A,B) \longrightarrow Ext^{n}(A',B) \longrightarrow Ext^{n+1}(A'',B) \longrightarrow \cdots$$

This sequence is called the *long exact Ext sequence in the first variable*. It is natural in both B and the exact sequence. For a morphism $\beta: B \longrightarrow B'$ the following diagram commutes

And for a commutative diagram with exact rows

The following diagram commutes for any object B

We have shown that for every assignment of injective resolutions \mathcal{I} we obtain a bifunctor $Ext_{\mathcal{I}}^{n}(-,-): \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow \mathbf{Ab}$ for $n \geq 0$ with the property that short exact sequences in either variable lead to a long exact sequence which is natural with respect to morphisms of the exact sequence and morphisms in the remaining variable. The connecting morphisms for these sequences depend only on \mathcal{I} .

If \mathcal{J} is another assignment of resolutions then we obtain another bifunctor $Ext^n_{\mathcal{J}}(-,-)$ for $n \geq 0$ which is canonically naturally equivalent to $Ext^n_{\mathcal{I}}(-,-)$. The connecting morphisms for the two assignments \mathcal{I}, \mathcal{J} agree in the following sense: for an object A and an exact sequence $0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$ the following diagram commutes

Similarly for an object B and an exact sequence $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ the following diagram commutes

Both these claims follow directly from our Derived Functor notes.

1.1 Calculations using Injective Presentations

Since Hom(X, -) is left exact we can use our results truncated injective resolutions to show that the functor Ext(X, -) is naturally equivalent to the functor E defined by the following procedure: pick for every object A an exact sequence

$$0 \longrightarrow A \longrightarrow I \xrightarrow{\mu} C \longrightarrow 0$$

with I injective. Then E(A) is the cokernel of $Hom(X, I) \longrightarrow Hom(X, C)$ and given a morphism $\alpha : A \longrightarrow B$ where B is assigned the sequence $0 \longrightarrow B \longrightarrow J \longrightarrow D \longrightarrow 0$ use injectivity of J to lift α to a morphism $\varphi : I \longrightarrow J$ and then induce α' fitting into a commutative diagram

Then $E(\alpha) : Hom(X, C)/ImT(\mu) \longrightarrow Hom(X, D)/ImT(\tau)$ is defined by composition with α' . It turns out that this gives a well-defined additive functor naturally equivalent to Ext(X, -).

2 Ext using Projectives

Throughout this section \mathcal{A} will be an abelian category with enough projectives. For an object A the functor Hom(-, A) is contravariant, but considered as a functor $\mathcal{A}^{\text{op}} \longrightarrow \mathbf{Ab}$ it is a left exact covariant functor.

Definition 2. The right derived functors of Hom(-, B) are the <u>Ext</u> groups.

$$\underline{Ext}^{i}(A,B) = R^{i}Hom(-,B)(A)$$

The functor $\underline{Ext}^i(-,B) : \mathcal{A} \longrightarrow \mathbf{Ab}$ is additive and contravariant for $i \geq 0$. The functors $\underline{Ext}^0(-,B)$ and Hom(-,B) are naturally equivalent. We simply write $\underline{Ext}(-,B)$ for $\underline{Ext}^1(-,B)$.

The group $\underline{Ext}^i(A, B)$ is only determined up to isomorphism, and to calculate it we find a projective resolution $\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$ and calculate the cohomology of the sequence

 $0 \longrightarrow Hom(P_0, B) \longrightarrow Hom(P_1, B) \longrightarrow Hom(P_2, B) \longrightarrow \cdots$

We think of \underline{Ext}^i as assigning to any pair of objects A, B an isomorphism class of abelian groups, which has the following properties:

- For any projective object P we have $\underline{Ext}^i(P,B) = 0$ for $i \neq 0$, since this is a property of any right derived functor (remember we are taking right derived functors in \mathcal{A}^{op} , where P is injective).
- For any injective object I we have $\underline{Ext}^i(A, I) = 0$ for $i \neq 0$, since the higher right derived functors of the exact functor Hom(-, I) are zero.

For any exact sequence

$$0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$$

there are canonical morphisms $\omega_0 : Hom(A', B) \longrightarrow \underline{Ext}(A'', B)$ and $\omega^n : \underline{Ext}^n(A', B) \longrightarrow \underline{Ext}^{n+1}(A'', B)$ for $n \ge 1$ such that the following sequence is long exact

$$0 \longrightarrow Hom(A'', B) \longrightarrow Hom(A, B) \longrightarrow Hom(A', B) \longrightarrow$$
$$\longrightarrow \underline{Ext}(A'', B) \longrightarrow \underline{Ext}(A, B) \longrightarrow \underline{Ext}(A', B) \longrightarrow$$
$$\longrightarrow \underline{Ext}^{2}(A'', B) \longrightarrow \underline{Ext}^{2}(A, B) \longrightarrow \underline{Ext}^{2}(A', B) \longrightarrow \cdots$$

This sequence is called the *long exact* \underline{Ext} sequence in the first variable. It is natural, in the sense that if we have a commutative diagram with exact rows

Then the following diagrams commute for $n \geq 1$

$$\begin{array}{cccc} Hom(C',B) & \longrightarrow \underline{Ext}(C'',B) & & \underline{Ext}^{n}(C',B) & \longrightarrow \underline{Ext}^{n+1}(C'',B) \\ & & & & \downarrow & & \downarrow & & \downarrow \\ Hom(A',B) & \longrightarrow \underline{Ext}(A'',B) & & \underline{Ext}^{n}(A',B) & \longrightarrow \underline{Ext}^{n+1}(A'',B) \end{array}$$

Let $\beta: B \longrightarrow B'$ be a morphism, and let β also denote the associated natural transformation $Hom(-, B) \longrightarrow Hom(-, B')$. Let \mathcal{P} be a fixed assignment of projective resolutions. Then there is a natural transformation $R^n\beta: R^nHom(-, B) \longrightarrow R^nHom(-, B')$ and we denote by $\underline{Ext}^n(A, \beta)$ the morphism $(R^n\beta)_A: \underline{Ext}^n(A, B) \longrightarrow \underline{Ext}^n(A, B')$. Notice that for another morphism $\gamma: B' \longrightarrow B'', (R^n\gamma)(R^n\beta) = R^n(\gamma\beta)$ so for any object A

$$\underline{Ext}^{n}(A,\gamma)\underline{Ext}^{n}(A,\beta) = \underline{Ext}^{n}(A,\gamma\beta)$$

