Ext

Daniel Murfet
May 16, 2006

Contents

1 Ext using Injectives 1
1.1 Calculations using Injective Presentations 4
2 Ext using Projectives 4
2.1 Calculations using Projective Presentations 6
3 Balancing Ext 7
4 Properties of Ext 9
4.1 Ext for Linear Categories 9
4.2 Dimension Shifting 10
4.3 Ext and Coproducts 11
5 Ext for Commutative Rings 11
5.1 Coextension 12
6 Another Characterisation of Derived Functors 12

1 Ext using Injectives

If \mathcal{A} is an abelian category, then $\operatorname{Hom}(A,-)$ is a covariant, additive, kernel preserving functor $\mathcal{A} \longrightarrow \mathbf{A b}$ and $\operatorname{Hom}(-, B)$ is a contravariant, additive functor which maps cokernels to kernels. Throughout this section \mathcal{A} will be an abelian category with enough injectives.

Definition 1. The right derived functors of $\operatorname{Hom}(A,-)$ are called the Ext groups.

$$
\operatorname{Ext}^{i}(A, B)=R^{i} \operatorname{Hom}(A,-)(B)
$$

The functor $\operatorname{Ext} t^{i}(A,-): \mathcal{A} \longrightarrow \mathbf{A b}$ is additive and covariant for $i \geq 0$. Since $\operatorname{Hom}(A,-)$ is left exact the functors $\operatorname{Ext} t^{0}(A,-)$ and $\operatorname{Hom}(A,-)$ are naturally equivalent. We simply write $\operatorname{Ext}(A,-)$ for $\operatorname{Ext}^{1}(A,-)$.

The group $E x t^{i}(A, B)$ is only determined up to isomorphism, and to calculate it we find an injective resolution $0 \longrightarrow B \longrightarrow I^{0} \longrightarrow I^{1} \cdots$ and calculate the cohomology of the sequence

$$
0 \longrightarrow \operatorname{Hom}\left(A, I^{0}\right) \longrightarrow \operatorname{Hom}\left(A, I^{1}\right) \longrightarrow \operatorname{Hom}\left(A, I^{2}\right) \longrightarrow \cdots
$$

We think of $E x t^{i}$ as assigning to any pair of objects A, B an isomorphism class of abelian groups, which has the following properties:

- For any injective object I we have $E x t^{i}(A, I)=0$ for $i \neq 0$, since this is a property of any right derived functor.
- For any projective object P we have $E x t^{i}(P, B)=0$ for $i \neq 0$, since the higher right derived functors of the exact functor $\operatorname{Hom}(P,-)$ are zero.

For any exact sequence

$$
0 \longrightarrow B^{\prime} \longrightarrow B \longrightarrow B^{\prime \prime} \longrightarrow 0
$$

there are canonical morphisms $\omega^{0}: \operatorname{Hom}\left(A, B^{\prime \prime}\right) \longrightarrow \operatorname{Ext}\left(A, B^{\prime}\right)$ and $\omega^{n}: E x t^{n}\left(A, B^{\prime \prime}\right) \longrightarrow$ $E x t^{n+1}\left(A, B^{\prime}\right)$ for $n>1$ such that the following sequence is long exact

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}\left(A, B^{\prime}\right) \longrightarrow \operatorname{Hom}(A, B) \longrightarrow \operatorname{Hom}\left(A, B^{\prime \prime}\right) \longrightarrow \\
& \longrightarrow \operatorname{Ext}\left(A, B^{\prime}\right) \longrightarrow \operatorname{Ext}(A, B) \longrightarrow \operatorname{Ext}\left(A, B^{\prime \prime}\right) \longrightarrow \\
& \operatorname{Ext}^{2}\left(A, B^{\prime}\right) \longrightarrow \operatorname{Ext}^{2}(A, B) \longrightarrow \operatorname{Ext}^{2}\left(A, B^{\prime \prime}\right) \longrightarrow \cdots
\end{aligned}
$$

This sequence is called the long exact Ext sequence in the second variable. It is natural, in the sense that if we have a commutative diagram with exact rows

Then the following diagrams commute for $n \geq 1$

Let $\alpha: A \longrightarrow A^{\prime}$ be a morphism, and let α also denote the associated natural transformation $\operatorname{Hom}\left(A^{\prime},-\right) \longrightarrow \operatorname{Hom}(A,-)$. Let \mathcal{I} be a fixed assignment of injective resolutions. Then there is a natural transformation $R^{n} \alpha: R^{n} \operatorname{Hom}\left(A^{\prime},-\right) \longrightarrow R^{n} \operatorname{Hom}(A,-)$ and we denote by $E x t^{n}(\alpha, B)$ the morphism $\left(R^{n} \alpha\right)_{B}: \operatorname{Ext}^{n}\left(A^{\prime}, B\right) \longrightarrow \operatorname{Ext}^{n}(A, B)$. Notice that for another morphism γ : $A^{\prime} \longrightarrow A^{\prime \prime},\left(R^{n} \alpha\right)\left(R^{n} \gamma\right)=R^{n}(\gamma \alpha)$ so for any object B

$$
\operatorname{Ext}^{n}(\alpha, B) \operatorname{Ext}^{n}(\gamma, B)=\operatorname{Ext}^{n}(\gamma \alpha, B)
$$

This defines a contravariant additive functor $\operatorname{Ext}^{n}(-, B): \mathcal{A} \longrightarrow \mathbf{A b}$. For any exact sequence $0 \longrightarrow B^{\prime} \longrightarrow B \longrightarrow B^{\prime \prime} \longrightarrow 0$ we have the following commutative diagram for $n \geq 0$

Proposition 1. For $n \geq 0$ and morphisms $\alpha: A \longrightarrow A^{\prime}$ and $\beta: B \longrightarrow B^{\prime}$

$$
\begin{equation*}
\operatorname{Ext}^{n}(A, \beta) E x t^{n}(\alpha, B)=\operatorname{Ext}^{n}\left(\alpha, B^{\prime}\right) \operatorname{Ext}^{n}\left(A^{\prime}, \beta\right) \tag{2}
\end{equation*}
$$

It follows that Ext ${ }^{n}$ defines a functor $\mathcal{A}^{o p} \times \mathcal{A} \longrightarrow \mathbf{A b}$ for $n \geq 0$, with $E x t^{n}(\alpha, \beta): E x t^{n}\left(A^{\prime}, B\right) \longrightarrow$ $E x t^{n}\left(A, B^{\prime}\right)$ given by the equivalent expressions in (2). The partial functors are the functors $\operatorname{Ext}^{n}(A,-)$ and Ext ${ }^{n}(-, B)$ defined above.

Proof. This follows for arbitrary α and monomorphisms (or epimorphisms) β by commutativity of (1). Since \mathcal{A} has epi-mono factorisations it then follows for arbitrary β. The bifunctor $E x t^{n}$ is defined relative to an assignment of injective resolutions \mathcal{I}. If \mathcal{J} is another such assignment then the associated bifunctor is canonically naturally equivalent to the one defined for \mathcal{I}.

