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Preface

This work proposes to give a systematic exposition of the fundamentals of algebraic geometry. It
is now generally acknowledged that to obtain a theory of algebraic geometry as general as possible, it
is necessary to reconsider the notion of schemes: we have tried in this Introduction to rapidly describe
the evolution which has led to this notion.

The following is a general plan for the treatise:

• Chapter I. Language of schemes
• Chapter II. Elementary global study of some classes of morphisms
• Chapter III. Cohomology of coherent algebraic sheaves. Applications.
• Chapter IV. Local study of schemes and the morphisms of schemes.
• Chapter V. Complements on projective morphisms.
• Chapter VI. Techniques of construction of schemes.
• Chapter VII. Schemes in groups. Principal fibred spaces.
• Chapter VIII. The Picard scheme.
• Chapter IX. The fundamental group.
• Chapter X. Resiudes and duality.
• Chapter XI. The theory of intersection, Chern classes, Riemann-Roch theorem.
• Chapter XII. Etale cohomology of schemes.

Chapters I, II and III play a central role in the whole treatise and are indepensible in the reading of
all works of algebraic geometry founded on the theory of schemes: the following chapters (in particular
starting from Chapter VII) study more specific questions. But it suits our purposes to underline the
fact that this treatise is not an encyclopaedia and does not consider numerous questions of algebraic
geometry, without taking into account their historical importance or a number of works they lead to
today.

The reader who already knows classical algebraic geometry from, for example, the following books
[3],[7],[11],[12],[13],[16],[17] of the Bibliography will recognise the old concepts in the new theory of
schemes. It is hardly possible to begin the reading of this treatise without having a good knowledge of
the following subjects

• Commutative algebra.
• Homological Algebra.
• Theory of sheaves.
• Finally it will be useful for the reader to have a certain familiarity with the functorial language.

For the convenience of the reader we give in a Chapter 0 (published in several joint parts of other
chapters) of the diverse complements of commutative algebra, homological algebra, theory of sheaves,
utilised throughout the treatise which are more or less well known, but for which it was not possible
to give convenient references. It is recommended to the reader to not refer to Chapter 0 immediately
but to look back on it as reading.

The references will be given following the decimal system: for example III 4.9.3 the number III
indicates the chapter, the number 4 indicates the paragraph, 9 the section of paragraph. Inside the
same chapter we drop the III. The number ON refers to the part of Chapter 0 joined to Chapter N .

It is sometimes useful to group results in the same paragraph even though some cannot be proved
except in a later Chapter: these results will always be placed between ∗...∗ and the reader will be able
to, in each case, verify that this is not a vicious circle. As for the examples, we don’t compel ourselves
to only use propositions that have only been proved in the text.

The passages printed in small characters can be omitted in the first reading: the same for Chapter
0, it is considered to not refer to the passages of which we will have need.
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The first two chapters of the treatise constitute a reedition of the two chapters already published
seperately Publ. Math. Inst. Hautes. Et. Scient.., no. 4 (1960) and no. 8 (1961). The principle changes
with regard to this first edition consist above all of reordering of material, notably by the incorporation
in these two chapters of questions studied firstly (previewed) in these chapters; particularly note the
introduction to Chapter I, § 9 of schemes representing certain functors particularly important in the
applications, whose existence is established by a uniform method.

Finally note, with regard to the first edition, an important change of terminology. The word
scheme now designates that which was called a prescheme in the first edition, and the words separated
scheme that which was called scheme. The meaning of the word constructible has also changed: we
now designate by this that which was called locally constructible in the first edition, and globally
constructible has the meaning of constructible in the first edition.

The references to Chapters III, IV of the first edition are given as below, with the addition of an
asterix to the number of the Chapter.

Introduction

1. We propose in this introduction to try to show (without entering into details) how the modern
point of view in algebraic geometry is freed in a fairly natural manner of the evolution of the fundamental
problems posed by this branch of mathematics. For the convenience of the exposition we use the
language of modern mathematics even to describe historical situations where it is evident that the
language and the technique of the contemporary authors was strongly different to modern conceptions.

2. We can say that the historical origin and one of the essential aims of algebra since the Baby-
lonians, Hindus and Diophante up until today is the study of the solutions of systems of polynomial
equations. In order to define the problem we consider a commutative ring k with unit, and the ring

P1 = P = k[(Ti)i∈I ] (1)

of polynomials in the indeterminates Ti with coefficients in k. Recall that for each family t = (ti)i∈I
of elements of k, there is a k-homomorphism (by convention, taking unit to unit) from P to k taking
each Ti to the element ti: the image of a polynomial F ∈ P by this homomorphism is written F (t).
We define here for each polynomial F ∈ P a polynomial application t 7→ F (t) from kI to k.

This being so, the considered problem consists of giving a family (Fj)j∈J of polynomials of P and
of searching all systems t = (ti)i∈kI for which we have

Fj(t) = 0 for all j ∈ J (2)

we say that such a system t = (ti)i∈I is a solution of the system of polynomial equations

Fj((Ti)i∈I) = 0 for j ∈ J (3)

In order not to restrict later applications, the index sets I and J are allowed to be infinite.
3. In addition to the purely algebraic aspect of the previous problem, since the invention of that

which we have called Analytical Geometry, a geometric of large interest, firstly for k = R and I reduces
to 2 or 3 elements, where the collections of solutions of certain systems (2) are curves or surfaces studied
since Antiquity, like for example quadrics or conics. Since around the middle of the 19th century, we
have habituated ourselves little by little to using a geometry language inspired by the elementary
geometry while k is an arbitrary ring and I a collection of arbitrary indices; it is in this way that kI is
often called an affine space, on k with elements t = (ti)i∈I as points.

4. The first natural questions that we ask ourselves in the study of system of equations 2 concern
the collection of the solutions in kI : is this collection empty or not? Is it finite or not? If it is finite, can
we give an estimation of the number of solutions? If it is infinite, can we give asymptotic estimations
of the number of solutions satisfying supplementary inequalities where parameters figure, while these
parameters tend towards certain limits, etc.
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We can qualify this naive point of view from the arithmetic point of view (in a very large sense),
because the arithmetic nature of the ring k plays an essential role here: the methods and the results
will be very different depending on whether or not k is a field, or a ring such as Z (for example), or
the ring of the entire field of algebraic numbers. In the same way, if k is a field the results will differ
greatly depending if k is a field of algebraic numbers, or a finite field, or an algebraically closed field
(for example the field C), or the field of real numbers R (real algebraic geometry).

5. It is precisely the study of algebraic curves and surfaces in the real domain which led to a
different point of view: since the beginning of the 18th century, and systematically from Monge and
Poncelet, we associate to a system 2 with real coefficients the same system but where we won’t restrict
our coefficients to be real numbers, but in the complex space corresponding to C, using the fact that R
is a subfield of C. This idea has shown itself to be very fertile. Since the study of the algebraic objects
simplifies itself considerably when we extend the base field; in fact we can even say that this extension
succeeds in a certain very good sense, because of the additional advantage of using, over the field C,
the powerful theory of analytic functions, because during the 19th century we practically ceased to
consider systems 2 other than those with complex coefficients (or in the subfield of C such as the fields
of algebraic numbers); which leads to loss of long held view of the fundamental idea of change of the
base field in its general form (the only exception concerns the theory of congruences, where the idea of
finding imaginary solutions leads to the theory of finite fields (Gauss, Galois) and to their use in the
theory of linear groups (Jordan, Dickson)).

6. It is only from 1940 with the abstract algebraic geometry (this is to say, with base an arbitrary
field k being able to be able to be of characteristic not equaling 0) developed above all by Weil, Chevalley
and Zariski, that the idea of change of base takes importance in a more general context: it is in effect
frequently necessary to pass, for example, to the algebraic closure of k, or (where k is a valued field) to
the completion of k. However, there is not a systematic of this operation in the work of Chevalley or
Zariski; while in the works of Weil, which uses it well on other occasions, its generality is something not
well covered by the part taken. He restrains himself once and for all to only envisaging subfields of a
fairly large algebraic closed field (the universal field), resting fairly closely in appearance to the classic
point of view, where the field C took this role. It is only more recently, firstly with E. Kähler [8], then
in the first edition of the present treatise, that the utility of admitting the extensions k′ of k which are
commutative k-algebras (even while k is a field) were recognised, and that such arbitrary changes of
base became without doubt one of the most important processes of modern algebraic geometry. So that
we can oppose an arithmetic point of view, we further describe the point of view that we can qualify as
purely geometric; we here make an abstraction of the special properties of the solutions of the system 2
which derive from the particular space kI from where we begin, in order to consider for each k-algebra
k′, the collection of the solutions from 2 within k′I and the way in which this collection varies with k′;
we will research in particular the properties of the system of equations 2 which are invariant while k′

varies (or, as we say again, which are stable by the change of base).
7. The idea of variation of the base ring which we just introduced expresses mathematically,

without much use of functorial language (of which the abscence explains without doubt the timidity of
previous attempts). We can say, in effect, that we have a covariant functor

EI : k′ 7→ k′I (4)

from the category of k-algebras to the category of sets, this functor, which takes a k-homomorphism
ϕ : k′ −→ k′′ to the application ϕI : k′I −→ k′′I ; we say again that 4 is the functor affine space of
dimension I on k. If S designates the family (Fj)j∈J of polynomials considered in no.2, note VS(k′)
the part of k′I formed of the solutions of the system 2; we say again that these solutions are the points
with values in k′ of the variety on k defined by the system 2. It is immediate that

VS : k′ 7→ Vs(k′) (5)
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is a subfunctor of the functor EI (the image of VS(k′) by ϕI being contained in VS(k′′)). We therefore
pose in principle that the study of the system of equations 2 from the point of view of algebraic
geometry is the study of the functor VS (from the category of k-algebras to the category of sets). This
study is composed of two aspects: firstly the study of the functor k′ 7→ VS(k′), independently of the
way in which it is realised as a subfunctor of an affine space functor; then if the case presents itself, the
study of the properties of an inclusion VS(k′) −→ k′I . For most of the problems that we ask ourselves
ordinarily in algebraic geometry, this second aspect is entirely trivial: all that is important are the
intrinsic properties of the functor VS , independent of the particular affine immersion

VS(k′) −→ k′I (6)

This justifies regarding two families S1, S2 of polynomials (with regard to two families of mutually
distinct indeterminates) as essentially equivalent, if the corresponding VS1 and VS2 are isomorphic.