This defines a covariant additive functor $\underline{Ext}^n(A, -) : \mathcal{A} \longrightarrow \mathbf{Ab}$. For any exact sequence $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ the following diagram is commutative for $n \ge 0$

$$\cdots \longrightarrow \underline{Ext}^{n}(A'',B) \longrightarrow \underline{Ext}^{n}(A,B) \longrightarrow \underline{Ext}^{n}(A',B) \xrightarrow{\omega^{n}} \underline{Ext}^{n+1}(A'',B) \longrightarrow \cdots$$

$$\underline{Ext}^{n}(A'',\beta) \bigvee \underline{Ext}^{n}(A,\beta) \bigvee \underline{Ext}^{n}(A',\beta) \bigvee \underline{Ext}^{n+1}(A'',\beta) \bigvee$$

$$\cdots \longrightarrow \underline{Ext}^{n}(A'',B') \longrightarrow \underline{Ext}^{n}(A,B') \longrightarrow \underline{Ext}^{n}(A',B') \xrightarrow{\omega^{n}} \underline{Ext}^{n+1}(A'',B') \longrightarrow \cdots$$

$$(3)$$

Proposition 2. For $n \ge 0$ and morphisms $\alpha : A \longrightarrow A'$ and $\beta : B \longrightarrow B'$

$$\underline{Ext}^{n}(A,\beta)\underline{Ext}^{n}(\alpha,B) = \underline{Ext}^{n}(\alpha,B')\underline{Ext}^{n}(A',\beta)$$
(4)

It follows that \underline{Ext}^n defines a functor $\mathcal{A}^{op} \times \mathcal{A} \longrightarrow \mathbf{Ab}$ for $n \ge 0$, with $\underline{Ext}^n(\alpha, \beta) : \underline{Ext}^n(A', B) \longrightarrow \underline{Ext}^n(A, B')$ given by the equivalent expressions in (4). The partial functors are the functors $\underline{Ext}^n(A, -)$ and $\underline{Ext}^n(-, B)$ defined above.

Proof. This follows for arbitrary β and monomorphisms (or epimorphisms) α by commutativity of (3). Since \mathcal{A} has epi-mono factorisations it then follows for arbitrary α . If we use a different assignment of projective resolutions to calculate \underline{Ext}^n then the results will be canonically naturally equivalent.

For a short exact sequence $0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$ the corresponding sequence of natural transformations $Hom(-, B') \longrightarrow Hom(-, B) \longrightarrow Hom(-, B'')$ is exact on injectives (considered as covariant functors $\mathcal{A}^{\mathrm{op}} \longrightarrow \mathbf{Ab}$). So for $n \ge 0$ and any object A there are canonical connecting morphisms $\omega^n : \underline{Ext}^n(A, B'') \longrightarrow \underline{Ext}^{n+1}(A, B')$ fitting in to a long exact sequence

$$\cdots \longrightarrow \underline{Ext}^n(A, B') \longrightarrow \underline{Ext}^n(A, B) \longrightarrow \underline{Ext}^n(A, B'') \longrightarrow \underline{Ext}^{n+1}(A, B') \longrightarrow \cdots$$

This sequence is called the *long exact* <u>Ext</u> sequence in the second variable. It is natural in both A and the exact sequence. For a morphism $\alpha : A \longrightarrow A'$ the following diagram commutes

And for a commutative diagram with exact rows

The following diagram commutes for any object A

We have shown that for every assignment of projective resolutions \mathcal{P} we obtain a bifunctor $\underline{Ext}_{\mathcal{I}}^{n}(-,-): \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow \mathbf{Ab}$ for $n \geq 0$ with the property that short exact sequences in either variable lead to a long exact sequence which is natural with respect to morphisms of the exact sequence and morphisms in the remaining variable. The connecting morphisms for these sequences depend only on \mathcal{P} .

If \mathcal{Q} is another assignment of resolutions then we obtain another bifunctor $\underline{Ext}_{\mathcal{Q}}^{n}(-,-)$ for $n \geq 0$ which is canonically naturally equivalent to $\underline{Ext}_{\mathcal{T}}^{n}(-,-)$. The connecting morphisms for the two assignments \mathcal{P}, \mathcal{Q} agree in the following sense: for an object B and an exact sequence $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ the following diagram commutes

Similarly for an object A and an exact sequence $0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$ the following diagram commutes

Both these claims follow directly from our Derived Functor notes.

2.1 Calculations using Projective Presentations

Since $Hom(-, B) : \mathcal{A}^{op} \longrightarrow \mathbf{Ab}$ is left exact we can use our results on truncated injective resolutions to show that <u>Ext</u> is naturally equivalent to the functor <u>E</u> defined by the following procedure: pick for every object A an exact sequence

$$0 \longrightarrow K \xrightarrow{\mu} P \longrightarrow A \longrightarrow 0$$

with P projective. Then $\underline{E}(A)$ is the cokernel of $Hom(P, B) \longrightarrow Hom(K, B)$ and given a morphism $\alpha : A \longrightarrow C$ where C is assigned the sequence $0 \longrightarrow M \longrightarrow Q \longrightarrow C \longrightarrow 0$ use projectivity of Q to lift α to a morphism $\varphi : P \longrightarrow Q$ and then induce α' fitting into a commutative diagram

Then $\underline{E}(\alpha) : \underline{E}(C) \longrightarrow \underline{E}(A)$, which is a map $Hom(M, B)/ImT(\tau) \longrightarrow Hom(K, B)/ImT(\tau)$ is defined by composition with α' . It turns out that this is a well-defined contravariant additive functor naturally equivalent to $\underline{Ext}(-, B)$.