For a short exact sequence $0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0$ the corresponding sequence of natural transformations $\operatorname{Hom}\left(A^{\prime \prime},-\right) \longrightarrow \operatorname{Hom}(A,-) \longrightarrow \operatorname{Hom}\left(A^{\prime},-\right)$ is exact on injectives. So for $n \geq 0$ and any object B there are canonical connecting morphisms $\omega^{n}: \operatorname{Ext}^{n}\left(A^{\prime}, B\right) \longrightarrow \operatorname{Ext}^{n+1}\left(A^{\prime \prime}, B\right)$ fitting in to a long exact sequence

$$
\cdots \longrightarrow \operatorname{Ext}^{n}\left(A^{\prime \prime}, B\right) \longrightarrow \operatorname{Ext}^{n}(A, B) \longrightarrow \operatorname{Ext}^{n}\left(A^{\prime}, B\right) \longrightarrow \operatorname{Ext}^{n+1}\left(A^{\prime \prime}, B\right) \longrightarrow \cdots
$$

This sequence is called the long exact Ext sequence in the first variable. It is natural in both B and the exact sequence. For a morphism $\beta: B \longrightarrow B^{\prime}$ the following diagram commutes

And for a commutative diagram with exact rows

The following diagram commutes for any object B

We have shown that for every assignment of injective resolutions \mathcal{I} we obtain a bifunctor $E x t_{\mathcal{I}}^{n}(-,-): \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow \mathbf{A b}$ for $n \geq 0$ with the property that short exact sequences in either variable lead to a long exact sequence which is natural with respect to morphisms of the exact sequence and morphisms in the remaining variable. The connecting morphisms for these sequences depend only on \mathcal{I}.

If \mathcal{J} is another assignment of resolutions then we obtain another bifunctor $E x t_{\mathcal{J}}^{n}(-,-)$ for $n \geq 0$ which is canonically naturally equivalent to $E x t_{\mathcal{I}}^{n}(-,-)$. The connecting morphisms for the two assignments \mathcal{I}, \mathcal{J} agree in the following sense: for an object A and an exact sequence $0 \longrightarrow B^{\prime} \longrightarrow B \longrightarrow B^{\prime \prime} \longrightarrow 0$ the following diagram commutes

Similarly for an object B and an exact sequence $0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0$ the following diagram commutes

Both these claims follow directly from our Derived Functor notes.

1.1 Calculations using Injective Presentations

Since $\operatorname{Hom}(X,-)$ is left exact we can use our results truncated injective resolutions to show that the functor $\operatorname{Ext}(X,-)$ is naturally equivalent to the functor E defined by the following procedure: pick for every object A an exact sequence

$$
0 \longrightarrow A \longrightarrow I \xrightarrow{\mu} C \longrightarrow 0
$$

with I injective. Then $E(A)$ is the cokernel of $\operatorname{Hom}(X, I) \longrightarrow \operatorname{Hom}(X, C)$ and given a morphism $\alpha: A \longrightarrow B$ where B is assigned the sequence $0 \longrightarrow B \longrightarrow J \longrightarrow D \longrightarrow 0$ use injectivity of J to lift α to a morphism $\varphi: I \longrightarrow J$ and then induce α^{\prime} fitting into a commutative diagram

Then $E(\alpha): \operatorname{Hom}(X, C) / \operatorname{Im} T(\mu) \longrightarrow \operatorname{Hom}(X, D) / \operatorname{Im} T(\tau)$ is defined by composition with α^{\prime}. It turns out that this gives a well-defined additive functor naturally equivalent to $\operatorname{Ext}(X,-)$.

2 Ext using Projectives

Throughout this section \mathcal{A} will be an abelian category with enough projectives. For an object A the functor $\operatorname{Hom}(-, A)$ is contravariant, but considered as a functor $\mathcal{A}^{\mathrm{op}} \longrightarrow \mathbf{A b}$ it is a left exact covariant functor.

Definition 2. The right derived functors of $\operatorname{Hom}(-, B)$ are the Ext groups.

$$
\underline{\text { Ext }}^{i}(A, B)=R^{i} \operatorname{Hom}(-, B)(A)
$$

The functor $\underline{E x t}{ }^{i}(-, B): \mathcal{A} \longrightarrow \mathbf{A b}$ is additive and contravariant for $i \geq 0$. The functors $\underline{E x t} t^{0}(-, B)$ and $\operatorname{Hom}(-, B)$ are naturally equivalent. We simply write $\underline{\operatorname{Ext}}(-, B)$ for $\underline{E x t}{ }^{1}(-, B)$.

The group $\underline{\operatorname{Ext}^{i}}(A, B)$ is only determined up to isomorphism, and to calculate it we find a projective resolution $\cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0$ and calculate the cohomology of the sequence

$$
0 \longrightarrow \operatorname{Hom}\left(P_{0}, B\right) \longrightarrow \operatorname{Hom}\left(P_{1}, B\right) \longrightarrow \operatorname{Hom}\left(P_{2}, B\right) \longrightarrow \cdots
$$

We think of $\underline{E x t^{i}}$ as assigning to any pair of objects A, B an isomorphism class of abelian groups, which has the following properties:

- For any projective object P we have $\underline{\operatorname{Ext}^{i}}(P, B)=0$ for $i \neq 0$, since this is a property of any right derived functor (remember we are taking right derived functors in $\mathcal{A}^{\text {op }}$, where P is injective).
- For any injective object I we have $\underline{E x t^{i}}(A, I)=0$ for $i \neq 0$, since the higher right derived functors of the exact functor $\operatorname{Hom}(-, I)$ are zero.

For any exact sequence

$$
0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0
$$

there are canonical morphisms $\omega_{0}: \operatorname{Hom}\left(A^{\prime}, B\right) \longrightarrow \underline{\operatorname{Ext}}\left(A^{\prime \prime}, B\right)$ and $\omega^{n}: \underline{\operatorname{Ext}^{n}}\left(A^{\prime}, B\right) \longrightarrow$ $\underline{E x t}^{n+1}\left(A^{\prime \prime}, B\right)$ for $n \geq 1$ such that the following sequence is long exact

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}\left(A^{\prime \prime}, B\right) \longrightarrow \operatorname{Hom}(A, B) \longrightarrow \operatorname{Hom}\left(A^{\prime}, B\right) \longrightarrow \\
& \longrightarrow \underline{\operatorname{Ext}}\left(A^{\prime \prime}, B\right) \longrightarrow \underline{\operatorname{Ext}}(A, B) \longrightarrow \underline{\operatorname{Ext}}\left(A^{\prime}, B\right) \longrightarrow \\
& \underline{\operatorname{Ext}} \\
& \\
& \\
&\left(A^{\prime \prime}, B\right) \longrightarrow \underline{E x t}^{2}(A, B) \longrightarrow \underline{E x t}^{2}\left(A^{\prime}, B\right) \longrightarrow \cdots
\end{aligned}
$$

This sequence is called the long exact Ext sequence in the first variable. It is natural, in the sense that if we have a commutative diagram with exact rows

Then the following diagrams commute for $n \geq 1$

Let $\beta: B \longrightarrow B^{\prime}$ be a morphism, and let β also denote the associated natural transformation $\operatorname{Hom}(-, B) \longrightarrow \operatorname{Hom}\left(-, B^{\prime}\right)$. Let \mathcal{P} be a fixed assignment of projective resolutions. Then there is a natural transformation $R^{n} \beta: R^{n} \operatorname{Hom}(-, B) \longrightarrow R^{n} \operatorname{Hom}\left(-, B^{\prime}\right)$ and we denote by $\underline{\operatorname{Ext}^{n}}(A, \beta)$ the morphism $\left(R^{n} \beta\right)_{A}: \underline{\text { Ext }}^{n}(A, B) \longrightarrow \underline{E x t}^{n}\left(A, B^{\prime}\right)$. Notice that for another morphism γ : $B^{\prime} \longrightarrow B^{\prime \prime},\left(R^{n} \gamma\right)\left(R^{n} \beta\right)=\overline{R^{n}}(\gamma \beta)$ so for any object A

$$
\underline{E x t}^{n}(A, \gamma) \underline{E x t}^{n}(A, \beta)=\underline{E x t}^{n}(A, \gamma \beta)
$$

