
Ext

Daniel Murfet

May 16, 2006

Contents

1 Ext using Injectives 1
1.1 Calculations using Injective Presentations . 4

2 Ext using Projectives 4
2.1 Calculations using Projective Presentations . 6

3 Balancing Ext 7

4 Properties of Ext 9
4.1 Ext for Linear Categories . 9
4.2 Dimension Shifting . 10
4.3 Ext and Coproducts . 11

5 Ext for Commutative Rings 11
5.1 Coextension . 12

6 Another Characterisation of Derived Functors 12

1 Ext using Injectives

If A is an abelian category, then Hom(A,−) is a covariant, additive, kernel preserving functor
A −→ Ab and Hom(−, B) is a contravariant, additive functor which maps cokernels to kernels.
Throughout this section A will be an abelian category with enough injectives.

Definition 1. The right derived functors of Hom(A,−) are called the Ext groups.

Exti(A,B) = RiHom(A,−)(B)

The functor Exti(A,−) : A −→ Ab is additive and covariant for i ≥ 0. Since Hom(A,−) is
left exact the functors Ext0(A,−) and Hom(A,−) are naturally equivalent. We simply write
Ext(A,−) for Ext1(A,−).

The group Exti(A,B) is only determined up to isomorphism, and to calculate it we find an
injective resolution 0 −→ B −→ I0 −→ I1 · · · and calculate the cohomology of the sequence

0 −→ Hom(A, I0) −→ Hom(A, I1) −→ Hom(A, I2) −→ · · ·

We think of Exti as assigning to any pair of objects A,B an isomorphism class of abelian groups,
which has the following properties:

• For any injective object I we have Exti(A, I) = 0 for i 6= 0, since this is a property of any
right derived functor.

• For any projective object P we have Exti(P,B) = 0 for i 6= 0, since the higher right derived
functors of the exact functor Hom(P,−) are zero.

1

For any exact sequence
0 −→ B′ −→ B −→ B′′ −→ 0

there are canonical morphisms ω0 : Hom(A,B′′) −→ Ext(A,B′) and ωn : Extn(A,B′′) −→
Extn+1(A,B′) for n > 1 such that the following sequence is long exact

0 −→ Hom(A,B′) −→ Hom(A,B) −→ Hom(A,B′′) −→
−→ Ext(A,B′) −→ Ext(A,B) −→ Ext(A,B′′) −→
−→ Ext2(A,B′) −→ Ext2(A,B) −→ Ext2(A,B′′) −→ · · ·

This sequence is called the long exact Ext sequence in the second variable. It is natural, in the
sense that if we have a commutative diagram with exact rows

0 // B′

��

// B

��

// B′′

��

// 0

0 // C ′ // C // C ′′ // 0

Then the following diagrams commute for n ≥ 1

Hom(A,B′′)

��

// Ext(A,B′)

��
Hom(A,C ′′) // Ext(A,C ′)

Extn(A,B′′)

��

// Extn+1(A,B′)

��
Extn(A,C ′′) // Extn+1(A,C ′)

Let α : A −→ A′ be a morphism, and let α also denote the associated natural transformation
Hom(A′,−) −→ Hom(A,−). Let I be a fixed assignment of injective resolutions. Then there is
a natural transformation Rnα : RnHom(A′,−) −→ RnHom(A,−) and we denote by Extn(α,B)
the morphism (Rnα)B : Extn(A′, B) −→ Extn(A,B). Notice that for another morphism γ :
A′ −→ A′′, (Rnα)(Rnγ) = Rn(γα) so for any object B

Extn(α,B)Extn(γ,B) = Extn(γα,B)

This defines a contravariant additive functor Extn(−, B) : A −→ Ab. For any exact sequence
0 −→ B′ −→ B −→ B′′ −→ 0 we have the following commutative diagram for n ≥ 0

· · · // Extn(A′, B′)

Extn(α,B′)

��

// Extn(A′, B)

Extn(α,B)

��

// Extn(A′, B′′)

Extn(α,B′′)

��

ωn
// Extn+1(A′, B′) //

Extn+1(α,B′)

��

· · ·

· · · // Extn(A,B′) // Extn(A,B) // Extn(A,B′′)
ωn

// Extn+1(A,B′) // · · ·

(1)

Proposition 1. For n ≥ 0 and morphisms α : A −→ A′ and β : B −→ B′

Extn(A, β)Extn(α,B) = Extn(α,B′)Extn(A′, β) (2)

It follows that Extn defines a functor Aop×A −→ Ab for n ≥ 0, with Extn(α, β) : Extn(A′, B) −→
Extn(A,B′) given by the equivalent expressions in (2). The partial functors are the functors
Extn(A,−) and Extn(−, B) defined above.

Proof. This follows for arbitrary α and monomorphisms (or epimorphisms) β by commutativity
of (1). Since A has epi-mono factorisations it then follows for arbitrary β. The bifunctor Extn is
defined relative to an assignment of injective resolutions I. If J is another such assignment then
the associated bifunctor is canonically naturally equivalent to the one defined for I.

2

For a short exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0 the corresponding sequence of natural
transformations Hom(A′′,−) −→ Hom(A,−) −→ Hom(A′,−) is exact on injectives. So for n ≥ 0
and any object B there are canonical connecting morphisms ωn : Extn(A′, B) −→ Extn+1(A′′, B)
fitting in to a long exact sequence

· · · −→ Extn(A′′, B) −→ Extn(A,B) −→ Extn(A′, B) −→ Extn+1(A′′, B) −→ · · ·

This sequence is called the long exact Ext sequence in the first variable. It is natural in both B
and the exact sequence. For a morphism β : B −→ B′ the following diagram commutes

· · · // Extn(A′′, B)

��

// Extn(A,B)

��

// Extn(A′, B)

��

ωn
// Extn+1(A′′, B)

��

// · · ·

· · · // Extn(A′′, B′) // Extn(A,B′) // Extn(A′, B′)
ωn

// Extn+1(A′′, B′) // · · ·

And for a commutative diagram with exact rows

0 // A′

��

// A

��

// A′′

��

// 0

0 // C ′ // C // C ′′ // 0

The following diagram commutes for any object B

· · · // Extn(A′′, B) // Extn(A,B) // Extn(A′, B) ωn
// Extn+1(A′′, B) // · · ·

· · · // Extn(C ′′, B) //

OO

Extn(C,B) //

OO

Extn(C ′, B)
ωn

//

OO

Extn+1(C ′′, B) //

OO

· · ·

We have shown that for every assignment of injective resolutions I we obtain a bifunctor
ExtnI(−,−) : Aop × A −→ Ab for n ≥ 0 with the property that short exact sequences in either
variable lead to a long exact sequence which is natural with respect to morphisms of the exact
sequence and morphisms in the remaining variable. The connecting morphisms for these sequences
depend only on I.