In fact we have already studied the functor \underline{E} for right modules over a ring in our Hilton & Stammbach notes, where we proved the following

• For any two right modules A, B over a ring there is a bijection $\underline{E}(A, B) \cong Y(A, B)$ where Y(A, B) is the set of extensions of A by B (which are exact sequences $0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0$) modulo a certain equivalence relation. In particular $\underline{E}(A, B) = 0$ if and only if every exact sequence $0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0$ splits.

3 Balancing Ext

Throughout this section \mathcal{A} is an abelian category with enough injectives and projectives, and we choose once and for all assignments of resolutions \mathcal{P}, \mathcal{I} , with respect to which all derived functors are calculated. We have defined two bifunctors $\underline{Ext}^n(-,-)$ and $\underline{Ext}^n(-,-)$ for $n \geq 0$. The first is calculated by taking the right derived functors of the contravariant functors Hom(-,B) and the second by taking the right derived functors of the covariant functors Hom(A,-). We claim that these two bifunctors are naturally equivalent. We begin with the case n = 0.

Lemma 3. There are canonical natural equivalences of bifunctors $\underline{Ext}^0(-,-) \cong Hom(-,-)$ and $Hom(-,-) \cong Ext^0(-,-)$.

Proof. Let the Ext functors be calculated with respect to some assignment \mathcal{I} of injective resolutions. For an object A there is a canonical natural equivalence $Ext^0(A, -) \cong Hom(A, -)$, so we need only show these isomorphisms are also natural in B, which is not difficult. Similarly there is a canonical natural equivalence $\underline{Ext}^0(-, B) \cong Hom(-, B)$, which is also natural in the first variable. So all three functors are naturally equivalent.

Proposition 4. For $n \ge 0$ there is a canonical natural equivalence of bifunctors $\Phi^n : Ext^n(-, -) \cong \underline{Ext}^n(-, -)$.

Proof. We proceed by induction on n, having already proved the result for n = 0. Assume that there is a canonical natural equivalence Φ^n and let objects A, B be given. We have to define a canonical isomorphism $\Phi_{A,B}^{n+1}$ which is natural in A and B. Choose an injective presentation of B

$$0 \longrightarrow B \xrightarrow{\nu} I \xrightarrow{\eta} S \longrightarrow 0$$

We know that $Ext^i(A, I) = 0 = \underline{Ext}^i(A, I)$ for $i \neq 0$. Now we show how to define the isomorphism $\Phi_{A,B}^{n+1} : Ext^{n+1}(A, B) \longrightarrow \underline{Ext}^{n+1}(A, B)$. There are two cases: if n = 1 then the long exact sequence for Ext in the second variable and the long exact sequence for \underline{Ext} in the second variable give a commutative diagram with exact rows:

This induces an isomorphism $\Phi_{A,B}^1 : Ext^1(A,B) \longrightarrow \underline{Ext}^1(A,B)$ making the diagram commute. For $n \ge 1$ the connecting morphisms $Ext^n(A,S) \longrightarrow Ext^{n+1}(A,B)$ and $\underline{Ext}^n(A,S) \longrightarrow \underline{Ext}^{n+1}(A,B)$ in the two sequences are isomorphisms, and we define $\Phi_{A,B}^{n+1}$ to be the unique morphism fitting into the following commutate diagram

Next we have to show that the isomorphism $\Phi_{A,B}^{n+1}$ does not depend on the chosen presentation. Suppose we have a commutative diagram with exact rows and the middle objects injective

Consider the following cube for $n \ge 0$

If we use the above technique to produce isomorphisms $Ext^{n+1}(A, B) \longrightarrow \underline{Ext}^{n+1}(A, B)$ and $Ext^{n+1}(A, B') \longrightarrow \underline{Ext}^{n+1}(A, B')$ using the given presentations then in either case (n = 1 or otherwise) these morphisms make the front and back squares on the cube commute. The left square commutes since by assumption Φ^n is natural, and the top and bottom squares commute by the naturality of the connecting morphism. Since $\omega^n : Ext^n(A, S) \longrightarrow Ext^{n+1}(A, B)$ is an epimorphism it follows that the right hand square also commutes.

If we are given two injective presentations of B then put B = B' in the diagram and induce $I \longrightarrow I'$ and $S \longrightarrow S'$ making it commutative. Then the cube above shows that the resulting isomorphism $\Phi_{A,B}^{n+1}$ is the same in both cases. So we have constructed an isomorphism $\Phi_{A,B}^{n+1}$ that depends only on A, B, the assignments \mathcal{P}, \mathcal{I} and the natural equivalence Φ^n . These isomorphisms are natural in B since we can lift $B \longrightarrow B'$ to a morphism of the injective presentations, and then use the cube.

To prove naturality in A we construct a cube similar to the one above, but with a fixed presentation and A varying. Using naturality of Φ^n in A and the diagrams (1) and (5) it is not hard to see that Φ^{n+1} is natural in A and is therefore a natural equivalence of bifunctors. Since by the inductive hypothesis Φ^n depends only on the assingment of resolutions \mathcal{P}, \mathcal{I} it follows that this is true of Φ^{n+1} as well.

If \mathcal{A} has both enough injectives and enough projectives and \mathcal{I}, \mathcal{P} are assignments of injective and projective resolutions respectively, there is a natural equivalence of the bifunctors $Ext_{\mathcal{I}}^{n}(-,-)$ and $\underline{Ext}_{\mathcal{P}}^{n}(-,-)$ for $n \geq 0$. So every pair of objects A, B and integer $n \geq 0$ determines an isomorphism class of abelian groups. We can calculate a representative of this class in the following ways

• Choose a projective resolution $\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$ of A and calculate the cohomology of the following cochain complex of abelian groups

$$0 \longrightarrow Hom(P_0, B) \longrightarrow Hom(P_1, B) \longrightarrow Hom(P_2, B) \longrightarrow \cdots$$

• Choose an injective resolution $0 \longrightarrow B \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \cdots$ of B and calculate the cohomology of the following cochain complex of abelian groups

$$0 \longrightarrow Hom(A, I^0) \longrightarrow Hom(A, I^1) \longrightarrow Hom(A, I^2) \longrightarrow \cdots$$

If there is no chance of confusion we simply refer to any of these groups by $Ext^n(A, B)$ and drop <u>Ext</u> from the notation. But if \mathcal{A} does not have both enough injectives and enough projectives, we will refer explicitly to the bifunctor Ext or <u>Ext</u> used.