This defines a covariant additive functor $\underline{\operatorname{Ext}^{n}}(A,-): \mathcal{A} \longrightarrow \mathbf{A b}$. For any exact sequence $0 \longrightarrow$ $A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0$ the following diagram is commutative for $n \geq 0$

Proposition 2. For $n \geq 0$ and morphisms $\alpha: A \longrightarrow A^{\prime}$ and $\beta: B \longrightarrow B^{\prime}$

$$
\begin{equation*}
\underline{E x t}^{n}(A, \beta) \underline{E x t}^{n}(\alpha, B)=\underline{E x t}^{n}\left(\alpha, B^{\prime}\right) \underline{E x t}^{n}\left(A^{\prime}, \beta\right) \tag{4}
\end{equation*}
$$

It follows that $\underline{E x t}^{n}$ defines a functor $\mathcal{A}^{o p} \times \mathcal{A} \longrightarrow \mathbf{A b}$ for $n \geq 0$, with $\underline{E x t}^{n}(\alpha, \beta): \underline{E x t}^{n}\left(A^{\prime}, B\right) \longrightarrow$ $\underline{\text { Ext }^{n}}\left(A, B^{\prime}\right)$ given by the equivalent expressions in (4). The partial functors are the functors $\underline{E x t}^{n}(A,-)$ and $\underline{E x t}^{n}(-, B)$ defined above.
Proof. This follows for arbitrary β and monomorphisms (or epimorphisms) α by commutativity of (3). Since \mathcal{A} has epi-mono factorisations it then follows for arbitrary α. If we use a different assignment of projective resolutions to calculate $\underline{E x t^{n}}$ then the results will be canonically naturally equivalent.

For a short exact sequence $0 \longrightarrow B^{\prime} \longrightarrow B \longrightarrow B^{\prime \prime} \longrightarrow 0$ the corresponding sequence of natural transformations $\operatorname{Hom}\left(-, B^{\prime}\right) \longrightarrow \operatorname{Hom}(-, B) \longrightarrow \operatorname{Hom}\left(-, B^{\prime \prime}\right)$ is exact on injectives (considered as covariant functors $\mathcal{A}^{\text {op }} \longrightarrow \mathbf{A b}$). So for $n \geq 0$ and any object A there are canonical connecting morphisms $\omega^{n}: \underline{E x t^{n}}\left(A, B^{\prime \prime}\right) \longrightarrow \underline{E x t^{n+1}}\left(A, B^{\prime}\right)$ fitting in to a long exact sequence

$$
\cdots \longrightarrow \underline{E x t}^{n}\left(A, B^{\prime}\right) \longrightarrow \underline{E x t}^{n}(A, B) \longrightarrow \underline{E x t}^{n}\left(A, B^{\prime \prime}\right) \longrightarrow \underline{E x t}^{n+1}\left(A, B^{\prime}\right) \longrightarrow \cdots
$$

This sequence is called the long exact Ext sequence in the second variable. It is natural in both A and the exact sequence. For a morphism $\alpha: A \longrightarrow A^{\prime}$ the following diagram commutes

And for a commutative diagram with exact rows

The following diagram commutes for any object A

We have shown that for every assignment of projective resolutions \mathcal{P} we obtain a bifunctor $\underline{E x t}_{\mathcal{I}}^{n}(-,-): \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow \mathbf{A b}$ for $n \geq 0$ with the property that short exact sequences in either variable lead to a long exact sequence which is natural with respect to morphisms of the exact sequence and morphisms in the remaining variable. The connecting morphisms for these sequences depend only on \mathcal{P}.

If \mathcal{Q} is another assignment of resolutions then we obtain another bifunctor $\underline{E x t}_{\mathcal{Q}}^{n}(-,-)$ for $n \geq 0$ which is canonically naturally equivalent to $\operatorname{Ext}_{\mathcal{I}}^{n}(-,-)$. The connecting morphisms for the two assignments \mathcal{P}, \mathcal{Q} agree in the following sense: for an object B and an exact sequence $0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0$ the following diagram commutes

Similarly for an object A and an exact sequence $0 \longrightarrow B^{\prime} \longrightarrow B \longrightarrow B^{\prime \prime} \longrightarrow 0$ the following diagram commutes

Both these claims follow directly from our Derived Functor notes.

2.1 Calculations using Projective Presentations

Since $\operatorname{Hom}(-, B): \mathcal{A}^{\mathrm{op}} \longrightarrow \mathbf{A b}$ is left exact we can use our results on truncated injective resolutions to show that $\underline{E x t}$ is naturally equivalent to the functor \underline{E} defined by the following procedure: pick for every object A an exact sequence

$$
0 \longrightarrow K \xrightarrow{\mu} P \longrightarrow A \longrightarrow 0
$$

with P projective. Then $\underline{E}(A)$ is the cokernel of $\operatorname{Hom}(P, B) \longrightarrow \operatorname{Hom}(K, B)$ and given a morphism $\alpha: A \longrightarrow C$ where C is assigned the sequence $0 \longrightarrow M \longrightarrow Q \longrightarrow C \longrightarrow 0$ use projectivity of Q to lift α to a morphism $\varphi: P \longrightarrow Q$ and then induce α^{\prime} fitting into a commutative diagram

Then $\underline{E}(\alpha): \underline{E}(C) \longrightarrow \underline{E}(A)$, which is a map $\operatorname{Hom}(M, B) / \operatorname{ImT}(\tau) \longrightarrow \operatorname{Hom}(K, B) / \operatorname{ImT}(\tau)$ is defined by composition with α^{\prime}. It turns out that this is a well-defined contravariant additive functor naturally equivalent to $\underline{E x t}(-, B)$.

In fact we have already studied the functor \underline{E} for right modules over a ring in our Hilton \& Stammbach notes, where we proved the following

- For any two right modules A, B over a ring there is a bijection $\underline{E}(A, B) \cong Y(A, B)$ where $Y(A, B)$ is the set of extensions of A by B (which are exact sequences $0 \longrightarrow B \longrightarrow E \longrightarrow$ $A \longrightarrow 0$) modulo a certain equivalence relation. In particular $\underline{E}(A, B)=0$ if and only if every exact sequence $0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0$ splits.

3 Balancing Ext

Throughout this section \mathcal{A} is an abelian category with enough injectives and projectives, and we choose once and for all assignments of resolutions \mathcal{P}, \mathcal{I}, with respect to which all derived functors are calculated. We have defined two bifunctors $\operatorname{Ext}^{n}(-,-)$ and $E x t^{n}(-,-)$ for $n \geq 0$. The first is calculated by taking the right derived functors of the contravariant functors $\operatorname{Hom}(-, B)$ and the second by taking the right derived functors of the covariant functors $\operatorname{Hom}(A,-)$. We claim that these two bifunctors are naturally equivalent. We begin with the case $n=0$.
Lemma 3. There are canonical natural equivalences of bifunctors $\underline{\text { Ext }}{ }^{0}(-,-) \cong H o m(-,-)$ and $\operatorname{Hom}(-,-) \cong \operatorname{Ext}^{0}(-,-)$.
Proof. Let the Ext functors be calculated with respect to some assignment \mathcal{I} of injective resolutions. For an object A there is a canonical natural equivalence $\operatorname{Ext} t^{0}(A,-) \cong \operatorname{Hom}(A,-)$, so we need only show these isomorphisms are also natural in B, which is not difficult. Similarly there is a canonical natural equivalence $\underline{E x t}{ }^{0}(-, B) \cong \operatorname{Hom}(-, B)$, which is also natural in the first variable. So all three functors are naturally equivalent.