If J is another assignment of resolutions then we obtain another bifunctor ExtnJ (−,−) for
n ≥ 0 which is canonically naturally equivalent to ExtnI(−,−). The connecting morphisms for
the two assignments I,J agree in the following sense: for an object A and an exact sequence
0 −→ B′ −→ B −→ B′′ −→ 0 the following diagram commutes

· · · // ExtnI(A,B
′) //

��

ExtnI(A,B) //

��

ExtnI(A,B
′′)

��

ωn
I // Extn+1

I (A,B′) //

��

· · ·

· · · // ExtnJ (A,B′) // ExtnJ (A,B) // ExtnJ (A,B′′)
ωn
J

// Extn+1
J (A,B′) // · · ·

Similarly for an object B and an exact sequence 0 −→ A′ −→ A −→ A′′ −→ 0 the following
diagram commutes

· · · // ExtnI(A
′′, B)

��

// ExtnI(A,B) //

��

ExtnI(A
′, B)

ωn
I //

��

Extn+1
I (A′′, B) //

��

· · ·

· · · // ExtnJ (A′′, B) // ExtnJ (A,B) // ExtnJ (A′, B)
ωn
J

// ExtnJ (A′′, B) // · · ·

Both these claims follow directly from our Derived Functor notes.

3

1.1 Calculations using Injective Presentations

Since Hom(X,−) is left exact we can use our results truncated injective resolutions to show that
the functor Ext(X,−) is naturally equivalent to the functor E defined by the following procedure:
pick for every object A an exact sequence

0 // A // I
µ // C // 0

with I injective. Then E(A) is the cokernel of Hom(X, I) −→ Hom(X,C) and given a morphism
α : A −→ B where B is assigned the sequence 0 −→ B −→ J −→ D −→ 0 use injectivity of J to
lift α to a morphism ϕ : I −→ J and then induce α′ fitting into a commutative diagram

0 // A //

α

��

I

��

µ // C

α′

��

// 0

0 // B // J τ
// D // 0

Then E(α) : Hom(X,C)/ImT (µ) −→ Hom(X,D)/ImT (τ) is defined by composition with α′. It
turns out that this gives a well-defined additive functor naturally equivalent to Ext(X,−).

2 Ext using Projectives

Throughout this section A will be an abelian category with enough projectives. For an object A
the functor Hom(−, A) is contravariant, but considered as a functor Aop −→ Ab it is a left exact
covariant functor.

Definition 2. The right derived functors of Hom(−, B) are the Ext groups.

Exti(A,B) = RiHom(−, B)(A)

The functor Exti(−, B) : A −→ Ab is additive and contravariant for i ≥ 0. The functors
Ext0(−, B) and Hom(−, B) are naturally equivalent. We simply write Ext(−, B) for Ext1(−, B).

The group Exti(A,B) is only determined up to isomorphism, and to calculate it we find a
projective resolution · · · −→ P1 −→ P0 −→ A −→ 0 and calculate the cohomology of the sequence

0 −→ Hom(P0, B) −→ Hom(P1, B) −→ Hom(P2, B) −→ · · ·

We think of Exti as assigning to any pair of objects A,B an isomorphism class of abelian groups,
which has the following properties:

• For any projective object P we have Exti(P,B) = 0 for i 6= 0, since this is a property of
any right derived functor (remember we are taking right derived functors in Aop, where P
is injective).

• For any injective object I we have Exti(A, I) = 0 for i 6= 0, since the higher right derived
functors of the exact functor Hom(−, I) are zero.

For any exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0

there are canonical morphisms ω0 : Hom(A′, B) −→ Ext(A′′, B) and ωn : Extn(A′, B) −→
Extn+1(A′′, B) for n ≥ 1 such that the following sequence is long exact

0 −→ Hom(A′′, B) −→ Hom(A,B) −→ Hom(A′, B) −→
−→ Ext(A′′, B) −→ Ext(A,B) −→ Ext(A′, B) −→
−→ Ext2(A′′, B) −→ Ext2(A,B) −→ Ext2(A′, B) −→ · · ·

4

This sequence is called the long exact Ext sequence in the first variable. It is natural, in the sense
that if we have a commutative diagram with exact rows

0 // A′

��

// A

��

// A′′

��

// 0

0 // C ′ // C // C ′′ // 0

Then the following diagrams commute for n ≥ 1

Hom(C ′, B)

��

// Ext(C ′′, B)

��
Hom(A′, B) // Ext(A′′, B)

Extn(C ′, B)

��

// Extn+1(C ′′, B)

��
Extn(A′, B) // Extn+1(A′′, B)

Let β : B −→ B′ be a morphism, and let β also denote the associated natural transformation
Hom(−, B) −→ Hom(−, B′). Let P be a fixed assignment of projective resolutions. Then there is
a natural transformation Rnβ : RnHom(−, B) −→ RnHom(−, B′) and we denote by Extn(A, β)
the morphism (Rnβ)A : Extn(A,B) −→ Extn(A,B′). Notice that for another morphism γ :
B′ −→ B′′, (Rnγ)(Rnβ) = Rn(γβ) so for any object A

Extn(A, γ)Extn(A, β) = Extn(A, γβ)