In the case where $\mathcal{A} = \mathbf{Mod}R$ for a ring R, there is a bijection between elements of Ext(A, B)and exact sequences $0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0$ modulo a certain equivalence relation. In particular Ext(A, B) = 0 if and only if every such exact sequence is split.

Remark 1. One would like the natural equivalence of Ext and Ext to be compatible with the connecting morphisms for both bifunctors. One can get this in one variable (see Hilton & Stammbach), but it is not clear how to do it in the other variable.

4 Properties of Ext

4.1 Ext for Linear Categories

Definition 3. If R is a ring then an R-linear abelian category is an abelian category \mathcal{A} together with a left R-module structure on all the morphism groups $Hom_{\mathcal{A}}(A, B)$ such that composition is bilinear. That is,

$$\gamma(r \cdot \alpha) = r \cdot (\gamma \alpha)$$
$$(r \cdot \alpha)\gamma = r \cdot (\alpha \gamma)$$

whenever $r \in R$ and the composition makes sense. Then for every object A, we have a covariant, additive, kernel preserving functor $Hom(A, -) : \mathcal{A} \longrightarrow R\mathbf{Mod}$ and a contravariant, additive functor $Hom(-, A) : \mathcal{A} \longrightarrow R\mathbf{Mod}$ which maps cokernels to kernels.

Let $U: R\mathbf{Mod} \longrightarrow \mathbf{Ab}$ be the forgetful functor, which is faithful and exact. This functor maps the canonical kernels, cokernels, images, zero and biproducts of $R\mathbf{Mod}$ to the corresponding canonical structure on \mathbf{Ab} . So if X is a (co)chain complex in $R\mathbf{Mod}$ then the (co)homology modules have as underlying groups the (co)homology groups of the sequence considered as a complex of groups.

For an object A let S be the functor $Hom(A, -) : \mathcal{A} \longrightarrow R\mathbf{Mod}$ and let T be $Hom(A, -) : \mathcal{A} \longrightarrow \mathbf{Ab}$. Then T = US so for $n \geq 0$ and an assignment of injective resolutions \mathcal{I} the functors R^nT and $U \circ R^nS$ are equal. So for an object B the Ext group $Ext^n(A, B)$ becomes an R-module in a canonical way, and for $\beta : B \longrightarrow B'$ the morphism of groups $Ext^n(A, \beta) : Ext^n(A, B) \longrightarrow Ext^n(A, B')$ is a morphism of these modules. Similarly if $\alpha : A \longrightarrow A'$ is a morphism of modules then the morphism of groups $Ext^n(A', B) \longrightarrow Ext^n(A, B)$ is a morphism of groups $Ext^n(A, B) \longrightarrow Ext^n(A, B)$ is a morphism of modules, so $Ext^n(-, B)$ lifts to a contravariant additive functor $\mathcal{A} \longrightarrow R\mathbf{Mod}$. Also $Ext^0(A, -) : \mathcal{A} \longrightarrow R\mathbf{Mod}$ is canonically naturally equivalent to Hom(A, -).

So for a fixed assignment of injective resolutions \mathcal{I} the bifunctor $Ext^n(-,-)$ becomes a bifunctor $Ext^n(-,-): \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow R\mathbf{Mod}$. If \mathcal{J} is another assignment of injective resolutions then the resulting bifunctors (with values in $R\mathbf{Mod}$) are canonically naturally equivalent.

Given an assignment of resolutions \mathcal{I} and an exact sequence $0 \longrightarrow B' \longrightarrow B \longrightarrow B'' \longrightarrow 0$ the connecting morphisms $Ext^n(A, B'') \longrightarrow Ext^{n+1}(A, B')$ for $n \ge 0$ are all module morphisms, so the long exact sequence of Ext in the second variable

$$\cdots \longrightarrow Ext^{n}(A,B') \longrightarrow Ext^{n}(A,B) \longrightarrow Ext^{n}(A,B'') \longrightarrow Ext^{n+1}(A,B') \longrightarrow \cdots$$

is a long exact sequence of modules. Similarly if $0 \longrightarrow A' \longrightarrow A \longrightarrow A'' \longrightarrow 0$ is an exact sequence then the connecting morphisms $Ext^n(A', B) \longrightarrow Ext^{n+1}(A'', B)$ are module morphisms and the long exact sequence of Ext in the first variable

$$\cdots \longrightarrow Ext^{n}(A'',B) \longrightarrow Ext^{n}(A,B) \longrightarrow Ext^{n}(A',B) \longrightarrow Ext^{n+1}(A'',B) \longrightarrow \cdots$$

is a long exact sequence of modules.

Similarly for an object B let S be the functor $Hom(-,B) : \mathcal{A} \longrightarrow R\mathbf{Mod}$ and let T be $Hom(-,B) : \mathcal{A} \longrightarrow R\mathbf{Mod}$. Then T = US so for $n \ge 0$ and an assignment of projective resolutions \mathcal{P} the functors R^nT and $U \circ R^nS$ are equal. So the functors $\underline{Ext}^n(-,B)$ and $\underline{Ext}^n(\mathcal{A},-)$ lift to module valued functors and $\underline{Ext}^0(-,B) : \mathcal{A} \longrightarrow R\mathbf{Mod}$ is naturally equivalent to Hom(-,B). For a fixed assignment of projective resolutions \mathcal{P} the bifunctor $\underline{Ext}^n(-,-)$ becomes a bifunctor $\underline{Ext}^n(-,-) : \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow R\mathbf{Mod}$. If \mathcal{Q} is another assignment of projective resolutions then the resulting bifunctors (with values in $R\mathbf{Mod}$) are canonically naturally equivalent. The two long exact sequences for \underline{Ext}^n are sequences of modules and module morphisms.