8. We will define the structure of the functor 5; beginning from the observation that this functor
does not change when we add to the given equations 2 all the equations of the form F = 0, where F
is of the form

F = Σj∈JAjFj (7)
The Aj being polynomials of the algebra k[(Ti)i∈I ], zero except for a finite number of indices; the set of
these polynomials F is none other than the ideal J of the algebra PI generated by the family (Fj)j∈J .
We can therefore always, for the study of the functors VS , reduce to functors of the form VJ, with J is
an ideal of PI .1

We introduce now the quotient k-algebra

AJ = PI/J (8)

and note that we have a functorial bijection in k′

k′I ∼= Homk−alg(PI , k′) (9)

associating to each point t = (ti)i∈I of k′I the k-homomorphism F 7→ F (t). By this bijection VJ(k′)
corresponds to the set of homomorphisms of k-algebras PI −→ k′ which are zero on J, or again to the
set of homomorphisms of k-algebras from AJ to k′. In other words, we obtain by restriction of 9 an
isomorphism of functors in k′

VJ(k′) ∼= Homk−alg(AJ, k
′) (10)

Moreover, by the bijections 9 and 10, the canonical inclusion 6 is none other than the injection
Homk−alg(AJ, k

′) −→ Homk−alg(PI , k′) corresponding to the surjective canonical homomorphism

PI −→ AJ = PI/J (11)

If we take into account the fact that all the commutative k-algebras A can be written in the form
PI/J for suitable I and J, we therefore see that up to isomorphism the functors VS are exactly the
representable functors

VA : k′ −→ Homk−alg(A, k′) (12)

An inclusion VA −→ EI of such a functor (for a suitable set of indices I) is an injective map functorial
in k′

VA(k′) −→ k′I

1This shows that even while the set I of the indeterminates is finite and k is a field, it is not necessary to limit one’s
self to the systems of finite equations, as the most natural systems are those in which the set of indices I is an ideal of

P (a set which is rarely finite). Even though while k is a field and I is finite, all the ideals J of P = k[(Ti)i∈I ] can be
generated by a finite number of elements (Hilbert’s Basis theorem), therefore the two possible definitions of the functor
5 (by a finite system S, or by an ideal of P ) coincide, there only remains that the restriction of finiteness is a priori

artificial, and technically awkward.
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But, if we have a map functorial in k′

Homk−alg(A, k′) −→ Homk−alg(PI , k′) (13)

if we set k′ = A, then under 13 the identity map 1A is carried into the canonical surjection

π : PI −→ A (14)

and, by functoriality, the application 13 is none other than ȧ 7→ u ◦ π. As the homomorphism π
is surjective, the application 13 is therefore injective; we limit ourselves ordinarily to the inclusions
VA −→ EI obtained as in 6 with the aid of a surjective homomorphism π. Giving such a homomorphism
is equivalent, on the other hand, to giving the images of the Ti by this homomorphism, this is to say,
a set of elements (ti)i∈I of the k-algebra A having I as its set of indices.

9. These considerations show (taking into account the elementary properties of representable
functors (see O,1)) that the category of functors

k− alg −→ Sets

associated to the systems of equations (2) (in other words, of the form VS) is equivalent to the opposite
category of the category of k-algebras k− alg, associating to each k-algebra A the functor VA defined
in (12) (which depends on A in a contravariant fashion). We can therefore say that the study of the
functors VS independently of the immersions (6), the study that we have presented as being the initial
aim of algebraic geometry on k, is very exactly equivalent to the study of the arbitrary k-algebras
A. In this correspondence A ↔ VA, to the k-algebras A of finite type corresponds the subfunctors
of affine type space functors EI of finite rank, this is to say that for those which I is finite. If we
were, therefore (wrongly) limited to the finite families of indeterminates in (2), this would have as a
consequence exclusively limited us to the study of the k-algebras of finite type. On the other hand,
the study of the functors of the form VS given the immersion (6) returns to the study of k-algebras A
given again of a system of generators (ti)i∈I , or, in an equivalent manner, to the study of the ideals
in the rings of polynomials PI . We see in particular, for fixed I, that the correspondence J 7→ VJ of
ideals of PI with subfunctors of EI of the form VS is injective: an ideal J is known when we know the
subfunctor VJ of EI set of the solutions of the system of equations (2) defined by J, in any k-algebra k′:
In effect J is the ideal of the polynomials F such that the corresponding polynomial function t 7→ F (t)
is zero in VJ(k′) for each k-algebra k′. This shows more generally that for two ideals J, J′ of PI we
have the equivalence

(J ⊂ J′)⇔ (VJ ⊃ VJ′) (15)
10. It is necessary to note well the difference, very important for the question of foundations,

between these results, linked to the consideration of arbitrary k-algebras k′, and that which occurs
when we limit ourselves to the consideration of k-algebras k′ which are fields, or more generally, which
are reduced (that is to say, without nilpotent elements not equal to zero). Generally, whether C is a
subcategory of k-alg formed of reduced algebras (for example, the category of all the reduced algebras,
or of all the k-algebras which are fields, or the category having a single object which is a reduced
algebra, or a field); note VJ,C , the restriction of VJ to C. It is immediate that VJ,C is not modified when
we replace the system of equations F = 0, where F covers J, by the system of equations F = 0, where
F covers the set of polynomials such that there exists a suitable power Fn of F contained in J. The
set of these polynomials, the preimage in PI of the nilradical of AJ = PI/J is the radical

√
J of J, and

we therefore have
VJ,C = V√J,C (16)

As it is possible that
√

J 6= J, 2 the correspondence J 7→ VJ,C is no longer injective in general. If
J =
√

J, and if C contains the fields of fractions of those k-algebras which are quotient domains of PI ,

2It suffices to take P = k[x] and J generated by x2; we have
√

J = (x).
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thus the knowledge of VJ,C completely determines J. In effect, J =
√

J is the intersection of the prime
ideals p of PI containing J (Bourbaki, Alg. Comm., chap. II, § no.6, prop. 13); for all polynomials
F in PI not in J, there is therefore a prime ideal p ⊃ J such that F is not in p, and if k′ is the field
of fractions of PI/p, the polynomial function t 7→ F (t) in k′I is not identically zero in VJ(k′), as the
image of F in PI/p (and a fortiori in PI/J) is not zero. We can therefore say that, with the preceding
hypothesis on C, the map J 7→ VJ,C restricted to the set of the ideals equal to their radical, is injective.
More generally, the same reasoning shows that, under the same condition for C, we have the equivalence

(
√

J ⊂
√

J′)⇔ (VJ,C ⊃ VJ′,C) (17)

3

11. We can therefore say that the exclusive consideration of reduced k-algebras k′, as rings of
values, for the coordinates of the solutions of a system of polynomial equations (2), returns to develop
an algebraic geometry in which we don’t distinguish between an ideal J (of an algebra of polynomials
PI) and its root

√
J; or in terms of the quotient ring A = PI/J, where we don’t distinguish between a

k-algebra A and the quotient of A by its nilradical.
Such a point of view, would not only be a priori artificial, but it would appear today as a fact well

established by experience that it would be inadequate for the description of a large number of important
phenomenon in algebraic geometry (more particularly the phenomenon of infinitesimal nature), and
for developing certain essential techniques (such as the technique of descent, or that of the passage of
the formal geometry to the algebraic geometry [7]). We will notably see the appearance, throughout
our treatise, the very important technical role of Artinian local rings, which intuitively represent the
infinitesimal neighborhoods of points on algebraic varieties.

12. In the clasic point of view of algebraic geometry of the 19th century, where k = C and where
we don’t change the base field, the set V (k) = VS(k) ⊂ kI is called the algebraic variety defined by the
system (2) and interest is on concentrated the geometric properties (subvarieties, intersections with
other included varieties in the affine space kI , etc). We will see that in algebraic geometry conceived
as we have exposed in no. 7, it is still possible to associate to a functor VS (or VA (equation (12))) that
we study a well determined geometric object, which is part of the classical notion of algebraic variety
and generalises it. As we want to study this functor independently of its possible inclusions (6), we
must define this object (which will be called the spectrum of A) uniquely given the k-algebra A.

In classic algebraic geometry, the ring A would appear as the ring of the polynomial functions
on the variety V (k), the restrictions to this variety of the polynomial functions on kI , and biunivocal
correspondence (10) between the variety and the set Homk−alg(A, k) consists of associating to each
point t ∈ V (k) the homomorphism F 7→ F (t) associating to the function F its value at point t (an
idea due initially to Dedekind and Weber) 4. The same interpretation of the correspondence (10) is
understood to be possible in the general case: if f ∈ AJ, for all polynomials F ∈ PI of which the
canonical image in A is f the restriction to VJ(k′) of the polynomial t 7→ F (t) does not depend on
the polynomial F chosen in the reciprocal image of f ; it is therefore a function fk′ on VJ(k′), well
determined by f , and (for fixed k′) the map

f 7→ fk′

3The famous Nullstellensatz of Hilbert (Bourbaki, Alg. Comm., chap V, § 3, no 3, prop. 2) shows that the

equivalence (17) is owing to the injectivity of J 7→ VJ,C on the set of the ideals J equal to their radical, is again true
where k is a field, I is finite, and we only suppose that C contains the finite extensions of k (where k is algebraically
closed, C can therefore be reduced to k): in effect, the root of J is therefore the intersection of the maximal ideals m of
PI containing J and these are such that PI/m is a finite extension of k).

4In virtue the Nullstellensatz and the fact that k = C is algebraically closed, there is also a biunivocal correspondence

between V (k) and the set maximal ideals (or maximal spectrums) of A (cf. chap. I appendix I)
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of A to the k-algebra k′V (k′) of maps of V (k′) to k′, is a homomorphism (in general not injective) of
k-algebras. To each point t ∈ V (k′) corresponds therefore the k-homomorphism

f 7→ fk′(t) (18)

of A to k′. We are therefore led to simply write t for this homomorphism, so either f(t) or t(f) instead
of fk′(t), and to call the elements of Homk−alg(A, k′) the points of VA with values in k′ (or with
coordinates in k′)

13. We have thus well introduced a geometry language; however, we no longer have use for a well
determined object as in the classical algebraic geometry, but instead for a family of variable objects
with k′. In order to obtain the spectrum of A, we will firstly restrain our attention to the points of VA
with values in the k-algebras k′ which are fields; we will say that these are the geometric points of VA,
and we will establish between these points (corresponding to different possible fields k′) a relation of
equivalence. We will say that two geometric points

t′ : A −→ k′, t′ : A −→ k′′

are equivalent if there exists a third geometric point s : A −→ K and the homomorphisms of k-algebras
(necessarily injective)

f ′ : k′ −→ K, f ′′ : k′′ −→ K

such that we have s = f ′ ◦ t = f ′′ ◦ t′, otherwise known as the diagram

k′
f ′−−−−→ K

At′
x t′′−−−−→ k′′k′′f ′′

x (19)

is commutative. Show that this relation is equivalent to the following: t′−1(0) = t′′−1(0) (this proves
that it is an equivalence relation). In effect, since f ′ and f ′′ are injective, the commutativity of diagram
(19) leads to the equality of the kernels of t′ and t′′. Inversely, note that since each subring of a field in
an integral domain, the kernel of a homomorphism A −→ k′ is a prime ideal of A. If the kernels of t′

and t′′ are equal to the same prime ideal p, k′ and k′′ can be considered as two extensions of the same
field κ(p), fields of the fractions of A/p, and we know (Bourabki, alg. chap. V, § 4, no. 2 prop. 2)
that there exists a field K and two κ(p)-monomorphisms f ′ : k −→ K, f ′′ : k′′ −→ K, which obviously
render (19) commutative.