This defines a covariant additive functor Extn(A,−) : A −→ Ab. For any exact sequence 0 −→
A′ −→ A −→ A′′ −→ 0 the following diagram is commutative for n ≥ 0

· · · // Extn(A′′, B)

Extn(A′′,β)

��

// Extn(A,B)

Extn(A,β)

��

// Extn(A′, B)

Extn(A′,β)

��

ωn
// Extn+1(A′′, B) //

Extn+1(A′′,β)

��

· · ·

· · · // Extn(A′′, B′) // Extn(A,B′) // Extn(A′, B′)
ωn

// Extn+1(A′′, B′) // · · ·

(3)

Proposition 2. For n ≥ 0 and morphisms α : A −→ A′ and β : B −→ B′

Extn(A, β)Extn(α,B) = Extn(α,B′)Extn(A′, β) (4)

It follows that Extn defines a functor Aop×A −→ Ab for n ≥ 0, with Extn(α, β) : Extn(A′, B) −→
Extn(A,B′) given by the equivalent expressions in (4). The partial functors are the functors
Extn(A,−) and Extn(−, B) defined above.

Proof. This follows for arbitrary β and monomorphisms (or epimorphisms) α by commutativity
of (3). Since A has epi-mono factorisations it then follows for arbitrary α. If we use a different
assignment of projective resolutions to calculate Extn then the results will be canonically naturally
equivalent.

For a short exact sequence 0 −→ B′ −→ B −→ B′′ −→ 0 the corresponding sequence of natural
transformations Hom(−, B′) −→ Hom(−, B) −→ Hom(−, B′′) is exact on injectives (considered
as covariant functors Aop −→ Ab). So for n ≥ 0 and any object A there are canonical connecting
morphisms ωn : Extn(A,B′′) −→ Extn+1(A,B′) fitting in to a long exact sequence

· · · −→ Extn(A,B′) −→ Extn(A,B) −→ Extn(A,B′′) −→ Extn+1(A,B′) −→ · · ·

This sequence is called the long exact Ext sequence in the second variable. It is natural in both
A and the exact sequence. For a morphism α : A −→ A′ the following diagram commutes

· · · // Extn(A′, B′) //

��

Extn(A′, B) //

��

Extn(A′, B′′) ωn
//

��

Extn+1(A′, B′) //

��

· · ·

· · · // Extn(A,B′) // Extn(A,B) // Extn(A,B′′)
ωn

// Extn+1(A,B′) // · · ·

(5)

5

And for a commutative diagram with exact rows

0 // B′

��

// B

��

// B′′

��

// 0

0 // C ′ // C // C ′′ // 0

The following diagram commutes for any object A

· · · // Extn(A,B′) //

��

Extn(A,B) //

��

Extn(A,B′′) ωn
//

��

Extn+1(A,B′)

��

// · · ·

· · · // Extn(A,C ′) // Extn(A,C) // Extn(A,C ′′)
ωn

// Extn+1(A,C ′) // · · ·

We have shown that for every assignment of projective resolutions P we obtain a bifunctor
ExtnI(−,−) : Aop × A −→ Ab for n ≥ 0 with the property that short exact sequences in either
variable lead to a long exact sequence which is natural with respect to morphisms of the exact
sequence and morphisms in the remaining variable. The connecting morphisms for these sequences
depend only on P.

If Q is another assignment of resolutions then we obtain another bifunctor ExtnQ(−,−) for
n ≥ 0 which is canonically naturally equivalent to ExtnI(−,−). The connecting morphisms for
the two assignments P,Q agree in the following sense: for an object B and an exact sequence
0 −→ A′ −→ A −→ A′′ −→ 0 the following diagram commutes

· · · // ExtnP(A′′, B)

��

// ExtnP(A,B) //

��

ExtnP(A′, B)
ωn
P //

��

Extn+1
P (A′′, B) //

��

· · ·

· · · // ExtnQ(A′′, B) // ExtnQ(A,B) // ExtnQ(A′, B)
ωn
Q

// ExtnQ(A′′, B) // · · ·

Similarly for an object A and an exact sequence 0 −→ B′ −→ B −→ B′′ −→ 0 the following
diagram commutes

· · · // ExtnP(A,B′) //

��

ExtnP(A,B) //

��

ExtnP(A,B′′)

��

ωn
P // Extn+1

P (A,B′) //

��

· · ·

· · · // ExtnQ(A,B′) // ExtnQ(A,B) // ExtnQ(A,B′′)
ωn
Q

// Extn+1
Q (A,B′) // · · ·

Both these claims follow directly from our Derived Functor notes.

2.1 Calculations using Projective Presentations

Since Hom(−, B) : Aop −→ Ab is left exact we can use our results on truncated injective resolu-
tions to show that Ext is naturally equivalent to the functor E defined by the following procedure:
pick for every object A an exact sequence

0 // K
µ // P // A // 0

with P projective. Then E(A) is the cokernel of Hom(P,B) −→ Hom(K,B) and given a mor-
phism α : A −→ C where C is assigned the sequence 0 −→M −→ Q −→ C −→ 0 use projectivity
of Q to lift α to a morphism ϕ : P −→ Q and then induce α′ fitting into a commutative diagram

0 // K
µ //

α′

��

P

��

// A

α

��

// 0

0 // M τ
// Q // C // 0

6

Then E(α) : E(C) −→ E(A), which is a map Hom(M,B)/ImT (τ) −→ Hom(K,B)/ImT (τ) is
defined by composition with α′. It turns out that this is a well-defined contravariant additive
functor naturally equivalent to Ext(−, B).

In fact we have already studied the functor E for right modules over a ring in our Hilton &
Stammbach notes, where we proved the following

• For any two right modules A,B over a ring there is a bijection E(A,B) ∼= Y (A,B) where
Y (A,B) is the set of extensions of A by B (which are exact sequences 0 −→ B −→ E −→
A −→ 0) modulo a certain equivalence relation. In particular E(A,B) = 0 if and only if
every exact sequence 0 −→ B −→ E −→ A −→ 0 splits.