Now suppose \mathcal{A} has enough projectives and injectives, and let \mathcal{P} and \mathcal{I} be assignments of projective and injective resolutions, respectively. The canonical natural equivalences $\underline{Ext}^0(-,-) \cong Hom(-,-)$ and $Hom(-,-) \cong Ext^0(-,-)$ give natural equivalences of the module-valued bifunctors. Then our earlier proof shows that for $n \geq 0$ there is a canonical natural equivalence $Ext^n(-,-) \cong \underline{Ext}^n(-,-)$ of bifunctors $\mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow R\mathbf{Mod}$.

So associated to any pair of objects A, B is an isomorphism class of R-modules $Ext^n(A, B)$. If \mathcal{A} has enough projectives, we can find a representative of this class by choosing a projective resolution P of A and calculating the cohomology modules of $0 \longrightarrow Hom(P_0, B) \longrightarrow Hom(P_1, B) \longrightarrow \cdots$. If \mathcal{A} has enough injectives, we can find a representative by choosing an injective resolution I of B and calculating the cohomology modules of $0 \longrightarrow Hom(A, I^0) \longrightarrow Hom(A, I^1) \longrightarrow \cdots$.

4.2 Dimension Shifting

The following two results are immediate consequences of our notes on dimension shifting.

Proposition 5. Let \mathcal{A} be an abelian category with enough injectives. Suppose we have an exact sequence in \mathcal{A} with all I^i injective and $m \geq 0$

$$0 \longrightarrow B \longrightarrow I^0 \longrightarrow \cdots \longrightarrow I^{m-1} \longrightarrow I^m \longrightarrow M \longrightarrow 0$$

Then for any object A there are canonical isomorphisms $\rho^n : Ext^n(A, M) \longrightarrow Ext^{n+m+1}(A, B)$ for $n \ge 1$, and an exact sequence

$$Hom(A, I^m) \longrightarrow Hom(A, M) \longrightarrow Ext^{m+1}(A, B) \longrightarrow 0$$

These are both natural in A, in the sense that for a morphism $A \longrightarrow A'$ the following two diagrams commute for $n \ge 1$ and $m \ge 0$

$$\begin{split} Ext^n(A',M) & \longrightarrow Ext^{n+m+1}(A',B) \\ & \downarrow & \downarrow \\ Ext^n(A,M) & \longrightarrow Ext^{n+m+1}(A,B) \\ Hom(A',I^m) & \longrightarrow Hom(A',M) & \longrightarrow Ext^{m+1}(A',B) & \longrightarrow 0 \\ & \downarrow & \downarrow & \downarrow \\ Hom(A,I^m) & \longrightarrow Hom(A,M) & \longrightarrow Ext^{m+1}(A,B) & \longrightarrow 0 \end{split}$$

Proposition 6. Let \mathcal{A} be an abelian category with enough projectives. Suppose we have an exact sequence in \mathcal{A} with all P_i projective and $m \ge 0$

 $0 \longrightarrow M \longrightarrow P_m \longrightarrow P_{m-1} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow A \longrightarrow 0$

Then for any object B there are canonical isomorphisms $\rho^n : \underline{Ext}^n(M, B) \longrightarrow \underline{Ext}^{n+m+1}(A, B)$ for $n \ge 1$ and an exact sequence

$$Hom(P_m, B) \longrightarrow Hom(M, B) \longrightarrow \underline{Ext}^{m+1}(A, B) \longrightarrow 0$$

These are both natural in B, in the sense that for a morphism $B \longrightarrow B'$ the following two diagrams commute for $n \ge 1$ and $m \ge 0$

4.3 Ext and Coproducts

Proposition 7. Let \mathcal{A} be an infinite complete abelian category with exact products and enough injectives. For an object A, the functor $Ext^n(A, -) : \mathcal{A} \longrightarrow \mathbf{Ab}$ preserves products.

Proof. The functor $Hom(A, -) : \mathcal{A} \longrightarrow \mathbf{Ab}$ preserves products, so this follows immediately from our Derived Functor notes.

Proposition 8. Let \mathcal{A} be an infinite cocomplete abelian category with exact coproducts and enough projectives. For an object B, the contravariant functor $\underline{Ext}^n(-,B) : \mathcal{A} \longrightarrow \mathbf{Ab}$ maps coproducts to products.

Proof. By assumption \mathcal{A}^{op} is a complete abelian category with exact products and enough injectives, and the functors $\underline{Ext}^n(-,B)$ are the right derived functors of the covariant additive functor $Hom(-,B): \mathcal{A}^{\text{op}} \longrightarrow \mathbf{Ab}$. So once again the result follows from our Derived Functor notes. \Box

In particular both results apply in the case where \mathcal{A} is Ab, RMod or ModR for a ring R. If \mathcal{A} is R-linear for some ring R then the above results also apply to the functors $Ext^n(A, -)$: $\mathcal{A} \longrightarrow RMod$ and $\underline{Ext}^n(-, B) : \mathcal{A} \longrightarrow RMod$. That is, the first preserves products and the second maps coproducts to products.

5 Ext for Commutative Rings

If R is a commutative ring and A, B are R-modules, then the group $Ext^n(A, B)$ doesn't depend on whether you consider A, B as left or right modules over R. That is, the calculations in the abelian categories RMod and ModR yield isomorphic groups.

For a commutative ring R the abelian category $\mathcal{A} = R\mathbf{Mod}$ is R-linear in the sense of Section 4.1. Each group $Hom_R(M, N)$ becomes an R-module via $(r \cdot \varphi)(x) = r \cdot \varphi(x)$ and this defines an R-linear structure on \mathcal{A} . For $r \in R$ let $\alpha : M \longrightarrow M, \beta : N \longrightarrow N$ be the endomorphisms defined by left multiplication by r. Then $r \cdot \varphi = \beta \varphi = \varphi \alpha$. So associated to two left R-modules M, Nand an integer $i \ge 0$ is an isomorphism class of left R-modules, and the following procedures will calculate a representative

• Pick a projective resolution $\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow A \longrightarrow 0$ and calculate the cohomology of the sequence of *R*-modules

$$0 \longrightarrow Hom(P_0, B) \longrightarrow Hom(P_1, B) \longrightarrow Hom(P_2, B) \longrightarrow \cdots$$

• Pick an injective resolution $0 \longrightarrow B \longrightarrow I^0 \longrightarrow I^1 \longrightarrow \cdots$ and calculate the cohomology of the sequence of *R*-modules

$$0 \longrightarrow Hom(A, I^0) \longrightarrow Hom(A, I^1) \longrightarrow Hom(A, I^2) \longrightarrow \cdots$$

It is not hard to check that for $r \in R$ left multiplication by r is given by $Ext_R^n(M,\beta) = Ext_R^n(\alpha, N)$. **Proposition 9.** Let R be a commutative noetherian ring and suppose A, B are finitely generated R-modules. Then $Ext_R^i(A, B)$ is a finitely generated R-module.