The equivalence classes for this relation (which we can again call the places of A) 5 are therefore
in biunivocal correspondence with the prime ideals of A; in fact, we obtain in this way all the prime
ideals because if p is such an ideal and κ(p) the field of fractions of the integral ring A/p the ideal p
corresponds to the equivalence class of the geometric point A −→ A/p −→ κ(p) where the two arrows
are the canonical homomorphisms. We have therefore obtained in this way a canonical biunivocal
correspondence between the set of places of the k-algebra A and the set of prime ideals of A. It is
therefore the set Spec(A) of the prime ideals of A that we take as the underlying set of the geometric
object which must be the spectrum of A. In the classical case where k = C and A is a C-algebra of
finite type, this set contains the algebraic variety corresponding to A, the set of the geometric points
of VA with values in k.

14. The set Spec(A) is naturally given from a topology linked to the generalisation of the notion of
subvariety of an algebraic variety. Classically, a subvariety of an algebraic variety defined by a system
of equations (2) is defined by a system of equations containing the system (2); in other words, if we
consider the ring A as the ring of polynomial functions on the variety, a subvariety is defined as the
set where some of these functions annihilate. In the general case, we are therefore led to the consider

5The well-informed reader will recognise in this language a reformulation of the general points or generics of the

algebraic varieties, such that they intervene for example in the works of Zariski or A. Weil.
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for a part S of the k-algebra A, for each k-algebra k′, the set (part of VA(k′)) where all the functions
fk′ corresponding (no. 12) to the elements f ∈ S annihilate. If we restrict ourselves as in no.13 to
geometric points with values in fields, we are therefore led to the consider the set V (S) of the places
of those points (of the points mentioned) where fk′ for f ∈ S annihilate. It results from no.13 that
this set corresponds biunivocally to the set of the prime ideals of A containing S; we say again that
this part of Spec(A) is the algebraic set defined by S. We will remark that it does not change when
we replace S by the radical of the ideal generated by S; and as this radical is precisely the intersection
of the prime ideals of A containing S, we see that we obtain in this way a biunivocal correspondence
between the set of the ideals of A equal to their radical, and the set of the parts V (S) of Spec(A).
We show (Bourbaki, Alg. comm. chap 2. § 4) that this set of parts is the set of closed parts for a
topology on Spec(A), called te spectral topology or topology of Zariski. Moreover, (loc. cit.) the space
X obtained in giving Spec(A) of this topology is quasi-compact and satisifes the axiom of Kolmogoroff,
but possesses in general the nonclosed points (and a fortiori is not a separated space); for each element
f ∈ A, the set D(f) = X − V (f) is open in X, and the D(f)s (for f ∈ A) form a basis of the spectral
topology.

15. If we wish that the object Spec(A), that we wish to associate to a ring A, inversely permits
the reconstruction of the ring A, it does not suffice to take for such an object the topological space
Spec(A) that we have just defined: for example, for all fields K we obtained the reduced space to a
single point. In this last case it is clear that the consideration of this space does not provide anything
new for the study of the field K.

It is therefore vain to hope to describe the spectrum of A in exclusively topological terms; we
must provide the topological space X = Spec(A) with a structure where the algebra A intervenes.
The model on which we guide ourselves here is provided by the holomorph of varieties (of which the
classic case of algebraic varieties without singularities (k = C) provide particular cases); following the
conception introduced by H. Cartan, since on such a variety X it is possible to define on each open
U ⊂ X the functions (complex) holomorphic in U , in associating to each open U the set O(U) of these
functions, we define evidently a presheaf of rings on X and in fact this presheaf is a sheaf OX ; in other
words the holomorphic variety appears as the topological space given from a sheaf of rings, or, as we
say again, a ringed space. In his fundamental work [FAC], J.P Serre showed in substance how we can
transport this definition into algebraic geometry. Limit ourselves initially to the classic case (k = C)
and suppose that the algebraic variety X corresponds to a ring of polynomial functions A which are
integral (where we say that the variety is irreducible, and to which we often limit ourselves in classical
algebraic geometry). The field of fractions K of A is therefore called he field of rational functions on
X; an element g/f of K, quotient of two polynomial functions (f 6= 0), is a function defined on the
points x ∈ X, where f(x) 6= 0, but cannot be in general extended by continuity to the points where
f(x) = 0 (poles, or points of indetermination). Since Riemann, these functions play traditionally, for
an algebraic variety, the role of meromorphic functions on an analytical variety. We are therefore led to
consider the presheaf U 7→ O(U) on X, where, for each U ⊂ X, O(U) is the ring of rational functions
defined in U .

But, we can again give an analgous definition whereA is an arbitrary integral ring,X the topological
space Spec(A), and where we restrict open U to those of base Df (for 0 6= f ∈ A), and where we take
for O(U) the ring Af of the elements of K of the form g/fn (arbitrary integer n ≥ 0, g ∈ A). But in
fact, it is also not useful to make no hypothesis on the ring A, and it is possible for all f ∈ A (divisor
of 0 or not) to define the ring Af (Bourbaki, alg. comm. Chap 2. § 5 no.1); we therefore show that
the map D(f) 7→ Af defines a sheaf of k-algebras on X, written as Ã or OX , and the object spectrum
of A associated with A is finally the ringed space (X,OX). The detailed demonstrations will be given
in Chapter I § 1; we will there see among others, that the fibres of the sheaf of rings OX are the local
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rings Ap, localised from A to the prime ideals of A, such that (X,OX) is a locally k-ringed space; the
ring A can be recovered (up to isomorphism) from its spectrum by the relation Γ(X,OX) ∼= A.

We will also see in Chapter I, § 1 how, for each homomorphism

ϕ : A −→ A′ (20)

of k-algebras there is associated in a functorial fashion a morphism of locally k-ringed spaces

Spec(ϕ) : X ′ = Spec(A′) −→ X = Spec(A) (21)

such that the corresponding homomorphism of k-algebras

Γ(X,OX) −→ Γ(X ′,OX′)

identifies itself (taking into account the canonical isomorphisms Γ(X,OX) ∼= A, Γ(X ′,OX′) ∼= A′) with
the homomorphism given in (20). This implies in particular that the map

ϕ 7→ Spec(ϕ) : Homk−alg(A,A′) −→ Homk(Spec(A′), Spec(A)) (22)

(where the second term is the collection of morphisms of locally k-ringed spaces (0,4.1.12)) is injective.
In fact, we will even prove that this map is bijective (I, 1.6.3); in other words, the contravariant functor
A 7→ Spec(A) from the category of k-algebras to the category of locally k-ringed spaces, is fully faithful.
This therefore permits (taking into account the usual reversal of arrows when we pass from a category
to its opposite) the identification in practice of the category of k-algebras with a full subcategory of
the category of locally k-ringed spaces, knowing this to be formed of those spaces isomorphic with
Spec(A) for a suitable k-algebra A; this locally k-ringed spaces are called affine schemes on k. The
initial problem of algebraic geometry on k, which we identified in the study of k-algebras, is therefore
also equivalent to the study of algebro-topological objects which are the affine schemes on k. As for
a functor VA defined by (12), it expresses itself simply in terms of Spec(A), taking into account the
bijectivity of (22), by the formula

VA(k′) ∼= Homk(Spec(k′), Spec(A)) (23)

where the second term has the same meaning as in (22).
16. It may seem at first glance that the equivalence of preceding categories can not lead to

replacing the study of an object of fairly simple definition like a k-algebra by that of the much more
complicated object which is its spectrum. In fact, even in the studies of local algebras, the translation
of the properties in terms of the theory of affine schemes, in giving them a geometric interpretation,
renders them often less abstract and more accessible to a sort of intuition which facilitates their
manipulation, (c.f Chapter IV) even though by definition the demonstrations must always lead to
some purely algebraic properties. But the decisive advantage provided by the geometric language,
based on the introduction of the spectrum of a ring, is that the language applies without the effort of
leaving the frame of commutative algebra, which is indispensible if we wish to develop modern algebraic
geometry on the model of the classical theory. In effect, since the beginning of the 19th century, we
have perceived that the study of the systems of polynomial equations of type (2) (which is that which
we can call affine algebraic geometry) only gives simple and striking expressions when we place it in a
more vast frame, that of the projective algebraic geometry 6. We know that, classically, the complex
projective space PnC is obtained by the joining of n + 1 affine spaces, the hyperplanes Xj = 1, in the
space Cn+1, by identifying points with the ray which joins them through the origin. But, in other
domains of mathematics, such processes of rejoining intervene in some rather more general contexts, as
it is in this way that we now define the diverse notions of variety: topological, differential, analytical,
et cetera. In each of these domains, the crucial point in the operation of rejoining is the rejoining of
topologies, those of the additional structures which hereby deduce themselves without trouble; it is

6It is moreover without doubt fortuitous that it is the same men, Monge and Poncelet, who are at the same time at

the origin of this enlargement and of the passage of the field of real to the field of complex
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without doubt H. Cartan who first saw the reason for this fact in observing that the diverse structures
of which we have just spoken can all be defined as structures of ringed space, and that the operation
of rejoining leads itself therefore in each case to the general operation of rejoining of sheaves.