3 Balancing Ext

Throughout this section A is an abelian category with enough injectives and projectives, and we
choose once and for all assignments of resolutions P, I, with respect to which all derived functors
are calculated. We have defined two bifunctors Extn(−,−) and Extn(−,−) for n ≥ 0. The first
is calculated by taking the right derived functors of the contravariant functors Hom(−, B) and
the second by taking the right derived functors of the covariant functors Hom(A,−). We claim
that these two bifunctors are naturally equivalent. We begin with the case n = 0.

Lemma 3. There are canonical natural equivalences of bifunctors Ext0(−,−) ∼= Hom(−,−) and
Hom(−,−) ∼= Ext0(−,−).

Proof. Let the Ext functors be calculated with respect to some assignment I of injective resolu-
tions. For an object A there is a canonical natural equivalence Ext0(A,−) ∼= Hom(A,−), so we
need only show these isomorphisms are also natural in B, which is not difficult. Similarly there
is a canonical natural equivalence Ext0(−, B) ∼= Hom(−, B), which is also natural in the first
variable. So all three functors are naturally equivalent.

Proposition 4. For n ≥ 0 there is a canonical natural equivalence of bifunctors Φn : Extn(−,−) ∼=
Extn(−,−).

Proof. We proceed by induction on n, having already proved the result for n = 0. Assume that
there is a canonical natural equivalence Φn and let objects A,B be given. We have to define a
canonical isomorphism Φn+1

A,B which is natural in A and B. Choose an injective presentation of B

0 // B
ν // I

η // S // 0

We know that Exti(A, I) = 0 = Exti(A, I) for i 6= 0. Now we show how to define the isomorphism
Φn+1

A,B : Extn+1(A,B) −→ Extn+1(A,B). There are two cases: if n = 1 then the long exact
sequence for Ext in the second variable and the long exact sequence for Ext in the second variable
give a commutative diagram with exact rows:

0 // Ext0(A,B)

��

// Ext0(A, I)

��

// Ext0(A,S)

Φ0
A,S

��

ω0
// Ext1(A,B)

��

// 0

0 // Ext0(A,B) // Ext0(A, I) // Ext0(A,S)
ω0

// Ext1(A,B) // 0

This induces an isomorphism Φ1
A,B : Ext1(A,B) −→ Ext1(A,B) making the diagram com-

mute. For n ≥ 1 the connecting morphisms Extn(A,S) −→ Extn+1(A,B) and Extn(A,S) −→
Extn+1(A,B) in the two sequences are isomorphisms, and we define Φn+1

A,B to be the unique mor-
phism fitting into the following commutatie diagram

Extn(A,S)

Φn
A,S

��

+3 Extn+1(A,B)

Φn+1
A,B

��
Extn(A,S) +3 Extn+1(A,B)

7

Next we have to show that the isomorphism Φn+1
A,B does not depend on the chosen presentation.

Suppose we have a commutative diagram with exact rows and the middle objects injective

0 // B

��

// I //

��

S

��

// 0

0 // B′ // I ′ // S′ // 0

Consider the following cube for n ≥ 0

Extn(A,S′) ωn
//

Φn
A,S′

��

Extn+1(A,B′)

��

Extn(A,S)

77ooooooooooo
ωn

//

Φn
A,S

��

Extn+1(A,B)

��

66mmmmmmmmmmmm

Extn(A,S′) ωn
// Extn+1(A,B′)

Extn(A,S) ωn
//

77oooooooooooo
Extn+1(A,B)

66mmmmmmmmmmmm

If we use the above technique to produce isomorphisms Extn+1(A,B) −→ Extn+1(A,B) and
Extn+1(A,B′) −→ Extn+1(A,B′) using the given presentations then in either case (n = 1 or
otherwise) these morphisms make the front and back squares on the cube commute. The left
square commutes since by assumption Φn is natural, and the top and bottom squares commute
by the naturality of the connecting morphism. Since ωn : Extn(A,S) −→ Extn+1(A,B) is an
epimorphism it follows that the right hand square also commutes.

If we are given two injective presentations of B then put B = B′ in the diagram and induce
I −→ I ′ and S −→ S′ making it commutative. Then the cube above shows that the resulting
isomorphism Φn+1

A,B is the same in both cases. So we have constructed an isomorphism Φn+1
A,B that

depends only on A,B, the assignments P, I and the natural equivalence Φn. These isomorphisms
are natural in B since we can lift B −→ B′ to a morphism of the injective presentations, and then
use the cube.

To prove naturality in A we construct a cube similar to the one above, but with a fixed
presentation and A varying. Using naturality of Φn in A and the diagrams (1) and (5) it is not
hard to see that Φn+1 is natural in A and is therefore a natural equivalence of bifunctors. Since
by the inductive hypothesis Φn depends only on the assingment of resolutions P, I it follows that
this is true of Φn+1 as well.

If A has both enough injectives and enough projectives and I,P are assignments of injective
and projective resolutions respectively, there is a natural equivalence of the bifunctors ExtnI(−,−)
and ExtnP(−,−) for n ≥ 0. So every pair of objects A,B and integer n ≥ 0 determines an
isomorphism class of abelian groups. We can calculate a representative of this class in the following
ways

• Choose a projective resolution · · · −→ P1 −→ P0 −→ A −→ 0 of A and calculate the
cohomology of the following cochain complex of abelian groups

0 −→ Hom(P0, B) −→ Hom(P1, B) −→ Hom(P2, B) −→ · · ·

• Choose an injective resolution 0 −→ B −→ I0 −→ I1 −→ · · · of B and calculate the
cohomology of the following cochain complex of abelian groups

0 −→ Hom(A, I0) −→ Hom(A, I1) −→ Hom(A, I2) −→ · · ·

8

If there is no chance of confusion we simply refer to any of these groups by Extn(A,B) and drop
Ext from the notation. But if A does not have both enough injectives and enough projectives, we
will refer explicitly to the bifunctor Ext or Ext used.

In the case where A = ModR for a ring R, there is a bijection between elements of Ext(A,B)
and exact sequences 0 −→ B −→ E −→ A −→ 0 modulo a certain equivalence relation. In
particular Ext(A,B) = 0 if and only if every such exact sequence is split.