Proposition 4. For $n \geq 0$ there is a canonical natural equivalence of bifunctors $\Phi^{n}: E x t^{n}(-,-) \cong$ $\underline{E x t}{ }^{n}(-,-)$.
Proof. We proceed by induction on n, having already proved the result for $n=0$. Assume that there is a canonical natural equivalence Φ^{n} and let objects A, B be given. We have to define a canonical isomorphism $\Phi_{A, B}^{n+1}$ which is natural in A and B. Choose an injective presentation of B

$$
0 \longrightarrow B \xrightarrow{\nu} I \xrightarrow{\eta} S \longrightarrow 0
$$

We know that $\operatorname{Ext}^{i}(A, I)=0=\underline{E x t}{ }^{i}(A, I)$ for $i \neq 0$. Now we show how to define the isomorphism $\Phi_{A, B}^{n+1}: \operatorname{Ext}^{n+1}(A, B) \longrightarrow \underline{E x t}^{n+1}(A, B)$. There are two cases: if $n=1$ then the long exact sequence for Ext in the second variable and the long exact sequence for $\underline{E x t}$ in the second variable give a commutative diagram with exact rows:

This induces an isomorphism $\Phi_{A, B}^{1}: E x t^{1}(A, B) \longrightarrow \underline{E x t^{1}}(A, B)$ making the diagram commute. For $n \geq 1$ the connecting morphisms $\operatorname{Ext}^{n}(A, S) \longrightarrow \operatorname{Ext}^{n+1}(A, B)$ and $\underline{E_{x t}}{ }^{n}(A, S) \longrightarrow$ $\underline{E_{x t}}{ }^{n+1}(A, B)$ in the two sequences are isomorphisms, and we define $\Phi_{A, B}^{n+1}$ to be the unique morphism fitting into the following commutatie diagram

Next we have to show that the isomorphism $\Phi_{A, B}^{n+1}$ does not depend on the chosen presentation. Suppose we have a commutative diagram with exact rows and the middle objects injective

Consider the following cube for $n \geq 0$

If we use the above technique to produce isomorphisms $\operatorname{Ext}{ }^{n+1}(A, B) \longrightarrow \operatorname{Ext}^{n+1}(A, B)$ and $E x t^{n+1}\left(A, B^{\prime}\right) \longrightarrow \underline{E x t}^{n+1}\left(A, B^{\prime}\right)$ using the given presentations then in either case $(n=1$ or otherwise) these morphisms make the front and back squares on the cube commute. The left square commutes since by assumption Φ^{n} is natural, and the top and bottom squares commute by the naturality of the connecting morphism. Since $\omega^{n}: \operatorname{Ext}^{n}(A, S) \longrightarrow E x t^{n+1}(A, B)$ is an epimorphism it follows that the right hand square also commutes.

If we are given two injective presentations of B then put $B=B^{\prime}$ in the diagram and induce $I \longrightarrow I^{\prime}$ and $S \longrightarrow S^{\prime}$ making it commutative. Then the cube above shows that the resulting isomorphism $\Phi_{A, B}^{n+1}$ is the same in both cases. So we have constructed an isomorphism $\Phi_{A, B}^{n+1}$ that depends only on A, B, the assignments \mathcal{P}, \mathcal{I} and the natural equivalence Φ^{n}. These isomorphisms are natural in B since we can lift $B \longrightarrow B^{\prime}$ to a morphism of the injective presentations, and then use the cube.

To prove naturality in A we construct a cube similar to the one above, but with a fixed presentation and A varying. Using naturality of Φ^{n} in A and the diagrams (1) and (5) it is not hard to see that Φ^{n+1} is natural in A and is therefore a natural equivalence of bifunctors. Since by the inductive hypothesis Φ^{n} depends only on the assingment of resolutions \mathcal{P}, \mathcal{I} it follows that this is true of Φ^{n+1} as well.

If \mathcal{A} has both enough injectives and enough projectives and \mathcal{I}, \mathcal{P} are assignments of injective and projective resolutions respectively, there is a natural equivalence of the bifunctors $E x t_{\mathcal{I}}^{n}(-,-)$ and $\underline{E x t}_{\mathcal{P}}^{n}(-,-)$ for $n \geq 0$. So every pair of objects A, B and integer $n \geq 0$ determines an isomorphism class of abelian groups. We can calculate a representative of this class in the following ways

- Choose a projective resolution $\cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0$ of A and calculate the cohomology of the following cochain complex of abelian groups

$$
0 \longrightarrow \operatorname{Hom}\left(P_{0}, B\right) \longrightarrow \operatorname{Hom}\left(P_{1}, B\right) \longrightarrow \operatorname{Hom}\left(P_{2}, B\right) \longrightarrow \cdots
$$

- Choose an injective resolution $0 \longrightarrow B \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \cdots$ of B and calculate the cohomology of the following cochain complex of abelian groups

$$
0 \longrightarrow \operatorname{Hom}\left(A, I^{0}\right) \longrightarrow \operatorname{Hom}\left(A, I^{1}\right) \longrightarrow \operatorname{Hom}\left(A, I^{2}\right) \longrightarrow \cdots
$$

If there is no chance of confusion we simply refer to any of these groups by $E x t^{n}(A, B)$ and drop Ext from the notation. But if \mathcal{A} does not have both enough injectives and enough projectives, we will refer explicitly to the bifunctor Ext or Ext used.

In the case where $\mathcal{A}=\operatorname{Mod} R$ for a ring R, there is a bijection between elements of $\operatorname{Ext}(A, B)$ and exact sequences $0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0$ modulo a certain equivalence relation. In particular $\operatorname{Ext}(A, B)=0$ if and only if every such exact sequence is split.

Remark 1. One would like the natural equivalence of $E x t$ and $E x t$ to be compatible with the connecting morphisms for both bifunctors. One can get this in one variable (see Hilton \& Stammbach), but it is not clear how to do it in the other variable.

4 Properties of Ext

4.1 Ext for Linear Categories

Definition 3. If R is a ring then an R-linear abelian category is an abelian category \mathcal{A} together with a left R-module structure on all the morphism groups $\operatorname{Hom}_{\mathcal{A}}(A, B)$ such that composition is bilinear. That is,

$$
\begin{aligned}
& \gamma(r \cdot \alpha)=r \cdot(\gamma \alpha) \\
& (r \cdot \alpha) \gamma=r \cdot(\alpha \gamma)
\end{aligned}
$$

whenever $r \in R$ and the composition makes sense. Then for every object A, we have a covariant, additive, kernel preserving functor $\operatorname{Hom}(A,-): \mathcal{A} \longrightarrow R M o d$ and a contravariant, additive functor $\operatorname{Hom}(-, A): \mathcal{A} \longrightarrow R$ Mod which maps cokernels to kernels.

Let $U: R \operatorname{Mod} \longrightarrow \mathbf{A b}$ be the forgetful functor, which is faithful and exact. This functor maps the canonical kernels, cokernels, images, zero and biproducts of R Mod to the corresponding canonical structure on $\mathbf{A b}$. So if X is a (co)chain complex in R Mod then the (co)homology modules have as underlying groups the (co)homology groups of the sequence considered as a complex of groups.