Proof. Since R is noetherian and A is finitely generated we can find a projective resolution $\cdots \longrightarrow F_1 \longrightarrow F_0 \longrightarrow A \longrightarrow 0$ with all the F_i finite free modules. Then in the following sequence every module is finitely generated (see our Module notes)

$$0 \longrightarrow Hom(F_0, B) \longrightarrow Hom(F_1, B) \longrightarrow Hom(F_2, B) \longrightarrow \cdots$$

So the cohomology modules $Ext_{R}^{i}(A, B)$ will also be finitely generated.

Recall that a module M over a commutative domain R is *divisible* if for every $0 \neq r \in R$ and $x \in M$ there is $y \in M$ such that $r \cdot y = x$. Any injective module is divisible. A commutative integral domain R is a Dedekind domain if and only if every divisible module is injective. Since a quotient of a divisible module is clearly divisible, it follows that over a Dedekind domain the quotient of an injective module is injective.

Proposition 10. For any Dedekind domain R we have $Ext_{R}^{n}(A, B) = 0$ for $n \geq 2$.

Proof. Find an injective module I and a monomorphism $B \longrightarrow I$. The quotient is divisible, hence injective, so $0 \longrightarrow B \longrightarrow I \longrightarrow J \longrightarrow 0 \longrightarrow \cdots$ is an injective resolution of B. It follows that $Ext_n^R(A, B)$ is the cohomology of the sequence

$$0 \longrightarrow Hom(A, I) \longrightarrow Hom(A, J) \longrightarrow 0 \longrightarrow \cdots$$

So it is clear that $Ext_n^R(A, B) = 0$ for $n \ge 2$.

5.1 Coextension

Let $\varphi: R \longrightarrow S$ be a morphism of commutative rings. Then for an R-modules A the R-module $Hom_R(S, A)$ has a canonical S-module structure, and this defines the coextension functor $P = Hom_R(S, -): R\mathbf{Mod} \longrightarrow S\mathbf{Mod}$. Let $U: S\mathbf{Mod} \longrightarrow \mathbf{Ab}$ be the forgetful functor and $Q = Hom_R(S, -): R\mathbf{Mod} \longrightarrow \mathbf{Ab}$ the usual functor. Then Q = UP so for $n \ge 0$ and an assignment of injective resolutions \mathcal{I} the functors $R^n Q$ and $U \circ R^n P$ are equal. So for an R-module A the Ext group $Ext^n_R(S, A)$ becomes an S-module in a canonical way, and for a morphism of R-modules $\beta: A \longrightarrow A'$ the morphism of groups $Ext^n_R(S, \beta): Ext^n_R(S, A) \longrightarrow Ext^n_R(S, A')$ is a morphism of these modules. So the additive functor $Ext^n_R(S, -): R\mathbf{Mod} \longrightarrow \mathbf{Ab}$ lifts to an additive functor $R\mathbf{Mod} \longrightarrow S\mathbf{Mod}$.

6 Another Characterisation of Derived Functors

Throughout this section \mathcal{A} is an abelian category. If we say T is an additive functor, we mean it is an additive covariant functor $\mathcal{A} \longrightarrow \mathbf{Ab}$. Given two additive functors $T, T' : \mathcal{A} \longrightarrow \mathbf{Ab}$ we let [T, T'] denote the class of natural transformations $T \longrightarrow T'$. It is clear that this becomes a "large" abelian group (an abelian group whose underlying class may not be a set).

Suppose we have for every object A an additive functor $\Omega_A : \mathcal{A} \longrightarrow \mathbf{Ab}$ and for every morphism $\alpha : A \longrightarrow B$ a natural transformation $\Omega_\alpha : \Omega_B \longrightarrow \Omega_A$, such that $\Omega_\alpha \Omega_\gamma = \Omega_{\gamma\alpha}, \Omega_{\alpha+\gamma} = \Omega_\alpha + \Omega_\gamma$ and $\Omega_1 = 1$. We call this a *representation* of \mathcal{A} in the additive functors $\mathcal{A} \longrightarrow \mathbf{Ab}$. We say it is a *small* representation if $[\Omega_A, T]$ is a set for any object A and additive functor $T : \mathcal{A} \longrightarrow \mathbf{Ab}$.

The primary example is $A \mapsto Hom(A, -), \alpha \mapsto Hom(\alpha, -)$, which is small since by the Yoneda Lemma there is an isomorphism of abelian groups $[Hom(A, -), T] \cong T(A)$. This isomorphism is also natural in A: given any morphism $\alpha : A \longrightarrow B$, composition with Ω_{α} defines a morphism of groups $[Hom(A, -), T] \longrightarrow [Hom(B, -), T]$ which fits into a commutative diagram:

$$[Hom(A, -), T] \Longrightarrow T(A)$$

$$\downarrow \qquad T(\alpha) \downarrow$$

$$[Hom(B, -), T] \Longrightarrow T(B)$$

It follows that we can recover the functor T (up to natural equivalence) from the representation $A \mapsto Hom(A, -)$ and the morphisms from these objects to T. In detail: given an additive functor T define S(A) = [Hom(A, -), T]. For a morphism $\alpha : A \longrightarrow B$ let $S(A) \longrightarrow S(B)$ act by composition with Ω_{α} . Then this defines an additive functor S naturally equivalent to T. This motivates the following definition