Remark 1. One would like the natural equivalence of Ext and Ext to be compatible with
the connecting morphisms for both bifunctors. One can get this in one variable (see Hilton &
Stammbach), but it is not clear how to do it in the other variable.

4 Properties of Ext

4.1 Ext for Linear Categories

Definition 3. If R is a ring then an R-linear abelian category is an abelian category A together
with a left R-module structure on all the morphism groups HomA(A,B) such that composition
is bilinear. That is,

γ(r · α) = r · (γα)
(r · α)γ = r · (αγ)

whenever r ∈ R and the composition makes sense. Then for every object A, we have a covariant,
additive, kernel preserving functor Hom(A,−) : A −→ RMod and a contravariant, additive
functor Hom(−, A) : A −→ RMod which maps cokernels to kernels.

Let U : RMod −→ Ab be the forgetful functor, which is faithful and exact. This functor maps
the canonical kernels, cokernels, images, zero and biproducts of RMod to the corresponding
canonical structure on Ab. So if X is a (co)chain complex in RMod then the (co)homology
modules have as underlying groups the (co)homology groups of the sequence considered as a
complex of groups.

For an object A let S be the functor Hom(A,−) : A −→ RMod and let T be Hom(A,−) :
A −→ Ab. Then T = US so for n ≥ 0 and an assignment of injective resolutions I the func-
tors RnT and U ◦ RnS are equal. So for an object B the Ext group Extn(A,B) becomes an
R-module in a canonical way, and for β : B −→ B′ the morphism of groups Extn(A, β) :
Extn(A,B) −→ Extn(A,B′) is a morphism of these modules. Similarly if α : A −→ A′ is
a morphism of modules then the morphism of groups Extn(A′, B) −→ Extn(A,B) is a mor-
phism of modules, so Extn(−, B) lifts to a contravariant additive functor A −→ RMod. Also
Ext0(A,−) : A −→ RMod is canonically naturally equivalent to Hom(A,−).

So for a fixed assignment of injective resolutions I the bifunctor Extn(−,−) becomes a bifunc-
tor Extn(−,−) : Aop × A −→ RMod. If J is another assignment of injective resolutions then
the resulting bifunctors (with values in RMod) are canonically naturally equivalent.

Given an assignment of resolutions I and an exact sequence 0 −→ B′ −→ B −→ B′′ −→ 0
the connecting morphisms Extn(A,B′′) −→ Extn+1(A,B′) for n ≥ 0 are all module morphisms,
so the long exact sequence of Ext in the second variable

· · · −→ Extn(A,B′) −→ Extn(A,B) −→ Extn(A,B′′) −→ Extn+1(A,B′) −→ · · ·

is a long exact sequence of modules. Similarly if 0 −→ A′ −→ A −→ A′′ −→ 0 is an exact sequence
then the connecting morphisms Extn(A′, B) −→ Extn+1(A′′, B) are module morphisms and the
long exact sequence of Ext in the first variable

· · · −→ Extn(A′′, B) −→ Extn(A,B) −→ Extn(A′, B) −→ Extn+1(A′′, B) −→ · · ·

is a long exact sequence of modules.

9

Similarly for an object B let S be the functor Hom(−, B) : A −→ RMod and let T be
Hom(−, B) : A −→ RMod. Then T = US so for n ≥ 0 and an assignment of projective resolu-
tions P the functors RnT and U ◦RnS are equal. So the functors Extn(−, B) and Extn(A,−) lift
to module valued functors and Ext0(−, B) : A −→ RMod is naturally equivalent to Hom(−, B).
For a fixed assignment of projective resolutions P the bifunctor Extn(−,−) becomes a bifunctor
Extn(−,−) : Aop ×A −→ RMod. If Q is another assignment of projective resolutions then the
resulting bifunctors (with values in RMod) are canonically naturally equivalent. The two long
exact sequences for Extn are sequences of modules and module morphisms.

Now suppose A has enough projectives and injectives, and let P and I be assignments of pro-
jective and injective resolutions, respectively. The canonical natural equivalences Ext0(−,−) ∼=
Hom(−,−) and Hom(−,−) ∼= Ext0(−,−) give natural equivalences of the module-valued bi-
functors. Then our earlier proof shows that for n ≥ 0 there is a canonical natural equivalence
Extn(−,−) ∼= Extn(−,−) of bifunctors Aop ×A −→ RMod.

So associated to any pair of objects A,B is an isomorphism class ofR-modules Extn(A,B). IfA
has enough projectives, we can find a representative of this class by choosing a projective resolution
P of A and calculating the cohomology modules of 0 −→ Hom(P0, B) −→ Hom(P1, B) −→ · · · .
If A has enough injectives, we can find a representative by choosing an injective resolution I of B
and calculating the cohomology modules of 0 −→ Hom(A, I0) −→ Hom(A, I1) −→ · · · .

4.2 Dimension Shifting

The following two results are immediate consequences of our notes on dimension shifting.

Proposition 5. Let A be an abelian category with enough injectives. Suppose we have an exact
sequence in A with all Ii injective and m ≥ 0

0 −→ B −→ I0 −→ · · · −→ Im−1 −→ Im −→M −→ 0

Then for any object A there are canonical isomorphisms ρn : Extn(A,M) −→ Extn+m+1(A,B)
for n ≥ 1, and an exact sequence

Hom(A, Im) −→ Hom(A,M) −→ Extm+1(A,B) −→ 0

These are both natural in A, in the sense that for a morphism A −→ A′ the following two diagrams
commute for n ≥ 1 and m ≥ 0

Extn(A′,M) //

��

Extn+m+1(A′, B)

��
Extn(A,M) // Extn+m+1(A,B)

Hom(A′, Im) //

��

Hom(A′,M) //

��

Extm+1(A′, B) //

��

0

Hom(A, Im) // Hom(A,M) // Extm+1(A,B) // 0

Proposition 6. Let A be an abelian category with enough projectives. Suppose we have an exact
sequence in A with all Pi projective and m ≥ 0