For an object A let S be the functor $\operatorname{Hom}(A,-): \mathcal{A} \longrightarrow R \operatorname{Mod}$ and let T be $\operatorname{Hom}(A,-):$ $\mathcal{A} \longrightarrow \mathbf{A b}$. Then $T=U S$ so for $n \geq 0$ and an assignment of injective resolutions \mathcal{I} the functors $R^{n} T$ and $U \circ R^{n} S$ are equal. So for an object B the Ext group $E x t^{n}(A, B)$ becomes an R-module in a canonical way, and for $\beta: B \longrightarrow B^{\prime}$ the morphism of groups $\operatorname{Ext}^{n}(A, \beta)$: $\operatorname{Ext}^{n}(A, B) \longrightarrow \operatorname{Ext}^{n}\left(A, B^{\prime}\right)$ is a morphism of these modules. Similarly if $\alpha: A \longrightarrow A^{\prime}$ is a morphism of modules then the morphism of groups $\operatorname{Ext}^{n}\left(A^{\prime}, B\right) \longrightarrow \operatorname{Ext}^{n}(A, B)$ is a morphism of modules, so $\operatorname{Ext}^{n}(-, B)$ lifts to a contravariant additive functor $\mathcal{A} \longrightarrow R$ Mod. Also $E x t^{0}(A,-): \mathcal{A} \longrightarrow R \operatorname{Mod}$ is canonically naturally equivalent to $\operatorname{Hom}(A,-)$.

So for a fixed assignment of injective resolutions \mathcal{I} the bifunctor $E x t^{n}(-,-)$ becomes a bifunctor $\operatorname{Ext}^{n}(-,-): \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow R$ Mod. If \mathcal{J} is another assignment of injective resolutions then the resulting bifunctors (with values in R Mod) are canonically naturally equivalent.

Given an assignment of resolutions \mathcal{I} and an exact sequence $0 \longrightarrow B^{\prime} \longrightarrow B \longrightarrow B^{\prime \prime} \longrightarrow 0$ the connecting morphisms $\operatorname{Ext}^{n}\left(A, B^{\prime \prime}\right) \longrightarrow \operatorname{Ext}^{n+1}\left(A, B^{\prime}\right)$ for $n \geq 0$ are all module morphisms, so the long exact sequence of Ext in the second variable

$$
\cdots \longrightarrow \operatorname{Ext}^{n}\left(A, B^{\prime}\right) \longrightarrow \operatorname{Ext}^{n}(A, B) \longrightarrow \operatorname{Ext}^{n}\left(A, B^{\prime \prime}\right) \longrightarrow \operatorname{Ext} t^{n+1}\left(A, B^{\prime}\right) \longrightarrow \cdots
$$

is a long exact sequence of modules. Similarly if $0 \longrightarrow A^{\prime} \longrightarrow A \longrightarrow A^{\prime \prime} \longrightarrow 0$ is an exact sequence then the connecting morphisms $E x t^{n}\left(A^{\prime}, B\right) \longrightarrow \operatorname{Ext}^{n+1}\left(A^{\prime \prime}, B\right)$ are module morphisms and the long exact sequence of Ext in the first variable

$$
\cdots \longrightarrow \operatorname{Ext}^{n}\left(A^{\prime \prime}, B\right) \longrightarrow \operatorname{Ext}^{n}(A, B) \longrightarrow \operatorname{Ext}^{n}\left(A^{\prime}, B\right) \longrightarrow \operatorname{Ext}^{n+1}\left(A^{\prime \prime}, B\right) \longrightarrow \cdots
$$

is a long exact sequence of modules.

Similarly for an object B let S be the functor $\operatorname{Hom}(-, B): \mathcal{A} \longrightarrow R \operatorname{Mod}$ and let T be $\operatorname{Hom}(-, B): \mathcal{A} \longrightarrow R$ Mod. Then $T=U S$ so for $n \geq 0$ and an assignment of projective resolutions \mathcal{P} the functors $R^{n} T$ and $U \circ R^{n} S$ are equal. So the functors $\underline{E x t}{ }^{n}(-, B)$ and $\underline{E x t^{n}}(A,-)$ lift to module valued functors and $\underline{E x t^{0}}(-, B): \mathcal{A} \longrightarrow R$ Mod is naturally equivalent to $\operatorname{Hom}(-, B)$. For a fixed assignment of projective resolutions \mathcal{P} the bifunctor Ext $^{n}(-,-)$ becomes a bifunctor $\underline{E x t}^{n}(-,-): \mathcal{A}^{\mathrm{op}} \times \mathcal{A} \longrightarrow R \mathrm{Mod}$. If \mathcal{Q} is another assignment of projective resolutions then the resulting bifunctors (with values in $R \mathbf{M o d}$) are canonically naturally equivalent. The two long exact sequences for $\underline{E x t^{n}}$ are sequences of modules and module morphisms.

Now suppose \mathcal{A} has enough projectives and injectives, and let \mathcal{P} and \mathcal{I} be assignments of projective and injective resolutions, respectively. The canonical natural equivalences $\underline{E x t}{ }^{0}(-,-) \cong$ $\operatorname{Hom}(-,-)$ and $\operatorname{Hom}(-,-) \cong E x t^{0}(-,-)$ give natural equivalences of the module-valued bifunctors. Then our earlier proof shows that for $n \geq 0$ there is a canonical natural equivalence $E x t^{n}(-,-) \cong \underline{E x t}{ }^{n}(-,-)$ of bifunctors $\mathcal{A}^{\text {op }} \times \mathcal{A} \longrightarrow R$ Mod.

So associated to any pair of objects A, B is an isomorphism class of R-modules $\operatorname{Ext}^{n}(A, B)$. If \mathcal{A} has enough projectives, we can find a representative of this class by choosing a projective resolution P of A and calculating the cohomology modules of $0 \longrightarrow \operatorname{Hom}\left(P_{0}, B\right) \longrightarrow \operatorname{Hom}\left(P_{1}, B\right) \longrightarrow \cdots$. If \mathcal{A} has enough injectives, we can find a representative by choosing an injective resolution I of B and calculating the cohomology modules of $0 \longrightarrow \operatorname{Hom}\left(A, I^{0}\right) \longrightarrow \operatorname{Hom}\left(A, I^{1}\right) \longrightarrow \cdots$.

4.2 Dimension Shifting

The following two results are immediate consequences of our notes on dimension shifting.
Proposition 5. Let \mathcal{A} be an abelian category with enough injectives. Suppose we have an exact sequence in \mathcal{A} with all I^{i} injective and $m \geq 0$

$$
0 \longrightarrow B \longrightarrow I^{0} \longrightarrow \cdots \longrightarrow I^{m-1} \longrightarrow I^{m} \longrightarrow M \longrightarrow 0
$$

Then for any object A there are canonical isomorphisms $\rho^{n}: \operatorname{Ext}^{n}(A, M) \longrightarrow \operatorname{Ext}^{n+m+1}(A, B)$ for $n \geq 1$, and an exact sequence

$$
\operatorname{Hom}\left(A, I^{m}\right) \longrightarrow \operatorname{Hom}(A, M) \longrightarrow \operatorname{Ext}^{m+1}(A, B) \longrightarrow 0
$$

These are both natural in A, in the sense that for a morphism $A \longrightarrow A^{\prime}$ the following two diagrams commute for $n \geq 1$ and $m \geq 0$

Proposition 6. Let \mathcal{A} be an abelian category with enough projectives. Suppose we have an exact sequence in \mathcal{A} with all P_{i} projective and $m \geq 0$

$$
0 \longrightarrow M \longrightarrow P_{m} \longrightarrow P_{m-1} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

Then for any object B there are canonical isomorphisms $\rho^{n}: \underline{\text { Ext }^{n}}(M, B) \longrightarrow \underline{E x t}^{n+m+1}(A, B)$ for $n \geq 1$ and an exact sequence

$$
\operatorname{Hom}\left(P_{m}, B\right) \longrightarrow \operatorname{Hom}(M, B) \longrightarrow \underline{E x t}^{m+1}(A, B) \longrightarrow 0
$$

These are both natural in B, in the sense that for a morphism $B \longrightarrow B^{\prime}$ the following two diagrams commute for $n \geq 1$ and $m \geq 0$

4.3 Ext and Coproducts

Proposition 7. Let \mathcal{A} be an infinite complete abelian category with exact products and enough injectives. For an object A, the functor $\operatorname{Ext}^{n}(A,-): \mathcal{A} \longrightarrow \mathbf{A b}$ preserves products.