But, once we have led the commutative algebra to a study of particular ringed spaces, it suffices to
apply mutatis mutandis this general operation to arrive in the end at a fundamental notion of modern
algebraic geometry, that of the scheme on k: this would simply be a space X locally ringed, which
admits a recovery (Xα) by the opens which are (for the structure of the inferred ringed space) the
affine schemes on k. Such an object X defines again a functor

k′ 7→ X(k′) : k− alg −→ Sets (24)

by the formula (generalising (23))

X(k′) = Homk(Spec(k′), X) (25)

(points of X with values in k′). We can moreover show (I. 2.3.6), that the knowledge of the functor
(24) regives the scheme X up to a unique isomorphism, and more precisely that the functor X 7→ X(.)
from the category of schemes on k to the category of functors k−alg −→ Sets, defined by the formula
(25), is fully faithful; in other words, it permits the identification of the category of schemes with a full
subcategory of the category of functors

k− alg −→ Sets
7

17. It remains to indicate that the base ring k has not played a trivial role in all that has preceeded.
The ringed space Spec(A), for a given k-algebra, only depends in fact on the structure of the ring of
A, and the given homomorphism k −→ A defining the structure of the k-algebra is simply equivalent
to the given structure of k-algebra on the sheaf of rings OX , where again (according to that which we
have seen in no.15 in assuming k = Z) to the given morphism of locally ringed spaces

Spec(A) −→ Spec(k)

There is therefore interest in defining firstly the notion of schemes in the absolute sense (i.e a scheme
on Z) and in thus defining a scheme on k (or k-scheme) like a scheme X in the sheaf of rings OX is
given from a structure of k-algebra, i.e. defined by the given homomorphism of rings k −→ Γ(X,OX),
or again (and preferably) by the given morphism of locally ringed spaces

X −→ Spec(k)

This last point of view has the considerable advantage of lending itself to the substitution of the ring
k (or even better, of the affine scheme Spec(k)) for an arbitrary scheme Y and of leading in this way
to the notion of scheme X underlying scheme Y (or Y -scheme)(c.f I, 2.6.1), which will be studied in
a detailed fashion in our treatise, and which intuitively is completely analgous to the notion of fibred
space (or more generally of topological space X below a topological space Y , that is to say, given from
a continuous map f : X −→ Y ) fluently used by topologists.

The object of algebraic geometry in the sense we understand it in this treatise, is therefore the study
of schemes, locally ringed spaces of a particular type; or in the same fashion, the study of functors (24)
to which they give birth.

7In this sense, we can consider that the introduction of the structures of the locally ringed space is above all a

technical artifice, permitting the formulation in a particularly convenient and intuitive fashion a procedure of rejoining
of affine functors. For more details on relations between ringed spaces and functors k− alg −→ Sets see [3], Chapter I.

§ 1, which also contains an exposition, excellent from a technical point of view, of the definition of schemes.



CHAPTER 1

Preliminaries

1. Representable Functors

1.1. Represtable Functors.
1.1.1. We designate by Setsthe category of sets. Let C be a category 1; for two objects X,Y of C,

we pose hX(Y ) = Hom(Y,X); for each morphism u : Y −→ Y ′ in C, we designate by hX(u) the map
v 7→ vu from Hom(Y ′, X) to Hom(Y,X). It is immediate that with these definitions, hX : C? −→ Sets
is a contravariant functor, that is to say an object of the category, written Hom(C?,Sets) of the
covariant functors of the category C?, opposite to the category C, to the category Sets((T, 1.7, d) and
SGA, 3.I).

1.1.2. Now let w : X −→ X ′ be a morphism in C; for each Y ∈ C and each v ∈ Hom(Y,X) =
hX(Y ), we have wv ∈ Hom(Y,X ′) = hX′(Y ); designate by hw(Y ) the map v 7→ wv from hX(Y ) to
hX′(Y ). It is immediate that for each homomorphism u : Y −→ Y ′ in C, the diagram

hX(Y ′)
hX(u)−−−−→ hX(Y )

hw(Y ′)

y yhw(Y )

hX′(Y ) −−−−→
hX′ (u)

hX′(Y )

is commutative; in other words, hw is a functorial morphism hX −→ hX′ (T, 1.2), or again a homomor-
phism in the category Hom(C?,Sets) (T, 1.7, d). The definitions of hX and of hw consititute therefore
the definition of a canonical covariant functor

h : C −→ Hom(C?,Sets (26)

1.1.3. LetX be an object of C, F a contravariant functor from C to Sets(object ofHom(C?,Sets)).
Let g : hX −→ F be a functorial morphism: for each Y ∈ C, g(Y ) is therefore a map hX(Y ) −→ F (Y )
such that for each morphism u : Y −→ Y ′ in C the diagram

hX(Y ′) −−−−→
hX(u)

hX(Y )

g(Y ′)

y g(Y )

y
F (Y ′)

F (u)−−−−→ F (Y )

(27)

is commutative. In particular, we have a map

g(X) : hX(X) = Hom(X,X) −→ F (X)

from which an element
α(g) = (g(X))(1X) ∈ F (X) (28)

1We consider the categories from a naive point of view, as if they consisted of sets and refer to SAG, 4, I for questions

of logic linked to the theory of categories, and the justification of the language which we use.

13
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and by consequence a canonical application

α : Hom(hX , F ) −→ F (X) (29)

Inversely, consider an element ξ ∈ F (X); for each morphism v : Y −→ X in C, F (v) is a map
F (X) −→ F (Y ); consider the map

v 7→ (F (v))(ξ) (30)
from hX(Y ) to F (Y ); if we designate by (β(ξ))(Y ) this map,

β(ξ) : hX −→ F (31)

is a functorial morphism, because we have for each morphism u : Y −→ Y ′ in C, (F (vu))(ξ) =
(F (V ) ◦ F (u))(ξ), which verifies the commutativity of (27) for g = β(ξ). We have in this way defined
a canonical map

??β : F (X) −→ Hom(hX , F ) (32)

Proposition 1. The map α and β are mutually inverse bijections.

Recall that a subcategory C′ of a category C is defined by the condition that these objects are
objects of C, and that if X ′, Y ′ are two objects of C′ the set HomC′(X ′, Y ′) of the morphisms X ′ to Y ′

in C, the canonical map of composition of morphisms

HomC′(X ′, Y ′)×HomC′(Y ′, Z ′)×HomC′(X ′, Z ′)

being the restriction of the canonical map

HomC′(X ′, Y ′)×HomC(Y ′, Z ′) −→ HomC(X ′, Z ′)

We see that C′ is a full subcategory of C if HomC′(X ′, Y ′) = HomC(X ′, Y ′) for all X ′, Y ′ in C′. The
subcategory C′′ of C formed of objects of C isomorphic to the objects of C′ is again therefore a full
subcategory of C equivalent (T, 1.2) to C′.

A covariant functor F : C∞ −→ C∈ is called fully faithful if, for each couple of objects X1, Y1 of C∞,
the map u 7→ F (u) from Hom(X1, Y1) to Hom(F (X1), F (Y1)) is bijective; this leads to the fact that the
subcategory F (C∞) of C∈ is full. Moreover, if two objects X1, X

′
1 have the same image X2, there exists

a unique isomorphism u : X1 −→ X ′
1 such that F (u) = 1X2 . For each object X2 of F (C∞) let therefore

G(X2) be one of the objects X1 of C∞ such that F (X1) = X2 (G being defined by the axiom of choice);
for each morphism v : X2 −→ Y2 in F (C∞), G(v) will be the unique morphism u : G(X2) −→ G(Y2)
such that F (u) = v; G is therefore a functor of F (C∞) to C∞; FG is the identity functor on F (C∞),
and that which preceeds shows that there exists an isomorphism of functors ϕ : 1C∞ ∼= GF such
that F,G, ϕ is the identity 1F (C∞)

∼= FG defines an equivalence of the category C∞ and of the full
subcategory F (C∞) of C∈ (T, 1.2).

1.1.4. Apply the prop. (1.1.4) to the case where the functor F is hX′ , X ′ being an arbitrary
object of C; the map

β : Hom(X,X ′) −→ Hom(hX , hX′)
is none other than the map w 7→ hw defined in (1.1.2); this map being bijective, we see, with the
terminology of (1.1.5), that:

Proposition 2. The canonical functor h : C −→ Hom(C?,Sets) is fully faithful.

We will very often utilise this fact in order to prove the results of the morphism of the category C:
in order to show, for example, that a diagram

A
f−−−−→ B

u

y v

y
C

g−−−−→ D
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of morphisms of C is commutative, it suffices to prove that for each object Y ∈ C the diagram

hA(Y ) −−−−→
hf (Y )

hB(Y )

hu(Y )

y hv(Y )

y
hC(Y )

hg(Y )−−−−→ hD(Y )

is commutative, because the relation hv ◦hf = hg ◦hu is equivalent in virtue of (1.1.7) to v ◦ f = g ◦ u.
We are in this way led to verify the commutativity of diagrams in Sets, which is in general much easier.

1.1.5. Let F be a contravariant functor from C to Sets; we say that F is representable if there
exists an object X in C such that F is isomorphic to hX ; it results from (1.1.7) that the given X in C and
the given isomorphism of functors g : hX −→ F determines X up to a unique isomorphism. The prop.
(1.1.7) signifies again that h defines an equivalence of C and of the full subcategory Hom(C?,Sets)
formed from the contravariant representable functors. It results, moreover, from (1.1.4) that the given
functorial morphism g : hX −→ F is equivalent to that of an element ξ ∈ F (X): to say that g is an
isomorphism is equivalent for ξ to the following condition: for each object Y of C the map v 7→ F (v)(ξ)
from Hom(Y,X) to F (Y ) is bijective. Where ξ verifies this condition we say that the couple (X, ξ)
represents the representable functor F . By abuse of language, we would also say that the object X in C
represents F if there exists ξ ∈ F (X) such that (X, ξ) represents F , in other words if hX is isomorphic to
F . Let F, F ′ be two representable contravariant functors from C to Sets, let hX −→ F and hX′ −→ F ′

two isomorphisms of functors. Therefore it results from (1.1.6) that there is a canonical biunivocal
correspondence between Hom(X,X ′) and the set Hom(F, F ′) of functorial morphisms F −→ F ′.