0 −→M −→ Pm −→ Pm−1 −→ · · · −→ P0 −→ A −→ 0

Then for any object B there are canonical isomorphisms ρn : Extn(M,B) −→ Extn+m+1(A,B)
for n ≥ 1 and an exact sequence

Hom(Pm, B) −→ Hom(M,B) −→ Extm+1(A,B) −→ 0

10

These are both natural in B, in the sense that for a morphism B −→ B′ the following two diagrams
commute for n ≥ 1 and m ≥ 0

Extn(M,B)

��

// Extn+m+1(A,B)

��
Extn(M,B′) // Extn+m+1(A,B′)

Hom(Pm, B) //

��

Hom(M,B) //

��

Extm+1(A,B) //

��

0

Hom(Pm, B
′) // Hom(M,B′) // Extm+1(A,B′) // 0

4.3 Ext and Coproducts

Proposition 7. Let A be an infinite complete abelian category with exact products and enough
injectives. For an object A, the functor Extn(A,−) : A −→ Ab preserves products.

Proof. The functor Hom(A,−) : A −→ Ab preserves products, so this follows immediately from
our Derived Functor notes.

Proposition 8. Let A be an infinite cocomplete abelian category with exact coproducts and enough
projectives. For an object B, the contravariant functor Extn(−, B) : A −→ Ab maps coproducts
to products.

Proof. By assumption Aop is a complete abelian category with exact products and enough injec-
tives, and the functors Extn(−, B) are the right derived functors of the covariant additive functor
Hom(−, B) : Aop −→ Ab. So once again the result follows from our Derived Functor notes.

In particular both results apply in the case where A is Ab, RMod or ModR for a ring R.
If A is R-linear for some ring R then the above results also apply to the functors Extn(A,−) :
A −→ RMod and Extn(−, B) : A −→ RMod. That is, the first preserves products and the
second maps coproducts to products.

5 Ext for Commutative Rings

If R is a commutative ring and A,B are R-modules, then the group Extn(A,B) doesn’t depend
on whether you consider A,B as left or right modules over R. That is, the calculations in the
abelian categories RMod and ModR yield isomorphic groups.

For a commutative ring R the abelian category A = RMod is R-linear in the sense of Section
4.1. Each group HomR(M,N) becomes an R-module via (r · ϕ)(x) = r · ϕ(x) and this defines an
R-linear structure on A. For r ∈ R let α : M −→M,β : N −→ N be the endomorphisms defined
by left multiplication by r. Then r · ϕ = βϕ = ϕα. So associated to two left R-modules M,N
and an integer i ≥ 0 is an isomorphism class of left R-modules, and the following procedures will
calculate a representative

• Pick a projective resolution · · · −→ P1 −→ P0 −→ A −→ 0 and calculate the cohomology of
the sequence of R-modules

0 −→ Hom(P0, B) −→ Hom(P1, B) −→ Hom(P2, B) −→ · · ·

• Pick an injective resolution 0 −→ B −→ I0 −→ I1 −→ · · · and calculate the cohomology of
the sequence of R-modules

0 −→ Hom(A, I0) −→ Hom(A, I1) −→ Hom(A, I2) −→ · · ·

11

It is not hard to check that for r ∈ R left multiplication by r is given by ExtnR(M,β) = ExtnR(α,N).

Proposition 9. Let R be a commutative noetherian ring and suppose A,B are finitely generated
R-modules. Then ExtiR(A,B) is a finitely generated R-module.

Proof. Since R is noetherian and A is finitely generated we can find a projective resolution · · · −→
F1 −→ F0 −→ A −→ 0 with all the Fi finite free modules. Then in the following sequence every
module is finitely generated (see our Module notes)

0 −→ Hom(F0, B) −→ Hom(F1, B) −→ Hom(F2, B) −→ · · ·

So the cohomology modules ExtiR(A,B) will also be finitely generated.

Recall that a module M over a commutative domain R is divisible if for every 0 6= r ∈ R and
x ∈ M there is y ∈ M such that r · y = x. Any injective module is divisible. A commutative
integral domain R is a Dedekind domain if and only if every divisible module is injective. Since
a quotient of a divisible module is clearly divisible, it follows that over a Dedekind domain the
quotient of an injective module is injective.

Proposition 10. For any Dedekind domain R we have ExtnR(A,B) = 0 for n ≥ 2.

Proof. Find an injective module I and a monomorphism B −→ I. The quotient is divisible, hence
injective, so 0 −→ B −→ I −→ J −→ 0 −→ · · · is an injective resolution of B. It follows that
ExtRn (A,B) is the cohomology of the sequence

0 −→ Hom(A, I) −→ Hom(A, J) −→ 0 −→ · · ·

So it is clear that ExtRn (A,B) = 0 for n ≥ 2.

5.1 Coextension

Let ϕ : R −→ S be a morphism of commutative rings. Then for an R-modules A the R-module
HomR(S,A) has a canonical S-module structure, and this defines the coextension functor P =
HomR(S,−) : RMod −→ SMod. Let U : SMod −→ Ab be the forgetful functor and Q =
HomR(S,−) : RMod −→ Ab the usual functor. Then Q = UP so for n ≥ 0 and an assignment
of injective resolutions I the functors RnQ and U ◦RnP are equal. So for an R-module A the Ext
group ExtnR(S,A) becomes an S-module in a canonical way, and for a morphism of R-modules
β : A −→ A′ the morphism of groups ExtnR(S, β) : ExtnR(S,A) −→ ExtnR(S,A′) is a morphism of
these modules. So the additive functor ExtnR(S,−) : RMod −→ Ab lifts to an additive functor
RMod −→ SMod.

6 Another Characterisation of Derived Functors

Throughout this section A is an abelian category. If we say T is an additive functor, we mean
it is an additive covariant functor A −→ Ab. Given two additive functors T, T ′ : A −→ Ab we
let [T, T ′] denote the class of natural transformations T −→ T ′. It is clear that this becomes a
“large” abelian group (an abelian group whose underlying class may not be a set).