Proof. The functor $\operatorname{Hom}(A,-): \mathcal{A} \longrightarrow \mathbf{A b}$ preserves products, so this follows immediately from our Derived Functor notes.

Proposition 8. Let \mathcal{A} be an infinite cocomplete abelian category with exact coproducts and enough projectives. For an object B, the contravariant functor $\underline{\text { Ext }^{n}}(-, B): \mathcal{A} \longrightarrow \mathbf{A b}$ maps coproducts to products.

Proof. By assumption $\mathcal{A}^{\mathrm{op}}$ is a complete abelian category with exact products and enough injectives, and the functors $\underline{E x t} t^{n}(-, B)$ are the right derived functors of the covariant additive functor $\operatorname{Hom}(-, B): \mathcal{A}^{\mathrm{op}} \longrightarrow \mathbf{A b}$. So once again the result follows from our Derived Functor notes.

In particular both results apply in the case where \mathcal{A} is $\mathbf{A b}, R \operatorname{Mod}$ or $\operatorname{Mod} R$ for a ring R. If \mathcal{A} is R-linear for some ring R then the above results also apply to the functors $\operatorname{Ext}^{n}(A,-)$: $\mathcal{A} \longrightarrow R$ Mod and $\underline{E_{x t}}{ }^{n}(-, B): \mathcal{A} \longrightarrow R$ Mod. That is, the first preserves products and the second maps coproducts to products.

5 Ext for Commutative Rings

If R is a commutative ring and A, B are R-modules, then the group $E x t^{n}(A, B)$ doesn't depend on whether you consider A, B as left or right modules over R. That is, the calculations in the abelian categories R Mod and $\operatorname{Mod} R$ yield isomorphic groups.

For a commutative ring R the abelian category $\mathcal{A}=R$ Mod is R-linear in the sense of Section 4.1. Each group $\operatorname{Hom}_{R}(M, N)$ becomes an R-module via $(r \cdot \varphi)(x)=r \cdot \varphi(x)$ and this defines an R-linear structure on \mathcal{A}. For $r \in R$ let $\alpha: M \longrightarrow M, \beta: N \longrightarrow N$ be the endomorphisms defined by left multiplication by r. Then $r \cdot \varphi=\beta \varphi=\varphi \alpha$. So associated to two left R-modules M, N and an integer $i \geq 0$ is an isomorphism class of left R-modules, and the following procedures will calculate a representative

- Pick a projective resolution $\cdots \longrightarrow P_{1} \longrightarrow P_{0} \longrightarrow A \longrightarrow 0$ and calculate the cohomology of the sequence of R-modules

$$
0 \longrightarrow \operatorname{Hom}\left(P_{0}, B\right) \longrightarrow \operatorname{Hom}\left(P_{1}, B\right) \longrightarrow \operatorname{Hom}\left(P_{2}, B\right) \longrightarrow \cdots
$$

- Pick an injective resolution $0 \longrightarrow B \longrightarrow I^{0} \longrightarrow I^{1} \longrightarrow \cdots$ and calculate the cohomology of the sequence of R-modules

$$
0 \longrightarrow \operatorname{Hom}\left(A, I^{0}\right) \longrightarrow \operatorname{Hom}\left(A, I^{1}\right) \longrightarrow \operatorname{Hom}\left(A, I^{2}\right) \longrightarrow \cdots
$$

It is not hard to check that for $r \in R$ left multiplication by r is given by $E x t_{R}^{n}(M, \beta)=E x t_{R}^{n}(\alpha, N)$.
Proposition 9. Let R be a commutative noetherian ring and suppose A, B are finitely generated R-modules. Then $E x t_{R}^{i}(A, B)$ is a finitely generated R-module.
Proof. Since R is noetherian and A is finitely generated we can find a projective resolution $\cdots \longrightarrow$ $F_{1} \longrightarrow F_{0} \longrightarrow A \longrightarrow 0$ with all the F_{i} finite free modules. Then in the following sequence every module is finitely generated (see our Module notes)

$$
0 \longrightarrow \operatorname{Hom}\left(F_{0}, B\right) \longrightarrow \operatorname{Hom}\left(F_{1}, B\right) \longrightarrow \operatorname{Hom}\left(F_{2}, B\right) \longrightarrow \cdots
$$

So the cohomology modules $E x t_{R}^{i}(A, B)$ will also be finitely generated.
Recall that a module M over a commutative domain R is divisible if for every $0 \neq r \in R$ and $x \in M$ there is $y \in M$ such that $r \cdot y=x$. Any injective module is divisible. A commutative integral domain R is a Dedekind domain if and only if every divisible module is injective. Since a quotient of a divisible module is clearly divisible, it follows that over a Dedekind domain the quotient of an injective module is injective.
Proposition 10. For any Dedekind domain R we have $E x t_{R}^{n}(A, B)=0$ for $n \geq 2$.
Proof. Find an injective module I and a monomorphism $B \longrightarrow I$. The quotient is divisible, hence injective, so $0 \longrightarrow B \longrightarrow I \longrightarrow J \longrightarrow 0 \longrightarrow \cdots$ is an injective resolution of B. It follows that $E x t_{n}^{R}(A, B)$ is the cohomology of the sequence

$$
0 \longrightarrow \operatorname{Hom}(A, I) \longrightarrow \operatorname{Hom}(A, J) \longrightarrow 0 \longrightarrow \cdots
$$

So it is clear that $\operatorname{Ext}_{n}^{R}(A, B)=0$ for $n \geq 2$.

5.1 Coextension

Let $\varphi: R \longrightarrow S$ be a morphism of commutative rings. Then for an R-modules A the R-module $\operatorname{Hom}_{R}(S, A)$ has a canonical S-module structure, and this defines the coextension functor $P=$ $H_{R o m}^{R}(S,-): R \operatorname{Mod} \longrightarrow S$ Mod. Let $U: S \operatorname{Mod} \longrightarrow \mathbf{A b}$ be the forgetful functor and $Q=$ $H_{R o m}^{R}(S,-): R M o d \longrightarrow \mathbf{A b}$ the usual functor. Then $Q=U P$ so for $n \geq 0$ and an assignment of injective resolutions \mathcal{I} the functors $R^{n} Q$ and $U \circ R^{n} P$ are equal. So for an R-module A the Ext group $\operatorname{Ext}_{R}^{n}(S, A)$ becomes an S-module in a canonical way, and for a morphism of R-modules $\beta: A \longrightarrow A^{\prime}$ the morphism of groups $E x t_{R}^{n}(S, \beta): \operatorname{Ext}_{R}^{n}(S, A) \longrightarrow \operatorname{Ext}_{R}^{n}\left(S, A^{\prime}\right)$ is a morphism of these modules. So the additive functor $\operatorname{Ext}_{R}^{n}(S,-): R \mathbf{M o d} \longrightarrow \mathbf{A b}$ lifts to an additive functor R Mod $\longrightarrow S$ Mod .

6 Another Characterisation of Derived Functors

Throughout this section \mathcal{A} is an abelian category. If we say T is an additive functor, we mean it is an additive covariant functor $\mathcal{A} \longrightarrow \mathbf{A b}$. Given two additive functors $T, T^{\prime}: \mathcal{A} \longrightarrow \mathbf{A b}$ we let $\left[T, T^{\prime}\right]$ denote the class of natural transformations $T \longrightarrow T^{\prime}$. It is clear that this becomes a "large" abelian group (an abelian group whose underlying class may not be a set).