1.1.6. Examples I: Projective limits. The notion of representable contravariant functor covers in
particular the dual notion of the usual notion of solution of a universal problem. More generally, we
will see that the notion of projective limit a particular case of that of a representable functor. Recall 2

that in a category C we define a projective system by the given preordered set I, of a family (Aα)α∈I
of objects of C, and for each couple of indices (α, β) such that α ≤ β, of a morphism uαβ : Aβ −→ Aα
with uαγ = uαβ ◦uβγ for α ≤ β ≤ γ. A projective limit of this system in C is consitituted by an object
B of C (written as lim←−Aα), and for each α ∈ I a morphism uα : B −→ Aα such that:

1 uα = uαβuβ for α ≤ β;
2 For each object X of C and each family (vα)α∈I of morphisms vα : X −→ Aα, such that
vα = uαβvβ for α ≤ β

There exists a unique morphism v : X −→ B (written as lim←− vα) such that vα = uαv for each α in I

(T, 1.8). This is interpreted in the following fashion: the uαβ canonically define the map

Hom(1X , uαβ) = ūαβ : Hom(X,Aβ) −→ Hom(X,Aα)

which define a projective system of sets (Hom(X,Aα), ūαβ), and (vα) is by definition an element of the
set lim←−

α

Hom(X,Aα); it is clear that X 7→ lim←−Hom(X,Aα) is a contravariant functor from C to Sets,

and the existence of the projective limit B is equivalent to saying that (vα) 7→ lim←− vα is an isomorphism
of functors in X

lim←−Hom(X,Aα) ∼= Hom(X,B) (33)

in other words the functor X 7→ lim←−Hom(X,Aα) is representable. If each projective system of objects
in C has a projective limit, we say that C has projective limits.

2We limit ourselves here to projective (or inductive) limits following a preordered set, which will only be used until
Chapter VI. For the extension of these notions to the case where the preordered set is replaced by a category, see [10]

and SGA, 4,I,2.
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1.1.7. Example II: Final objects Let C be a category, {a} a reduced set with a single element.
Consider the contravariant functor F : C? −→ Sets which, to each object X of C corresponds the set
{a} and to each morphism X −→ X ′ in C the unique map {a} −→ {a}. To say that this functor is
representable signifies that there exists an object e ∈ C such that for each Y in C, Hom(Y,E) = hE(Y )
is reduced to an element; we say that E is a final object of C, and it is clear that two final objects of C
are isomorphic (which permits the definition, in general with the aid of the axiom of choice, one final
object of C which we will write eC). For example, in the category of sets, the final objects are the sets
reduced to an element; in the category of augmented algebras on a field K (where the morphisms are
the homomorphisms of compatible algebras with augmentations), K is a final object.

1.1.8. For each category C and each S ∈ C, we introduce a new category C/S called the S-objects
of C in the following way; the objects of C/S are the morphisms (of C) u : Xu −→ S with codomain S;
we call S-morphisms from Xu to Xv (for u, v in C/S) a morphism f : Xu −→ Xv of C such that the
diagram

Xu

u

  A
AA

AA
AA

A
f // Xv

v

~~}}
}}

}}
}}

S

is commutative, the composition of S-morphisms being the same as in C. We therefore take as the set
HomC/S(U, V ) of the morphisms from U to V the set of triplets (Xu, Xv, f) where f : Xu −→ Xv is an
S-morphism; the composite of the morphism (Xv, Xw, g) from v to w and of the morphism (Xu, Xv, f)
from u to v is therefore (Xu, Xw, g◦f). In this category, 1S is a final object, because for each morphism
u : Xu −→ S, HomC/S(u, 1S) is reduced by definition to a single morphism (Xu, S, u).

We have a functor C/S −→ C which, to each morphism u : Xu −→ S corresponds its source Xu,
and to each morphism f : u −→ v the morphism f : Xu −→ Xv corresponds. Although u 7→ Xu is not
in general injective, we often speak (by abuse of language) of Xu (instead of u) as an S-object, and we
say that u is its structural morphism. The S-morphisms s : S −→ Xu, this is to say the morphisms of
C such that u ◦ s = 1S are called the S-sections of u (or of Xu); these are the monomorphisms in C/S
as we will verify soon; their collection is written as Γ(X/S).

Where the category C admits a final object e, C/e is identified canonically with C.
1.1.9. For two objects X,Y of a category C, pose h′X(Y ) = hom(X,Y ) and for each morphism

u : Y −→ Y ′, let, h′X(u) be the map v 7→ uv from Hom(X,Y ) to Hom(X,Y ′); h′X is therefore a
covariant functor C −→ Sets, from where we deduce as in (1.1.2) the definition of a canonical covariant
functor h′ : C? −→ Hom(C,Sets); a covariant functor F : C −→ Sets, in other words an object of
Hom(C,Sets), is therefore said to be representable if there exists an object X in C (necessarily unique
up to isomorphism) such that F is isomorphic to h′X ; we leave to the reader the development of the
dual considerations of the precedence for this notion, which covers this time that of inductive limits,
and in particular the usual notion of the solution of universal problems.

We also have a dual notion of this final object, that of the initial object of a category C: it is an
object e′ in C such that Hom(e′, Y ) is reduced to an element for all Y in C.

1.1.10. Let C be an arbitrary category, and consider the category Hom(C,Sets) of the functors
(covariant) from C to Sets; this last category admits projective and injective limits. In effect let (Fα) be
a projective system of the functors from C to Sets; for α ≤ β, we have therefore a functorial morphism
uαβ : Fβ −→ Fα with uαγ = uαβ ◦ uβγ for α ≤ β ≤ γ. For each object X in C the sets Fα(X) form
therefore a projective system of sets for the maps uαβ(X) : Fβ(X) −→ Fα(X), and have therefore
a projective limit F (X). Moreover, if Y is a second object of C and v : X −→ Y is a morphism of
C, the map Fα(v) : Fα(X) −→ Fα(Y ) form a projective system of maps, which has therefore a limit
F (v) : F (X) −→ F (Y ). We will soon verify that we have in this way defined a functor F from C to Sets,
and that F is the projective limit of the projective limit (Fα). We also see that an inductive system (Fα)
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of functors from C to Setshas an inductive limit defined by F (X) = lim−→Fα(X) and F (v) = lim−→Fα(v)
(we therefore say that the inductive and projective limits in the category Hom(C,Sets) are calculated
pointwise).

1.1.11. In the category Hom(C,Sets) there is also a final object, which we call P , that to each
object X ∈ C corresponds a set P (X) with an element and to each morphism u : X −→ Y the unique
map P (u) : P (X) −→ P (Y ).

1.2. Fibred products in a category.
1.2.1. Let C be a category, X,Y two objects of C; we say that X and Y admit a product in C if

the contravariant functor
F : T 7→ Hom(T,X)×Hom(T, Y )

from C to Setsis representable (for each morphism v : T −→ T ′, F (v) is the map (f ′, g′) 7→ (f ′◦v, g′◦v)
from Hom(T ′, X)×Hom(T ′, Y ) to Hom(T,X)×Hom(T, Y )). An object representing this functor is
therefore formed from an object Z in C and from a couple of morphisms p1 : Z −→ X, p2 : Z −→ Y ,
and these objects are determined up to a unique isomorphism (1.1.8). We say that Z is the product of
X and Y in C, p1 and p2 the first and the second projection of Z; we write X × Y most often in order
to designate the product Z. The map

g 7→ (p1 ◦ g, p2 ◦ g) (34)

is an isomorphism of functors in T :

Hom(T,X × Y ) ∼= Hom(T,X)×Hom(T, Y ) (35)

By this map, to the morphism 1X×Y corresponds the couple (p1, p2).
It is clear that we can say that X × Y is the projective limit of the projective system where the

preordinated set I is formed from two distinct elements α, β, the relation of order in I being the
relation of equality, the family (Xλ)λ∈I is such that Xα = X and Xβ = Y , the only morphisms uλµ
being therefore the identities 1X and 1Y (1.1.9).

1.2.2. We consider now an object S of C and two morphisms
SKIPPED
1.2.3. 1.2.4. We say that a diagram of morphisms of C

X

ϕ

��

Z

v

��

u
oo

S Y
ψoo

is cartesian if it is commutative and if, for each S-object T the map

g 7→ (u ◦ g, v ◦ g)

is a bijective map from HomS(T,Z) to HomS(T,X)×HomS(T, Y ) (X,Y and Z being considered as
S-objects by virtue of ϕ,ψandθ = ϕ ◦ u = ψ ◦ v respectively); the S-prescheme Z is therefore equal to
X ×S Y up to isomorphism.

1.2.4. LetX,Y,X ′, Y ′ be four S-objects; suppose that the productsX×SY andX ′×SY ′ exist and
let p1, p2, p

′
1, p

′
2 be the canonical projections. Therefore, for each couple of S-morphisms u : X ′ −→ X,

v : Y ′ −→ Y , we pose
u×S v = (u ◦ p′1, v ◦ p′2)S : X ′ ×S Y ′ −→ X ×S Y (36)

We also write u× v if there is no confusion.

Proposition 3. Suppose that the products exist in C/S. If we pose F (X,Y ) = X×S Y , F (u, v) =
u×S v, F is a covariant bifunctor of C/S × C/S to C/S.



18 1. PRELIMINARIES

Proof. It suffices to remark that the diagram

X ×S Y

p

��

f×S1Y // X ′ ×S Y

p′

��

f ′×S1Y// X ′′ ×S Y

p′′

��
X

f
// X ′

f ′
// X ′′

is commutative (the vertical arrows being the first projections) as results immediately from the defini-
tion (1.2.5.1). �

Proposition 4. For each S-object X, the product X ×S S (resp. S ×S X) exists; the first (resp.
second) projection of X ×S S (resp. S ×S X) is a functorial isomorphism of X ×S S (resp. S ×S X)
on X, of which the reciprocal isomorphism is (1X , ϕ)S (resp. (ϕ, 1X)S), in designating by ϕ : X −→ S
the structural morphism.

In effect, for each S-object T , HomS(T, S) is a set with an element, of which the objectX represents
the functor

T 7→ HomS(T,X)×HomS(T, S)
We can therefore write up to canonical isomorphism

X ×S S = S ×S X = X (37)

Corollary 5. Let X and Y be two S-objects, ϕ : X −→ S, ψ : Y −→ S the structure morphisms.
If we canonically identify X with X ×S S and Y with S ×S Y , the first projection p1 : X ×S Y −→ X
is identified with 1X ×S ψ and the second projection p2 : X ×S Y −→ Y with ϕ×S 1Y .

The verification results immediately from definitions.

Proposition 6. Given a commutative diagram of morphisms of C

X

ϕ

��

X ′
g

oo

ϕ′

��

X ′′
g′
oo

ϕ′′

��
S S′

foo S′′
f ′oo

(38)

suppose that the square in the left is cartesian (1.2.4). Therefore, in order that the right square of
(1.2.9.1) is cartesian, it is necessary and sufficient that the composed square

X

ϕ

��

X ′′
g◦g′
oo

S S′′
f◦f ′oo

(39)

is cartesian.