Suppose we have for every object A an additive functor ΩA : A −→ Ab and for every morphism
α : A −→ B a natural transformation Ωα : ΩB −→ ΩA, such that ΩαΩγ = Ωγα,Ωα+γ = Ωα + Ωγ

and Ω1 = 1. We call this a representation of A in the additive functors A −→ Ab. We say it is a
small representation if [ΩA, T] is a set for any object A and additive functor T : A −→ Ab.

The primary example is A 7→ Hom(A,−), α 7→ Hom(α,−), which is small since by the Yoneda
Lemma there is an isomorphism of abelian groups [Hom(A,−), T] ∼= T (A). This isomorphism is
also natural in A: given any morphism α : A −→ B, composition with Ωα defines a morphism of
groups [Hom(A,−), T] −→ [Hom(B,−), T] which fits into a commutative diagram:

[Hom(A,−), T]

��

+3 T (A)

T (α)

��
[Hom(B,−), T] +3 T (B)

12

It follows that we can recover the functor T (up to natural equivalence) from the representation
A 7→ Hom(A,−) and the morphisms from these objects to T . In detail: given an additive functor
T define S(A) = [Hom(A,−), T]. For a morphism α : A −→ B let S(A) −→ S(B) act by
composition with Ωα. Then this defines an additive functor S naturally equivalent to T . This
motivates the following definition

Definition 4. Let A be an abelian category, Ω a small representation of A in the additive
functors A −→ Ab. Given an additive functor T let ΩT denote the following additive functor:
(ΩT)(A) = [ΩA, T] and for α : A −→ B we define

(ΩT)(α) : [ΩA, T] −→ [ΩB , T]
ψ 7→ ψΩα

Now assume A is an abelian category with enough injectives and let I be a fixed assignment
of injective resolutions, with respect to which all right derived functors are calculated. To every
object A and n ≥ 0 we have associated an additive functor Extn(A,−) : A −→ Ab and to a
morphism α : A −→ B we have associated a natural transformation Extn(α,−) : Extn(B,−) −→
Extn(A,−). We have already checked that A 7→ Extn(A,−) defines a representation of A (n
fixed).

Similarly if A is an abelian category with enough projectives, A 7→ Extn(A,−) and α 7→
Extn(α,−) defines a representation. If A has both enough injectives and projectives then for
every A there is a canonical natural equivalence Extn(A,−) ∼= Extn(A,−) with the property that
the following diagram commutes for any morphism α : A −→ B

Extn(B,−) +3

Extn(α,−)

��

Extn(B,−)

Extn(α,−)

��
Extn(A,−) +3 Extn(A,−)

Lemma 11. Let A be an abelian category with enough injectives and projectives. For n ≥ 0 the
representations Ω : A 7→ Extn(A,−) and Ω : A 7→ Extn(A,−) are small.

Proof. For n = 0 there is a natural equivalence Ext0(A,−) ∼= Hom(A,−) ∼= Ext0(A,−) so
both representations are trivially small. For n ≥ 1 there is a natural equivalence Extn(A,−) ∼=
Extn(A,−) so it suffices to show that Ω is small. Fix n ≥ 1, an additive functor T and an object
A. Let P be the resolution assigned to A, µ : KA −→ Pn−1 be the image of Pn −→ Pn−1 and
consider the exact sequence

0 −→ KA −→ Pn−1 −→ Pn−2 −→ · · · −→ P0 −→ A −→ 0

We show Ω is small by establishing an isomorphism KerT (µ) ∼= [Extn(A,−), T].For an object B
calculating Extn(−, B) we can use the corresponding truncations of the duals of the projective
resolutions chosen by P, so by Proposition 20 of our Derived Functor notes there is an exact
sequence

Hom(Pn−1, B) −→ Hom(KA, B) −→ Extn(A,B) −→ 0 (6)

The morphism Hom(KA, B) −→ Extn(A,B) is canonical and natural in A. If e : Pn −→ KA is
the factorisation of ∂n through µ then this map is defined by x 7→ xe. It is also natural in B, in
the sense that for any β : B −→ B′ the following diagram commutes

Hom(Pn−1, B)

��

// Hom(KA, B)

��

// Extn(A,B) //

��

0

Hom(Pn−1, B
′) // Hom(KA, B

′) // Extn(A,B′) // 0

13

In particular the following diagram is commutative with exact rows

Hom(Pn−1,KA)

��

// Hom(KA,KA) //

��

Extn(A,KA) //

Extn(A,µ)

��

0

Hom(Pn−1, Pn−1) // Hom(KA, Pn−1) // Extn(A,Pn−1) // 0

Let η be the image in Extn(A,KA) of 1KA
. Commutativity of the diagram shows that Extn(A,µ)(η)

is zero. Let Φ : Extn(A,−) −→ T be a natural transformation. Consider the following commuta-
tive diagram

Extn(A,KA) //

��

T (KA)

T (µ)

��
Extn(A,Pn−1) // T (Pn−1)

Since Extn(A,µ)(η) = 0 it follows that the image in T (KA) of η belongs to KerT (µ). This assigns
to any natural transformation Φ an element ξ = ΦKA

(η) ∈ KerT (µ). Next we show that this
assignment is injective, by showing that any other natural transformation Θ with ΘKA

(η) = ξ
must be equal to Φ.

Let σ : KA −→ B be any morphism. We claim that the image of σ in Extn(A,B) under the
canonical morphism Hom(KA, B) −→ Extn(A,B) defined above is Extn(A, σ)(η). The morphism
σ induces a natural transformation Hom(−,KA) −→ Hom(−, B) and therefore a cochain mor-
phism of the image of the dual of P under these two functors. The induced maps on cohomology
at n is Extn(A, σ). So the claim is not too hard to check.

Let B be any object and let ρ ∈ Extn(A,B). The exact sequence (6) shows that ρ is the image
of some morphism σ : KA −→ B. Since Θ is natural the following square must commute

Extn(A,KA)
ΘKA //

��

T (KA)

T (σ)

��
Extn(A,B)

ΘB

// T (B)

So ΘB(ρ) = ΘBExt
n(A, σ)(η) = T (σ)(ξ). Since B and ρ were arbitrary it follows that Θ = Φ.