Suppose we have for every object A an additive functor $\Omega_{A}: \mathcal{A} \longrightarrow \mathbf{A b}$ and for every morphism $\alpha: A \longrightarrow B$ a natural transformation $\Omega_{\alpha}: \Omega_{B} \longrightarrow \Omega_{A}$, such that $\Omega_{\alpha} \Omega_{\gamma}=\Omega_{\gamma \alpha}, \Omega_{\alpha+\gamma}=\Omega_{\alpha}+\Omega_{\gamma}$ and $\Omega_{1}=1$. We call this a representation of \mathcal{A} in the additive functors $\mathcal{A} \longrightarrow \mathbf{A b}$. We say it is a small representation if $\left[\Omega_{A}, T\right]$ is a set for any object A and additive functor $T: \mathcal{A} \longrightarrow \mathbf{A b}$.

The primary example is $A \mapsto \operatorname{Hom}(A,-), \alpha \mapsto \operatorname{Hom}(\alpha,-)$, which is small since by the Yoneda Lemma there is an isomorphism of abelian groups $[\operatorname{Hom}(A,-), T] \cong T(A)$. This isomorphism is also natural in A : given any morphism $\alpha: A \longrightarrow B$, composition with Ω_{α} defines a morphism of groups $[\operatorname{Hom}(A,-), T] \longrightarrow[\operatorname{Hom}(B,-), T]$ which fits into a commutative diagram:

It follows that we can recover the functor T (up to natural equivalence) from the representation $A \mapsto \operatorname{Hom}(A,-)$ and the morphisms from these objects to T. In detail: given an additive functor T define $S(A)=[\operatorname{Hom}(A,-), T]$. For a morphism $\alpha: A \longrightarrow B$ let $S(A) \longrightarrow S(B)$ act by composition with Ω_{α}. Then this defines an additive functor S naturally equivalent to T. This motivates the following definition

Definition 4. Let \mathcal{A} be an abelian category, Ω a small representation of \mathcal{A} in the additive functors $\mathcal{A} \longrightarrow \mathbf{A b}$. Given an additive functor T let ΩT denote the following additive functor: $(\Omega T)(A)=\left[\Omega_{A}, T\right]$ and for $\alpha: A \longrightarrow B$ we define

$$
\begin{gathered}
(\Omega T)(\alpha):\left[\Omega_{A}, T\right] \longrightarrow\left[\Omega_{B}, T\right] \\
\psi \mapsto \psi \Omega_{\alpha}
\end{gathered}
$$

Now assume \mathcal{A} is an abelian category with enough injectives and let \mathcal{I} be a fixed assignment of injective resolutions, with respect to which all right derived functors are calculated. To every object A and $n \geq 0$ we have associated an additive functor $E x t^{n}(A,-): \mathcal{A} \longrightarrow \mathbf{A b}$ and to a morphism $\alpha: A \longrightarrow B$ we have associated a natural transformation $\operatorname{Ext}^{n}(\alpha,-): E x t^{n}(B,-) \longrightarrow$ $E x t^{n}(A,-)$. We have already checked that $A \mapsto \operatorname{Ext}^{n}(A,-)$ defines a representation of $\mathcal{A}(n$ fixed).

Similarly if \mathcal{A} is an abelian category with enough projectives, $A \mapsto \underline{E x t}{ }^{n}(A,-)$ and $\alpha \mapsto$ $\underline{E x t}^{n}(\alpha,-)$ defines a representation. If \mathcal{A} has both enough injectives and projectives then for every A there is a canonical natural equivalence $\underline{E x t}{ }^{n}(A,-) \cong \operatorname{Ext}^{n}(A,-)$ with the property that the following diagram commutes for any morphism $\alpha: A \longrightarrow B$

Lemma 11. Let \mathcal{A} be an abelian category with enough injectives and projectives. For $n \geq 0$ the representations $\Omega: A \mapsto \operatorname{Ext}^{n}(A,-)$ and $\underline{\Omega}: A \mapsto \underline{\operatorname{Ext}^{n}}(A,-)$ are small.
Proof. For $n=0$ there is a natural equivalence $\operatorname{Ext}^{0}(A,-) \cong \operatorname{Hom}(A,-) \cong \operatorname{Ext}^{0}(A,-)$ so both representations are trivially small. For $n \geq 1$ there is a natural equivalence $\underline{E x t}^{n}(A,-) \cong$ $\operatorname{Ext}^{n}(A,-)$ so it suffices to show that $\underline{\Omega}$ is small. Fix $n \geq 1$, an additive functor T and an object A. Let P be the resolution assigned to $A, \mu: K_{A} \longrightarrow P_{n-1}$ be the image of $P_{n} \longrightarrow P_{n-1}$ and consider the exact sequence

$$
0 \longrightarrow K_{A} \longrightarrow P_{n-1} \longrightarrow P_{n-2} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

We show Ω is small by establishing an isomorphism $\operatorname{Ker} T(\mu) \cong\left[E x t^{n}(A,-), T\right]$.For an object B calculating $\underline{E x t^{n}}(-, B)$ we can use the corresponding truncations of the duals of the projective resolutions chosen by \mathcal{P}, so by Proposition 20 of our Derived Functor notes there is an exact sequence

$$
\begin{equation*}
\operatorname{Hom}\left(P_{n-1}, B\right) \longrightarrow \operatorname{Hom}\left(K_{A}, B\right) \longrightarrow \underline{E x t}^{n}(A, B) \longrightarrow 0 \tag{6}
\end{equation*}
$$

The morphism $\operatorname{Hom}\left(K_{A}, B\right) \longrightarrow \underline{E x t^{n}}(A, B)$ is canonical and natural in A. If $e: P_{n} \longrightarrow K_{A}$ is the factorisation of ∂_{n} through μ then this map is defined by $x \mapsto \overline{x e}$. It is also natural in B, in the sense that for any $\beta: B \longrightarrow B^{\prime}$ the following diagram commutes

In particular the following diagram is commutative with exact rows

Let η be the image in $\underline{\operatorname{Ext}}{ }^{n}\left(A, K_{A}\right)$ of $1_{K_{A}}$. Commutativity of the diagram shows that $\underline{\operatorname{Ext}}{ }^{n}(A, \mu)(\eta)$ is zero. Let $\Phi: \underline{E x t^{n}}(A,-) \longrightarrow T$ be a natural transformation. Consider the following commutative diagram

Since $\underline{E x t}{ }^{n}(A, \mu)(\eta)=0$ it follows that the image in $T\left(K_{A}\right)$ of η belongs to $\operatorname{Ker} T(\mu)$. This assigns to any natural transformation Φ an element $\xi=\Phi_{K_{A}}(\eta) \in \operatorname{Ker} T(\mu)$. Next we show that this assignment is injective, by showing that any other natural transformation Θ with $\Theta_{K_{A}}(\eta)=\xi$ must be equal to Φ.

Let $\sigma: K_{A} \longrightarrow B$ be any morphism. We claim that the image of σ in $\underline{E x t} t^{n}(A, B)$ under the canonical morphism $\operatorname{Hom}\left(K_{A}, B\right) \longrightarrow \underline{E_{x t}}{ }^{n}(A, B)$ defined above is $\underline{E x t}^{n}(A, \sigma)(\eta)$. The morphism σ induces a natural transformation $\operatorname{Hom}\left(-, K_{A}\right) \longrightarrow \operatorname{Hom}(-, B)$ and therefore a cochain morphism of the image of the dual of P under these two functors. The induced maps on cohomology at n is $\underline{E x t} t^{n}(A, \sigma)$. So the claim is not too hard to check.