Proposition 7. Let f : X −→ S, g : Y −→ S be two morphisms of C such that the product
X ×S Y exists; let p1 : X ×S Y −→ X, p2 : X ×S Y −→ Y be canonical projections. If s : S −→ Y is
an S-section of g (1.1.11), therefore s′ = (1X , s ◦ f)S is an X-section of p1, and the square

X ×S Y
p2

��

X
s′
oo

f

��
Y S

soo

is cartesian.
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Proof. We have p1 ◦ s′ = 1X by definition, therefore it is certainly a section of p1. The second
assertion results from the map of (1.2.9) to the commutative diagram

X

f

��

X ×S Yp1
oo

p2

��

X

f

��

s′
oo

S Y
goo S

soo

�

Proposition 8. Let X,Y be two S-objects such that X ×S Y exists; hence the map f 7→ Γf =
(1X , f)S is a bijection

HomS(X,Y ) ∼= HomX(X,X ×S Y ) = Γ(X ×S Y/X)

of the set of S-morphisms from X to Y with the set of S-sections of X ×S Y (for the first projection
p1 : X ×S Y −→ X).

Proof. This is a particualr case of the fibred product definition (1.2.2). �

The X-section Γf of X ×S Y is called the graph morphism of the morphism f ; it is therefore a
monomorphism.

Proposition 9. Let f : X −→ X ′, g : Y −→ Y ′ be two S-morphisms which are monomorphisms
of C/S (T, I, 1.1); hence, if the products X×SY and X ′×SY ′ are defined, f×Sg : X×SY −→ X ′×SY ′
is a monomorphism of C/S.

Proof. In effect, let p1, p2 be two projections of X×S Y , p′1, p
′
2 be the two projections of X ′×S Y ′;

if u, v are two S-morphisms from T to X ×S Y such that (f ×S g) ◦ u = (f ×S g) ◦ v, we take from this
p′1 ◦ (f ×S g) ◦u = p′1 ◦ (f ×S g) ◦ v, in other words, f ◦ p1 ◦u = f ◦ p1 ◦ v, and as f is a monomorphism,
we take from this p1 ◦ u = p1 ◦ v; utilising as well the fact that g is a monomorphism, we obtain
p2 ◦ u = p2 ◦ v, whence u = v. �

1.2.5. Suppose the category C such that all the fibred products X ×S Y exist. Hence, for n
arbitrary S-objects X1, . . . , Xn, we can define by recurrence the fibred product

X1 ×S X2 ×S . . .×S Xn = (X1 ×S . . .×S Xn−1)×S Xn

also denoted by Π1≤i≤nXi and it is immediate that this object represents the functor

T 7→ HomS(T,X1)×HomS(T,X2)× . . .×HomS(T,Xn)

The properties of associativity and of commutativity of the cartesian product of sets therefore gives the
corresponding properties for the fibered products (1.1.7), which we leave to the reader to express. For
example, if p1, p2, p3 are the three canonical projections of X1×S X2×S X3 in X1, X2, X3 respectively,
and if we canonically identify this product with (X1 ×S X2)×S X3, the first projection of this fibered
product is identified with (p1, p2)S . If fi : Xi −→ Yi is an S-morphism, the morphism f1 ×S f2 ×S
. . .×S fn from

∏
S1≤i≤nXi to

∏
S1≤i≤nYi this is also written

∏
S1≤i≤nfi.

Proposition 10. Let f : S −→ S′ be a morphism of C that is a monomorphism (T, I.1.1), X,Y
two S-objects, ϕ : X −→ S, ψ : Y −→ S the structural morphisms; the morphism f ◦ ϕ : X −→ S′,
f ◦ ψ : Y −→ S′ define X and Y as S′-objects. Therefore each product of the S-objects X, Y is a
product of the S′-objects X,Y and reciprocally.
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Proof. In effect, if T is an S′-object, u : T −→ X, v : T −→ Y are two S′-morphisms, we have
by definition f ◦ ϕ ◦ u = f ◦ ψ ◦ v = θ′, structural morphism of T ; the hypothesis on f leads to the
fact that we have ϕ ◦ u = ψ ◦ v, and that we can therefore consider T as an S-object with structural
morphism θ = ϕ ◦ u = ψ ◦ v. The conclusion results immediately from this, and from the definition of
a product. �

Proposition 11. Suppose that in C, products exist. Consider a family of morphisms gi : Bi −→ Ci
(1 ≤ i ≤ r), and pose B = B1×B2× . . .×Br, C = C1× . . .×Cr, g = g1× . . .×gr : B −→ C. For each
i, let qi : A −→ Bi be a morphism, and let j : A −→ C and v : A −→ B be the (unique) morphisms
which rend these diagrams commutative

A

j

��

qi // B

gi

��
C pi

// Ci

A
v //

qi   @
@@

@@
@@

B

p′i~~}}
}}

}}
}

Bi

for 1 ≤ i ≤ r, where pi and p′i are the canonical projections (1.2.1). Therefore j is factorised as

j : A v−−−−→ B
g−−−−→ C

Proof. In effect, we have for each i, pi ◦ g ◦ v = gi ◦ p′i ◦ v by definition of g(1.2.5), since
g ◦ p′i ◦ v = gi ◦ qi = pi ◦ j, and the relation pi ◦ (g ◦ v) = pi ◦ j for each i leads to the fact that
g ◦ v = j (1.2.1). �

Remark 12. The objects of the category opposite C? being the same as those of C, we are therefore
led to develop a dual terminology of the preceding in C corresponding to the preceding notions applied
to the category C?: which corresponds to the fibered product in C? relative to two morphisms from C,
ϕ : S −→ X, ψ : S −→ Y , is often called amalgamated sum of X and Y , and written X

∐
S Y ; is the

object of C representing the covariant functor (1.1.11)

T 7→ Hom(X,T )×Hom(S,T ) Hom(Y, T )

where the setist fibered product is relative to the applications

Hom(ϕ, 1T ) : Hom(X,T ) −→ Hom(S, T )

and
Hom(ψ, 1T ) : Hom(Y, T ) −→ Hom(S, T )

For example, if C is the category of commutative k-algebras with unit (where k is a commutative ring
with unit), the amalgamanted sum B

∐
A C is none other than the tensor product B ⊗A C.

1.3. Change of Base.
1.3.1. Suppose that C is a category in which all the fibered products exist. Let ϕ : S′ −→ S be a

morphism of C; for each S-object X of structural morphism π, X ×S S′, provided from the projection
morphism π′ : X ×S S′ −→ S′, is an S′-object, which we also write as X(S′) or X(ϕ), and which we
say is deduced from X by the change of base morphism ϕ, or also reciprocal image of X by ϕ. For each
S-morphism f : X −→ Y , we call f(S′) the S-morphism f×S 1S′ : X(S′) −→ Y(S′) and we say that f(S′)
is the reciprocal image of f by ϕ; we have therefore defined (taking into account (1.2.6)) a covariant
functor X 7→ X(S′) from C/S to C/S′. If f is an isomorphism, so is f(S′).

Proposition 13 (Transitivity of change of base). Let ϕ : S′ −→ S, ϕ′ : S′′ −→ S′ be two
morphisms of C. Therefore for each S-object X, there exists a functorial canonical isomorphism from
the S′′-object (X(ϕ))(ϕ′) to the S′′-object X(ϕ◦ϕ′).
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Proof. We must prove that in the commutative diagram

X

π

��

X(ϕ)p
oo

π′

��

(X(ϕ))(ϕ′)
p′

oo

π′′

��
S S′

ϕoo S′′
ϕ′oo

the composed square is cartesian, knowing that the square on the left and the square on the right are,
which results from (1.2.9). �

This result expresses in writing the equality (up to canonical isomorphism) (X(S′))(S′′) = X(S′′),
or again

(X ×S S′)×S′ S′′ = X ×S S′′ (40)
the functorial character of the defined isomorphism in (1.3.2) is also expressed by a formula of transi-
tivity of the reciprocal images of morphisms

(f(S′))(S′′) = f(S′′) (41)

for each S-morphism f : X −→ Y .

Corollary 14. If X and Y are two S-objects there exists a functorial canonical isomorphism of
the S-object X(S′) ×S′ Y(S′) on the S′-object (X ×S Y )(S′).

Proof. In effect, up the functorial canonical isomorphism, we have

(X ×S S′)×S′ (Y ×S S′) = X ×S (Y ×S S′) = (X ×S Y )×S S′

taking into account (1.3.2.1) and the associativity of the fibered products (1.2.13). The functorial
character of the isomorphism defined in (1.3.3) is expressed by the formula

(u(S′), v(S′))S′ = ((u, v)S)(S′) (42)

for each couple of S-morphisms u : T −→ X, v : T −→ Y . �

In other terms, the reciprocal image functor X 7→ X(S′) commutes with the formation of products
in the category C/S and C/S′ respectively.

Corollary 15. Let Y be an S-object, f : X −→ Y a morphism, by which X becomes a Y -object,
and consequently also an S-object by means of the composed morphism X −→f Y −→ψ S, where ψ is
the structural morphism. Therefore X(S′) is identified with the product X ×Y Y(S′), the projection

X ×Y Y(S′) −→ Y(S′)

being identified with f(S′).

Proof. It is again an application of (1.2.9) where we replace S, S′, S′′, X,X ′, X ′′ respectively by
S, Y,X, S′, Y(S′), X(S′). �

Corollary 16. If X,Y, Z are three S-objects, f : X −→ Z, g : Y −→ Z two S-morphisms,
X ×Z Y , the relative fibred product of f and g, we have up to canonical isomorphism

(X ×Z Y )(S′) = X(S′) ×Z(S′) Y(S′)

Proof. In effect, in virtue of (1.3.4), (X ×Z Y )(S′) is identified with (X ×Z Y )Z(S′) and it suffices
to apply (1.3.3). �

Proposition 17. If the S-morphism f : X −→ Y is a monomorphism, f(S′) : X(S′) −→ Y(S′) is a
monomorphism.

Proof. It is a particular case of (1.1.12). �
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Proposition 18. The map f 7→ (f, 1S′)S is a canonical bijection

HomS(S′, X) ∼= HomS′(S′, X(S′)) = Γ(X(S′)/S
′) (43)

of the set of S-morphisms from S′ to X, in the set of S′-sections (1.1.10) of X(S′), functorial in X and
S′.

Proof. This is none other than a manner of expressing (1.2.11). If p : X(S′) −→ X is the canonical
projection, the reciprocal bijection of (1.3.7.1) is f ′ −→ p ◦ f ′. �

Recall that the section f ′ = (f, 1S′)S is the morphism graph of f and is written Γf (1.2.11).

Proposition 19. Let X,Y be two S-objects, f : X −→ Y an S-morphism, Γf = (1X , f)S the
morphism graph of f ; for each morphism g : S′ −→ S, we have Γf(S′) = (Γf )(S′).