Next we show how to assign a natural transformation Φ to any ξ ∈ KerT (µ) ⊆ T (KA). The
obvious definition is the following: for ρ ∈ Extn(A,B) let σ : KA −→ B be any morphism
mapping to ρ under Hom(KA, B) −→ Extn(A,B) and let ΦB(ρ) = T (σ)(ξ). We have to show
that T (σ)(ξ) does not depend on the morphism σ chosen in the preimage of ρ. If σ′ is another
such morphism, then σ−σ′ is in the kernel of Hom(KA, B) −→ Extn(A,B) and since (6) is exact
there is τ : Pn−1 −→ B with σ− σ′ = τµ. Hence T (σ− σ′)(ξ) = 0 since ξ is in the kernel of T (µ),
and so T (σ)(ξ) = T (σ′)(ξ), as required. It is easy to check that ΦB is a morphism of groups.

It is clear that ΦKA
(η) = ξ so it only remains to show that Φ is natural. Suppose β : B −→ B′

is given and consider the diagram

Hom(KA, B) //

��

Extn(A,B)

��

// T (B)

T (β)

��
Hom(KA, B

′) // Extn(A,B′) // T (B′)

The left hand square commutes by naturality of (6), so if we choose σ : KA −→ B to represent
ρ ∈ Extn(A,B) then we can choose βσ to represent Extn(A, β)(ρ). Hence

ΦB′Extn(A, β)(ρ) = T (βσ)(ξ) = T (β)ΦB(ρ)

This finishes the construction of the bijection [Extn(A,−), T] ∼= KerT (µ).

14

Theorem 12. Let A be an abelian category with enough injectives and projectives. For n ≥ 1
and any right exact functor T there is a canonical isomorphism natural in A and T

[Extn(A,−), T] ∼= LnT (A)

That is, there is a canonical natural equivalence ΩT ∼= LnT .

Proof. We assume all derived functors (including those making up the definition of Ω) are calcu-
lated relative to fixed assignments of injective and projective resolutions I,P. Assume n ≥ 1 and
for every object A with projective resolution P let µA : KA −→ Pn−1 be the canonical image of
Pn −→ Pn−1. Let `nT (A) be KerT (µA). For a morphism α : A −→ B let ϕ be a chain morphism
lifting α, induce α′ : KA −→ KB and define `NT (α) by x 7→ T (α′)(x). As we showed in Section
3 of our Derived Functor notes, `nT is canonically naturally equivalent to LnT since T is right
exact. But in the previous Lemma we defined a bijection [Extn(A,−), T] ∼= `nT (A) for arbitrary
A by Φ 7→ ΦKA

(ηA) where ηA was a special element of Extn(A,KA). It is clear that this bijection
is an isomorphism of abelian groups, and to show ΩT is canonically naturally equivalent to LnT
is only remains to show that this isomorphism is natural in A.

Let α : A −→ B be a morphism and consider the following diagram

[Extn(A,−), T]

��

// `nT (A)

��
[Extn(B,−), T] // `nT (B)

Lift α to a chain morphism ϕ : P −→ Q of the chosen resolutions and let this induce a morphism
α′ : KA −→ KB . Let Φ : Extn(A,−) −→ T be a natural transformation. We have to show
that T (α′)ΦKA

(ηA) = (ΦExtn(α,−))KB
(ηB), which reduces to showing that Extn(A,α′)(ηA) =

Extn(α,KB)(ηB). So it would be enough to show that the following diagram commutes:

Hom(KA,KA) //

��

Extn(A,KA)

Extn(A,α′)

��
Hom(KA,KB) // Extn(A,KB)

Hom(KB ,KB)

OO

// Extn(B,KB)

Extn(α,KB)

OO

But the top square commutes by naturality of the sequence (6) for A in the second variable and
the bottom square commutes by naturality of the sequence (6) for B in the first variable, so the
proof of naturality in A is complete.

Now suppose γ : T −→ T ′ is a natural transformation. For any object A with chosen resolution
P this gives rise to a chain morphism γP : TP −→ T ′P and we let `nT (A) −→ `nT

′(A) be defined
by the restriction of γKA

. It is then clear that the left hand square in the following diagram
commutes

[Extn(A,−), T]

��

+3 `nT (A) +3

��

LnT (A)

(Lnγ)A

��
[Extn(A,−), T ′] +3 `nT ′(A) +3 LnT

′(A)

The natural transformation Lnγ : LnT −→ LnT
′ is defined elsewhere in our notes. By definition

(Lnγ)A : LnT (A) −→ LnT
′(A) is the map x+ ImT (∂n+1) 7→ γPn

(x) + ImT ′(∂n+1) which clearly
makes the right hand diagram commute. This completes the proof.

Corollary 13. For a ring R there is a canonical isomorphism natural in the right R-module A
and the left R-module B

[Extn(A,−),−⊗R B] ∼= Torn(A,B)

15

Proof. This is just A = ModR, T = −⊗R B and LnT = Torn(−, B) in the Theorem. Just to be
perfectly clear what we mean by naturality: for any morphism α : A −→ A′ of right R-modules
the following diagram commutes

[Extn(A,−),−⊗R B] //

��

Torn(A,B)

��
[Extn(A′,−),−⊗R B] // Torn(A′, B)

For a morphism of right R-modules β : B −→ B′ the following diagram commutes

[Extn(A,−),−⊗R B]

��

// Torn(A,B)

��
[Extn(A,−),−⊗R B′] // Torn(A,B′)

where the left hand vertical morphism acts by composition with the natural transformation −⊗R

B −→ −⊗R B′ determined by β.

16

	Ext using Injectives
	Calculations using Injective Presentations

	Ext using Projectives
	Calculations using Projective Presentations

	Balancing Ext
	Properties of Ext
	Ext for Linear Categories
	Dimension Shifting
	Ext and Coproducts

	Ext for Commutative Rings
	Coextension

	Another Characterisation of Derived Functors