Let \bar{B} be any object and let $\rho \in \underline{E x t}^{n}(A, B)$. The exact sequence (6) shows that ρ is the image of some morphism $\sigma: K_{A} \longrightarrow B$. Since Θ is natural the following square must commute

So $\Theta_{B}(\rho)=\Theta_{B} \underline{E x t}^{n}(A, \sigma)(\eta)=T(\sigma)(\xi)$. Since B and ρ were arbitrary it follows that $\Theta=\Phi$.
Next we show how to assign a natural transformation Φ to any $\xi \in \operatorname{Ker} T(\mu) \subseteq T\left(K_{A}\right)$. The obvious definition is the following: for $\rho \in \underline{E x t}^{n}(A, B)$ let $\sigma: K_{A} \longrightarrow B$ be any morphism mapping to ρ under $\operatorname{Hom}\left(K_{A}, B\right) \longrightarrow \underline{\operatorname{Ext}^{n}}(A, B)$ and let $\Phi_{B}(\rho)=T(\sigma)(\xi)$. We have to show that $T(\sigma)(\xi)$ does not depend on the morphism σ chosen in the preimage of ρ. If σ^{\prime} is another such morphism, then $\sigma-\sigma^{\prime}$ is in the kernel of $\operatorname{Hom}\left(K_{A}, B\right) \longrightarrow$ Ext $^{n}(A, B)$ and since (6) is exact there is $\tau: P_{n-1} \longrightarrow B$ with $\sigma-\sigma^{\prime}=\tau \mu$. Hence $T\left(\sigma-\sigma^{\prime}\right)(\xi)=0$ since ξ is in the kernel of $T(\mu)$, and so $T(\sigma)(\xi)=T\left(\sigma^{\prime}\right)(\xi)$, as required. It is easy to check that Φ_{B} is a morphism of groups.

It is clear that $\Phi_{K_{A}}(\eta)=\xi$ so it only remains to show that Φ is natural. Suppose $\beta: B \longrightarrow B^{\prime}$ is given and consider the diagram

The left hand square commutes by naturality of (6), so if we choose $\sigma: K_{A} \longrightarrow B$ to represent $\rho \in \underline{E x t}^{n}(A, B)$ then we can choose $\beta \sigma$ to represent $\underline{\text { Ext }^{n}}(A, \beta)(\rho)$. Hence

$$
\Phi_{B^{\prime}} \underline{E_{x}}{ }^{n}(A, \beta)(\rho)=T(\beta \sigma)(\xi)=T(\beta) \Phi_{B}(\rho)
$$

This finishes the construction of the bijection $\left[\underline{\operatorname{Ext}}^{n}(A,-), T\right] \cong \operatorname{Ker} T(\mu)$.

Theorem 12. Let \mathcal{A} be an abelian category with enough injectives and projectives. For $n \geq 1$ and any right exact functor T there is a canonical isomorphism natural in A and T

$$
\left[\underline{E x t}^{n}(A,-), T\right] \cong L_{n} T(A)
$$

That is, there is a canonical natural equivalence $\underline{\Omega} T \cong L_{n} T$.
Proof. We assume all derived functors (including those making up the definition of Ω) are calculated relative to fixed assignments of injective and projective resolutions \mathcal{I}, \mathcal{P}. Assume $n \geq 1$ and for every object A with projective resolution P let $\mu_{A}: K_{A} \longrightarrow P_{n-1}$ be the canonical image of $P_{n} \longrightarrow P_{n-1}$. Let $\ell_{n} T(A)$ be $\operatorname{Ker} T\left(\mu_{A}\right)$. For a morphism $\alpha: A \longrightarrow B$ let φ be a chain morphism lifting α, induce $\alpha^{\prime}: K_{A} \longrightarrow K_{B}$ and define $\ell_{N} T(\alpha)$ by $x \mapsto T\left(\alpha^{\prime}\right)(x)$. As we showed in Section 3 of our Derived Functor notes, $\ell_{n} T$ is canonically naturally equivalent to $L_{n} T$ since T is right exact. But in the previous Lemma we defined a bijection $\left[\underline{E x t^{n}}(A,-), T\right] \cong \ell_{n} T(A)$ for arbitrary A by $\Phi \mapsto \Phi_{K_{A}}\left(\eta_{A}\right)$ where η_{A} was a special element of $\underline{E x t}{ }^{n}\left(A, K_{A}\right)$. It is clear that this bijection is an isomorphism of abelian groups, and to show $\underline{\Omega} T$ is canonically naturally equivalent to $L_{n} T$ is only remains to show that this isomorphism is natural in A.

Let $\alpha: A \longrightarrow B$ be a morphism and consider the following diagram

Lift α to a chain morphism $\varphi: P \longrightarrow Q$ of the chosen resolutions and let this induce a morphism $\alpha^{\prime}: K_{A} \longrightarrow K_{B}$. Let $\Phi: \underline{E x t}^{n}(A,-) \longrightarrow T$ be a natural transformation. We have to show that $T\left(\alpha^{\prime}\right) \Phi_{K_{A}}\left(\eta_{A}\right)=\left(\Phi \underline{E x t^{n}}(\alpha,-)\right)_{K_{B}}\left(\eta_{B}\right)$, which reduces to showing that $\underline{E x t^{n}}\left(A, \alpha^{\prime}\right)\left(\eta_{A}\right)=$ $\underline{E x t}^{n}\left(\alpha, K_{B}\right)\left(\eta_{B}\right)$. So it would be enough to show that the following diagram commutes:

But the top square commutes by naturality of the sequence (6) for A in the second variable and the bottom square commutes by naturality of the sequence (6) for B in the first variable, so the proof of naturality in A is complete.

Now suppose $\gamma: T \longrightarrow T^{\prime}$ is a natural transformation. For any object A with chosen resolution P this gives rise to a chain morphism $\gamma_{P}: T P \longrightarrow T^{\prime} P$ and we let $\ell_{n} T(A) \longrightarrow \ell_{n} T^{\prime}(A)$ be defined by the restriction of $\gamma_{K_{A}}$. It is then clear that the left hand square in the following diagram commutes

The natural transformation $L_{n} \gamma: L_{n} T \longrightarrow L_{n} T^{\prime}$ is defined elsewhere in our notes. By definition $\left(L_{n} \gamma\right)_{A}: L_{n} T(A) \longrightarrow L_{n} T^{\prime}(A)$ is the map $x+\operatorname{Im} T\left(\partial_{n+1}\right) \mapsto \gamma_{P_{n}}(x)+\operatorname{Im} T^{\prime}\left(\partial_{n+1}\right)$ which clearly makes the right hand diagram commute. This completes the proof.

Corollary 13. For a ring R there is a canonical isomorphism natural in the right R-module A and the left R-module B

$$
\left[\underline{E x t}^{n}(A,-),-\otimes_{R} B\right] \cong \operatorname{Tor}_{n}(A, B)
$$

Proof. This is just $\mathcal{A}=\operatorname{Mod} R, T=-\otimes_{R} B$ and $L_{n} T=\operatorname{Tor}_{n}(-, B)$ in the Theorem. Just to be perfectly clear what we mean by naturality: for any morphism $\alpha: A \longrightarrow A^{\prime}$ of right R-modules the following diagram commutes

For a morphism of right R-modules $\beta: B \longrightarrow B^{\prime}$ the following diagram commutes

where the left hand vertical morphism acts by composition with the natural transformation $-\otimes_{R}$ $B \longrightarrow-\otimes_{R} B^{\prime}$ determined by β.