Proof. It is a particular case of (1.3.3.1). �

Remark 20. Consider a property P of the morphisms of the category C and the two following
propositions:

(i) If f : X −→ X ′, g : Y −→ Y ′ are two S-morphisms possessing the property P , f ×S g
possesses the property P .

(ii) If f : X −→ Y is an S-morphism possessing the property P , each S-morphism f(S′) : X(S′) −→
Y(S′), deduced from f by a change of base S′ −→ S possesses the property P .

Like f(S′) = f ×S 1S′ , we that if for each object X of C the identity 1X possesses the property P ,
(i) implies (ii); as on the other hand f ×S g is the composed morphism

X ×S Y
f×1Y−−−−→ X ′ ×S Y

1X′×g−−−−→ X ′ ×S Y ′

we see that if the composite of two morphisms possessing the property P , also possesses this property,
therefore (ii) implies (i).

Proposition 21. Let F : T 7→ F (T ) be a contravariant functor from the category C/S to the
category of sets. If this functor is representable by a couple (X, ξ) where X ∈ C/S and ξ ∈ F (X),
therefore, for each morphism change of base g : S′ −→ S, the functor T ′ 7→ F (T ′), the restriction
to C/S of F , is representable by the couple (X ′, ξ′), where X ′ = X ×S S′ and ξ′ = F (p1)(ξ), where
p1 : X ′ −→ X is the first projection.

Proof. In effect, we have two functorial bijections in T ′

HomS′(T ′, X ′) ∼= HomS(T ′, X) ∼= F (T ′)

where the first is written f ′ 7→ p1 ◦ f ′ and the second f 7→ F (f)(ξ); it suffices to compose them. �

1.4. Kernels; diagonal morphism.
1.4.1. Let E,F be two sets; and consider two maps u1 : E −→ F ,u2 : E −→ F ; we call the kernel

of u1 and u2 (or set of coincidences of u1 and u2) the set of x ∈ E such that u1(x) = u2(x), and we
call it Ker(u1, u2). We say that a diagram of maps

N
j
// E

u1 //

u2
// F

is exact if j is injective and if j(N) = Ker(u1, u2); this diagram is obviously therefore commutative.
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1.4.2. Let C now be an arbitrary category; X,Y two objects of C, u1, u2 two morphisms from X
to Y ; we define a contravariant functor F : C? −→ Sets in posing, for each object T ∈ C

F (T ) = Ker(Hom(1T , u1),Hom(1T , u2)) ⊂ Hom(T,X)

and, for each morphism w : T −→ T ′, in taking for F (w) the restriction to F (T ′) of Hom(w, 1X) (we
verify immediately that the image from F (T ′) of Hom(w, 1X) is contained in F (T ), in reason of the
definition of the kernel of two maps). If the functor F is representable, an object which represents it
(determined up to unique isomorphism) is called a kernel of u1 and u2, or an object of coincidences of
u1 and u2, and written Ker(u1, u2). We will see later (1.4.10) that while the fibred products exist in
C, so do kernels.

If N = Ker(u1, u2), the canonical injection Hom(T,N) −→ Hom(T,X) is thus of the form
Hom(1T , j), where j : N −→ X is a monomorphism of T ; we say again therefore that the diagram of
morphisms

N
j
// X

u1 //

u2
// Y (44)

is exact, which is equivalent therefore to saying that, for each object T of C, we have the exact diagram
of maps

Hom(T,N)
Hom(1T ,j)

// Hom(T,X)
Hom(1T ,u1)//

Hom(1T ,u2)
// Hom(T, Y )

thus (1.4.2.1) is in particular, commutative.
While n = Ker(u1, u2) exists, in order that a morphism f : T −→ X is such that u1 ◦f = u2 ◦f , it

is necessary and sufficient, according to the above, that f is factorised in f = j ◦ g, where g : T −→ N
is a morphism determined in a unique fashion.

1.5. Morphisms of representable functors.
1.5.1. 1.7.4. The notation being the same as above, we define a representable morphism to be a

functorial morphism
f : F −→ G

having the following property: for each object X ∈ C and each functorial morphism u : hX −→ G, the
functor F ×G hX is representable.

Proposition 22. (i) Each isomorphism of functors is representable.
(ii) If f : F −→ G and g : G −→ H are two representable functorial morphisms, then so is

g ◦ f : F −→ H.
(iii) If f : F −→ G is representable, then so is each functorial morphism f(H) : F ×G H −→ H

induced from f by the change of base H −→ G.

Proof. The assertion (i) results from the fact that an isomorphism is tranformed to an isomor-
phism by change of base (1.3.1), and the assertion (ii) is such that F ×H hX ∼= F ×G (G ×H hX); as
G ×H hX is isomorphic with the functor hY , F ×G (G ×H hX), isomorphic with F ×G hY , is repre-
sentable. Similarly, to prove (iii) it suffices to note that (F ×GH)×H hX is isomorphic with F ×G hX ,
which is representable. �

If f : F −→ G is a representable functorial morphism, and if for each functorial morphism hX −→
G, the functor F ×GhX is represented by the object Y ∈ C (therefore is isomorphic with hY ), therefore,
for each morphism Z −→ X of C, the product Y×XZ exists, since the functor hY×hX

hZ is representable
by virtue of (1.7.5(iii)).
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Proposition 23. Let G : C? −→ Sets be a representable contravariant functor. In order that a
functorial morphism F −→ G be representable, it is necessary that the functor F be representable; this
condition is sufficient if the category C has fibred products.

Proof. The sufficiency of the condition results from (1.7.3). For the other part, if G = hS , with
an isomorphism given, and if the morphism F −→ G is representable, the functor F ×G G = F ×G hS
(where G −→ G is the identity) is representable by definition; as it is identified with F , and this finishes
the proof.

1.5.2. 1.7.7. Let P be a collection of morphisms of the category C; we suppose, that on composition
of a morphism of P with an isomorphism (on the left or right) that the result is again in P, and on the
other hand that P satisfies the following condition: If f : A −→ B belongs to P, therefore, for each
morphism g : C −→ B, the fibred product A×B C exists and the projection f(C) = p2 : A×B C −→ C
belongs to P (i.e. P is stable under change of base).

This being so, we say that a representable functorial morphism u : F −→ G, where F and G are
contravariant functors from C to Sets, is represented by a morphism of P if, for each object X ∈ C and
for each functorial morphism v : hX −→ G, the functorial morphism corresponding to F×GhX −→ hX ,
this is of the form hw, where w : Y −→ X is a morphism of C (Y being an object representing the
functor F×GhX), and such that w belongs to P (this condition does not depend on the object Y chosen,
since if we compose a morphism of P with an isomorphism the result is still in P). It is immediate
that for each functorial morphism obtained from u by change of base (1.3.1) is also representable by
the morphisms of P.

�

1.6. Ringed Spaces.
1.6.1. 4.1.1. A ringed space is a pair (X,A) formed from a topological space X and a sheaf of

rings (not necessarilly commutative) A on X; we say that X is the underlying topological space of the
ringed space (X,A), and A is the structure sheaf. This sheaf we sometimes also denote by OX , and
the fibre at a point x ∈ X is written OX,x or simply Ox where there is no chance of confusion.

We denote by 1 or e the unit section of OX (the unit element of Γ(X,OX).
While A is a sheaf of commutative rings, we say that (X,A) is a commutative ringed space. As in

this treatise we mostly consider sheaves of commutative rings, it will be understood that whenever we
talk about a ringed space (X,A), that this space will be commutative.

The ringed spaces with not-necessarily commutative structure sheaves form a category, where we
define a morphism (X,A) −→ (Y,B as a pair Ψ = (ψ, θ) formed from a continuous map ψ : X −→ Y
and a ψ-morphism θ : B −→ A (3.5.1) of sheaves of rings. As the category of rings has inductive limits,
for each x ∈ X, we have induced from θ a homomorphism of rings Bψ(x) −→ Ax (3.5.1); moreover,
taking into account that ψx ◦ (ρB)ψ(x) is an isomorphism (3.7.2), the preceeding homomorphism is
identified with θ#x . MORE

1.6.2. 4.1.3. We take the definition of a A-module on a ringed space (X,A) from (G, II, 2.2); while
A is a sheaf of not-necessarily commutative rings, by A-module, we will mean a left A-module, unless
stated to the contrary. MORE

1.6.3. 4.1.4. We say that a sheaf of rings A on a topological space X is reduced (resp. integral) if
for each point x of X the fibre Ax is a reduced ring (resp. integral ring) ; we say that A is reduced if
it is reduced at each point of X. MORE

1.6.4. 4.1.9. A locally ringed space is a commutative ringed space (X,OX) such that, for each
x ∈ X, OX,x is a local ring. We designate by mx the maximal ideal of OX,x, by κ(x) = OX,x/mx

the residue field. For each OX -module F , and each open U of X, and each point x ∈ U and section
f ∈ Γ(U,F), we designate by f(x) ∈ κ(x) the class of the germ fx ∈ Fx modulo mxFx, and we say
that this is the value of f at the point x. The relation f(x) = 0 therefore signifies that fx ∈ mxFx; we
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will take care not to confuse this with the relation fx = 0x. We sometimes write Uf for the collection
of x ∈ U such that f(x) 6= 0 (in other words, fx /∈ mxFx). We note that if f ∈ Γ(X,F), the collection
Xf is contained in Supp(F).

Proposition 24 (4.1.10). Let (X,OX) be a locally ringed space, F , G two OX-modules. For each
x ∈ X, (F ⊗OX

G)x/mx(F ⊗OX
G)x is canonically identified with (Fx/mxFx) ⊗κ(x) (Gx/mxGx). If s

(resp. t) is a section of F (resp. G) over X, (s⊗ t)(x) is identified with s(x)⊗ t(x), and we have

Xs⊗t = Xs ∩Xt (45)

Proof. In effect, (F⊗OX
G)x = Fx⊗Ox

Gx and (Fx⊗Ox
Gx)⊗Ox

(Ox/mx) is canonically isomorphic
with (Fx/mxFx)⊗Ox

(Gx/mxGx), therefore with (Fx/mxFx)⊗Ox/mx
(Gx/mxGx); the relation (4.1.10.1)

therefore results since in a tensor product of vector spaces, a product a⊗ b of two vectors is nonzero if
both a and b are. CHECK. �

1.7. Open immersions and morphisms representable by the open immersions.
1.7.1. 4.5.1. Being given a ringed space (X,OX), we define an open immersion of a ringed space

(Y,OY ) in (X,OX) to be a morphism f = (ψ, θ) : (Y,OY ) −→ (X,OX) composed of a canonical
injection (U,OX |U) −→ (X,OX) of the ringed space induced on an open U in X, and an isomorphism
(Y,OY ) ∼= (U,OX |U); this is a monomorphism. It is immediate that each isomorphism of ringed spaces
is an open immersion, and that the composite of two open immersions is an open immersion.