Definition 4. Let \mathcal{A} be an abelian category, Ω a small representation of \mathcal{A} in the additive functors $\mathcal{A} \longrightarrow \mathbf{Ab}$. Given an additive functor T let ΩT denote the following additive functor: $(\Omega T)(\mathcal{A}) = [\Omega_{\mathcal{A}}, T]$ and for $\alpha : \mathcal{A} \longrightarrow \mathcal{B}$ we define

$$(\Omega T)(\alpha) : [\Omega_A, T] \longrightarrow [\Omega_B, T]$$
$$\psi \mapsto \psi \Omega_\alpha$$

Now assume \mathcal{A} is an abelian category with enough injectives and let \mathcal{I} be a fixed assignment of injective resolutions, with respect to which all right derived functors are calculated. To every object A and $n \geq 0$ we have associated an additive functor $Ext^n(A, -) : \mathcal{A} \longrightarrow \mathbf{Ab}$ and to a morphism $\alpha : \mathcal{A} \longrightarrow \mathcal{B}$ we have associated a natural transformation $Ext^n(\alpha, -) : Ext^n(\mathcal{B}, -) \longrightarrow$ $Ext^n(\mathcal{A}, -)$. We have already checked that $\mathcal{A} \mapsto Ext^n(\mathcal{A}, -)$ defines a representation of \mathcal{A} (nfixed).

Similarly if \mathcal{A} is an abelian category with enough projectives, $A \mapsto \underline{Ext}^n(A, -)$ and $\alpha \mapsto \underline{Ext}^n(\alpha, -)$ defines a representation. If \mathcal{A} has both enough injectives and projectives then for every A there is a canonical natural equivalence $\underline{Ext}^n(A, -) \cong Ext^n(A, -)$ with the property that the following diagram commutes for any morphism $\alpha : A \longrightarrow B$

Lemma 11. Let \mathcal{A} be an abelian category with enough injectives and projectives. For $n \ge 0$ the representations $\Omega : \mathcal{A} \mapsto Ext^n(\mathcal{A}, -)$ and $\underline{\Omega} : \mathcal{A} \mapsto \underline{Ext}^n(\mathcal{A}, -)$ are small.

Proof. For n = 0 there is a natural equivalence $\underline{Ext}^0(A, -) \cong Hom(A, -) \cong Ext^0(A, -)$ so both representations are trivially small. For $n \ge 1$ there is a natural equivalence $\underline{Ext}^n(A, -) \cong Ext^n(A, -)$ so it suffices to show that $\underline{\Omega}$ is small. Fix $n \ge 1$, an additive functor T and an object A. Let P be the resolution assigned to $A, \mu : K_A \longrightarrow P_{n-1}$ be the image of $P_n \longrightarrow P_{n-1}$ and consider the exact sequence

$$0 \longrightarrow K_A \longrightarrow P_{n-1} \longrightarrow P_{n-2} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow A \longrightarrow 0$$

We show Ω is small by establishing an isomorphism $KerT(\mu) \cong [Ext^n(A, -), T]$. For an object B calculating $\underline{Ext}^n(-, B)$ we can use the corresponding truncations of the duals of the projective resolutions chosen by \mathcal{P} , so by Proposition 20 of our Derived Functor notes there is an exact sequence

$$Hom(P_{n-1}, B) \longrightarrow Hom(K_A, B) \longrightarrow \underline{Ext}^n(A, B) \longrightarrow 0$$
 (6)

The morphism $Hom(K_A, B) \longrightarrow \underline{Ext}^n(A, B)$ is canonical and natural in A. If $e: P_n \longrightarrow K_A$ is the factorisation of ∂_n through μ then this map is defined by $x \mapsto \overline{xe}$. It is also natural in B, in the sense that for any $\beta: B \longrightarrow B'$ the following diagram commutes

In particular the following diagram is commutative with exact rows

Let η be the image in $\underline{Ext}^n(A, K_A)$ of 1_{K_A} . Commutativity of the diagram shows that $\underline{Ext}^n(A, \mu)(\eta)$ is zero. Let $\Phi : \underline{Ext}^n(A, -) \longrightarrow T$ be a natural transformation. Consider the following commutative diagram

$$\underbrace{\underline{Ext}^{n}(A, K_{A}) \longrightarrow T(K_{A})}_{\underbrace{Ext}^{n}(A, P_{n-1}) \longrightarrow T(P_{n-1})} \xrightarrow{T(F_{n-1})} \xrightarrow{T(F_{n-1})}$$

Since $\underline{Ext}^n(A,\mu)(\eta) = 0$ it follows that the image in $T(K_A)$ of η belongs to $KerT(\mu)$. This assigns to any natural transformation Φ an element $\xi = \Phi_{K_A}(\eta) \in KerT(\mu)$. Next we show that this assignment is injective, by showing that any other natural transformation Θ with $\Theta_{K_A}(\eta) = \xi$ must be equal to Φ .

Let $\sigma: K_A \longrightarrow B$ be any morphism. We claim that the image of σ in $\underline{Ext}^n(A, B)$ under the canonical morphism $Hom(K_A, B) \longrightarrow \underline{Ext}^n(A, B)$ defined above is $\underline{Ext}^n(A, \sigma)(\eta)$. The morphism σ induces a natural transformation $Hom(-, K_A) \longrightarrow Hom(-, B)$ and therefore a cochain morphism of the image of the dual of P under these two functors. The induced maps on cohomology at n is $\underline{Ext}^n(A, \sigma)$. So the claim is not too hard to check.

Let B be any object and let $\rho \in \underline{Ext}^n(A, B)$. The exact sequence (6) shows that ρ is the image of some morphism $\sigma : K_A \longrightarrow B$. Since Θ is natural the following square must commute

So $\Theta_B(\rho) = \Theta_B \underline{Ext}^n(A, \sigma)(\eta) = T(\sigma)(\xi)$. Since B and ρ were arbitrary it follows that $\Theta = \Phi$.

Next we show how to assign a natural transformation Φ to any $\xi \in KerT(\mu) \subseteq T(K_A)$. The obvious definition is the following: for $\rho \in \underline{Ext}^n(A, B)$ let $\sigma : K_A \longrightarrow B$ be any morphism mapping to ρ under $Hom(K_A, B) \longrightarrow \underline{Ext}^n(A, B)$ and let $\Phi_B(\rho) = T(\sigma)(\xi)$. We have to show that $T(\sigma)(\xi)$ does not depend on the morphism σ chosen in the preimage of ρ . If σ' is another such morphism, then $\sigma - \sigma'$ is in the kernel of $Hom(K_A, B) \longrightarrow \underline{Ext}^n(A, B)$ and since (6) is exact there is $\tau : P_{n-1} \longrightarrow B$ with $\sigma - \sigma' = \tau \mu$. Hence $T(\sigma - \sigma')(\xi) = 0$ since ξ is in the kernel of $T(\mu)$, and so $T(\sigma)(\xi) = T(\sigma')(\xi)$, as required. It is easy to check that Φ_B is a morphism of groups.

It is clear that $\Phi_{K_A}(\eta) = \xi$ so it only remains to show that Φ is natural. Suppose $\beta : B \longrightarrow B'$ is given and consider the diagram

The left hand square commutes by naturality of (6), so if we choose $\sigma : K_A \longrightarrow B$ to represent $\rho \in \underline{Ext}^n(A, B)$ then we can choose $\beta\sigma$ to represent $\underline{Ext}^n(A, \beta)(\rho)$. Hence

$$\Phi_{B'}\underline{Ext}^n(A,\beta)(\rho) = T(\beta\sigma)(\xi) = T(\beta)\Phi_B(\rho)$$

This finishes the construction of the bijection $[\underline{Ext}^n(A, -), T] \cong KerT(\mu)$.

Theorem 12. Let \mathcal{A} be an abelian category with enough injectives and projectives. For $n \geq 1$ and any right exact functor T there is a canonical isomorphism natural in A and T

$$[\underline{Ext}^n(A, -), T] \cong L_n T(A)$$

That is, there is a canonical natural equivalence $\underline{\Omega}T \cong L_n T$.

Proof. We assume all derived functors (including those making up the definition of Ω) are calculated relative to fixed assignments of injective and projective resolutions \mathcal{I}, \mathcal{P} . Assume $n \geq 1$ and for every object A with projective resolution P let $\mu_A : K_A \longrightarrow P_{n-1}$ be the canonical image of $P_n \longrightarrow P_{n-1}$. Let $\ell_n T(A)$ be $KerT(\mu_A)$. For a morphism $\alpha : A \longrightarrow B$ let φ be a chain morphism lifting α , induce $\alpha' : K_A \longrightarrow K_B$ and define $\ell_N T(\alpha)$ by $x \mapsto T(\alpha')(x)$. As we showed in Section 3 of our Derived Functor notes, $\ell_n T$ is canonically naturally equivalent to $L_n T$ since T is right exact. But in the previous Lemma we defined a bijection $[\underline{Ext}^n(A, -), T] \cong \ell_n T(A)$ for arbitrary A by $\Phi \mapsto \Phi_{K_A}(\eta_A)$ where η_A was a special element of $\underline{Ext}^n(A, K_A)$. It is clear that this bijection is an isomorphism of abelian groups, and to show ΩT is canonically naturally equivalent to $L_n T$ is only remains to show that this isomorphism is natural in A.

Let $\alpha: A \longrightarrow B$ be a morphism and consider the following diagram

Lift α to a chain morphism $\varphi: P \longrightarrow Q$ of the chosen resolutions and let this induce a morphism $\alpha': K_A \longrightarrow K_B$. Let $\Phi: \underline{Ext}^n(A, -) \longrightarrow T$ be a natural transformation. We have to show that $T(\alpha')\Phi_{K_A}(\eta_A) = (\Phi \underline{Ext}^n(\alpha, -))_{K_B}(\eta_B)$, which reduces to showing that $\underline{Ext}^n(A, \alpha')(\eta_A) = \underline{Ext}^n(\alpha, K_B)(\eta_B)$. So it would be enough to show that the following diagram commutes:

But the top square commutes by naturality of the sequence (6) for A in the second variable and the bottom square commutes by naturality of the sequence (6) for B in the first variable, so the proof of naturality in A is complete.

Now suppose $\gamma: T \longrightarrow T'$ is a natural transformation. For any object A with chosen resolution P this gives rise to a chain morphism $\gamma_P: TP \longrightarrow T'P$ and we let $\ell_n T(A) \longrightarrow \ell_n T'(A)$ be defined by the restriction of γ_{K_A} . It is then clear that the left hand square in the following diagram commutes

$$[\underline{Ext}^{n}(A, -), T] \Longrightarrow \ell_{n}T(A) \Longrightarrow L_{n}T(A)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow^{(L_{n}\gamma)_{A}}$$

$$[\underline{Ext}^{n}(A, -), T'] \Longrightarrow \ell_{n}T'(A) \Longrightarrow L_{n}T'(A)$$

The natural transformation $L_n\gamma: L_nT \longrightarrow L_nT'$ is defined elsewhere in our notes. By definition $(L_n\gamma)_A: L_nT(A) \longrightarrow L_nT'(A)$ is the map $x + ImT(\partial_{n+1}) \mapsto \gamma_{P_n}(x) + ImT'(\partial_{n+1})$ which clearly makes the right hand diagram commute. This completes the proof.

Corollary 13. For a ring R there is a canonical isomorphism natural in the right R-module A and the left R-module B

$$[\underline{Ext}^n(A,-),-\otimes_R B] \cong Tor_n(A,B)$$

Proof. This is just $\mathcal{A} = \mathbf{Mod}R$, $T = - \otimes_R B$ and $L_n T = Tor_n(-, B)$ in the Theorem. Just to be perfectly clear what we mean by naturality: for any morphism $\alpha : A \longrightarrow A'$ of right *R*-modules the following diagram commutes

For a morphism of right R-modules $\beta: B \longrightarrow B'$ the following diagram commutes

where the left hand vertical morphism acts by composition with the natural transformation $-\otimes_R B \longrightarrow -\otimes_R B'$ determined by β .