1.7.2. 4.5.2. We now show that if j : (Y,OY ) −→ (X,OX) is an open immersion and g : (Z,OZ) −→
(X,OX) is an arbitrary morphism of ringed spaces, therefore, in the category of ringed spaces, the fi-
bred product Y ×X Z existes (for the morphisms j and g), and the projection j′ = p2 : Y ×X Z −→ Z is
an open immersion. With an isomorphism near, we can suppose that Y is an open of X, OY = OX |Y ,
and j the canonical injection. If g = (ψ, θ), let P be the open ψ−1(Y ) of Z; we proceed to see that the
ringed space (P,OP ) induced by Z upon the open P of Z is the fibre product we seek, when one defines
the projection p2 : P −→ Z as the canonical injection, and the projection p1 : P −→ Y as equal to the
morphism (ψ1, θ1), where ψ1 is the restriction of ψ to P , considered as a map to Y ⊇ ψ(P ), and θ#1 the
restriction of θ# : ψ−1(OX) −→ OZ to the open P , ψ−1

1 (OX) being identified with ψ−1(OX)|P (3.7.1).
It is clear that we have g ◦ p2 = j ◦ p1. For to show that in this way we have well obtained a fibre
product, we consider a ringed space T and two morphisms u = (ρ, α) : T −→ Y , v = (σ, β) : T −→ Z,
such that j◦u = g◦v. This last relation shows firstly that ψ(σ(T )) ⊆ U , therefore σ(T ) ⊆ ψ−1(U) = P ;
if we denote by τ the map σ considered as a map from T to P , we therefore have τ−1(OP ) = σ−1(OZ);
we define therefore a morphism w = (τ, γ) : T −→ P in absorbing γ# : τ−1(OP ) −→ OT equally
with β#, and it is clear that the morphism is the only one such that p2 ◦ w = v. It remains to see
that p1 ◦ w = u; but it is clear that ψ1 ◦ τ is equal with ψ ◦ σ, therefore with ρ; we therefore have
τ−1(ψ−1

1 (OY )) = σ−1(ψ−1(OX)) and γ#◦θ#1 is equal with β#◦θ#, therefore with α#, and this finishes
the proof.

1.7.3. 4.5.3. The open immersions are therefore the morphisms from the category Esp.ann of
ringed spaces, which satisfy the conditions of (1.7.7) and we can therefore talk of functorial morphisms
F −→ G (where F and G are contravariant functors from Esp.ann to Ens), which are representable by
the open immersions. It is the same when we consider the category Esp.ann/S in place of Esp.ann,
where S is a ringed space.

Proposition 25. Let S be a ringed space, F : (Esp.ann/S)o −→ Ens a contravariant functor,
(Fi)i∈I a family of subfunctors of F (1.7.1). We suppose that the following hypothesis hold:

(i) Each of the canonical functorial morphisms ui : Fi −→ F is representable by an open immer-
sion.

(ii) For each ringed S-space X, the map U 7→ F (U), where U ranges over the collection of ringed
S-spaces induced on the opens of X, is a sheaf of sets.
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(iii) For each ringed S-space Z and each functorial morphism hZ −→ F , if Zi is a ringed S-space
representing the functor Fi ×F hZ (1.7.4) and Ui the image in Z of the space underlying Zi
(image which is an open of Z, since the morphism Zi −→ Z is an open immersion by (i)),
therefore the Ui form a cover of Z.

(iv) Every functor Fi is representable by a ringed S-space Xi.
To these conditions, F is representable by a ringed S-space X, and the image of the underlying spaces
Xi by the morphisms Xi −→ X (which are the open immersions by (i)), form an open cover of X.

Proof. �

(4.5.6) An arbitrary contravariant functor

F : (Esp.ann/S)o −→ Ens (46)

defines, for each ringed S-space a presheaf of sets U 7→ F (U) on X (U varying over the set of ringed
S-spaces inducted on the opens of X). Where for each ringed S-space X, this presheaf is a sheaf
(condition (ii) of (4.5.4)), we say again that F is a sheaf on the category Esp.ann/S (expression
which appears here as an abuse of language, but will be justified by the general theory of sheaves on
categories); these functors form therefore a full subcategory of the category Hom((Esp.ann/S)o,Sets),
denoted Fais/(Esp.ann/S). It results from (1.1.3) and (3.2.6) that a projective limit of functors of
Hom((Esp.ann/S)o,Sets) which are sheaves, is again a sheaf.

A functor (4.5.6.1) which is representable is always a sheaf: it is clear in effect that the presheaf
U 7→ HomS(U,Z) on a ringed space X is a sheaf, because for open collection (Uα) of an open U of X,
the data of an S-morphism from U to Z is equivalent to giving a family of S-morphisms fα : Uα −→ Z
such that for each pair of indices α, β the restrictions of fα and of fβ to Uα ∩ Uβ coincide.

We can therefore say, taking into account (1.1.8), that we have a fully faithful functor Z 7→ hZ
from the category Esp.ann/S to the category Fais/(Esp.ann/S) permitting the identification of the
first with a full subcategory of the second.

(4.5.7) All the results of this section are valuable without change where in place of the category
of ringed spaces we consider the subcategory (non-full) of locally ringed spaces (4.1.12): in effect, a
ringed space X obtained by collection of locally ringed spaces Xi is locally ringed, and if a morphism of
ringed spaces X −→ S (where S is locally ringed) is such that its restriction to each Xi is a morphism
of locally ringed spaces, this is a morphism of locally ringed spaces.
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The Language of Schemes

(2.3.6) We note firstly that the remarks of (0,4.5.6) are valuable without modification where we
replace it throughout the category Esp.ann/S with the category Sch/S of S-schemes (where S is an
arbitrary scheme), and in particular by the category Sch of all schemes. Consider on the other hand
the full subcategory Aff of Sch, formed of the affine schemes; if G : Affo −→ Sets is a contravariant
functor from Aff to Sets, for each affine scheme X, we can again consider the map U 7→ G(U), where
U covers the collection of open affines of X. As the open affines form a base BX of the topology
of X (1.1.2), the map U 7→ G(U) is a presheaf on BX with values in Sets(0,3.2.1); where, for each
affine scheme X, U 7→ G(U) is a sheaf on BX in the sense of (0,3.2.2) we say again that G is a
sheaf on the category Aff ; the functors G having this property form again a full subcategory of
the category Hom(Affo,Sets) that we will denote Fais/Aff . This being so, for each contravariant
functor F : Scho −→ Sets, we can consider the restriction F |Affo : Affo −→ Sets and it is clear that

F 7→ F |Affo (47)

is a functor from Hom(Scho,Sets) to Hom(Affo,Sets). We will see that the restriction of this
functor to the full subcategory Fais/Sch (0,4.5.6) of Hom(Scho,Sets) defines in fact an equivalence
of categories

Fais/Sch ∼= Fais/Aff (48)

It is clear in effect that the image in Fais/Sch of (2.3.6.1) is a subcategory Fais/Aff in virtue of
(0,3.2.2); we show firstly that the restriction of (2.3.6.1) to Fais/Sch is fully faithful. This results from
a part of that which, if F ∈ Fais/Sch and if X is a scheme, the data of F (U) for the U open affines of
X entirely determine the F (U)s for all open U of X by the formula F (U) = lim−→F (Uα), where (Uα) is
the set ordered of open affines contained in U (0,3.2.1); on the other hand if ϕ : F −→ G is a functorial
morphism (for F,G in Fais/Sch), with the same notations the data of the maps ϕ(Uα) : F (Uα) −→
G(Uα) entirely determines ϕ(U) : F (U) −→ G(U), this map being the projective limit of the projective
system of maps ϕ(Uα) by definition of a functorial morphism. It remains to be seen that each functor
G ∈ Fais/Aff is of the form F |Affp for a F ∈ Fais/Sch. For this, we define, four each scheme
X, F (X) as the projective limit of the G(Uα), where Uα) is the projective system of open affines in
X; in order to obtain a functor, it is again necessary to define F (u) for each morphism of schemes
u : X −→ Y ; we will take F (u) to be the projective limit of the maps G(uαβ) : G(Vβ) −→ G(Uα),
where (Uα) is defined as above , (Vβ) is the projective system of open affines in Y , the pairs (α, β) are
only those such that u(Uα) ⊆ Vβ , and uαβ : Uα −→ Vβ is the restriction of u. The verification of the
fact that F is a functor is immediate. Finally, the fact tha tF is a sheaf results from the fact that the
open affines of X form a base of the topology of X (2.1.3) and of (0,3.2.2).

We saw (1.6.5) that the category Affo is canonically equivalent to the category Ann of rings; this
equivalence also defines therefore the equivalence of categories Hom(Affo,Sets and Hom(Ann,Sets).
We say by abuse of language that a functor (covariant) Ann −→ Sets is a sheaf if its image by the
preceding equivalence is a sheaf on Aff ; denote by Fais/Ann the category of these functors. Taking
into account that, for each ring A, the collection of open affines D(f) = Spec(Af ) form a base of the
topology of Spec(A), we can again, by virtue of (0,3.2.2), express that the functor F : Ann −→ Sets
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belongs to Fais/Ann in saying that, for each family (fi)i∈I of elements of A such that
∑
iAfi = A,

the diagram of sets
FIXME

is exact (0,1.4.1); we elsewhere in this exposition limit ourselves to families (fi) finite generating A.
We have in this way characterised the category Fais/Ann without utilising the notion of schemes.

Recall now that the data of a scheme X canonically defines a contravariant functor hX : Y 7→
Hom(Y,X) from Sch to Sets(0,1.1.1) and we have remarked (0,4.5.6) that the functor is a sheaf on
Sch; we say moreover (0,1.1.8) that h : X 7→ hX is a fully faithful functor from Sch to Fais/Sch. By
virtue of the equivalence (2.3.6.2) and of the definition of Fais/Ann, we say that we can canonically
identify the category Sch with a full subcategory of the category Fais/Ann, a schemeX being identified
with the sheaf A 7→ Hom(Spec(A), X) on Ann. We will take care to note that there are the functors
in Fais/Ann which are not isomorphic to a sheaf coming from a scheme.
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