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In applications of the theory of homological algebra, results such as the Five Lemma are crucial.
For abelian groups this result is proved by diagram chasing, a procedure not immediately available
in a general abelian category. However, we can still prove the desired results by embedding our
abelian category in the category of abelian groups. All of this material is taken from Mitchell’s
book on category theory [Mit65].
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1 Introduction

For our conventions regarding categories the reader is directed to our Abelian Categories (AC)
notes. In particular recall that an embedding is a faithful functor which takes distinct objects to
distinct objects.

Theorem 1. Any small abelian category A has an exact embedding into the category of abelian
groups.

Proof. See [Mit65] Chapter 4, Theorem 2.6.

Lemma 2. Let A be an abelian category and S ⊆ A a nonempty set of objects. There is a full
small abelian subcategory B of A containing S.

Proof. See [Mit65] Chapter 4, Lemma 2.7.

Combining results II 6.7 and II 7.1 of [Mit65] we have

Lemma 3. Let A be an abelian category, T : A −→ Ab an exact embedding. Then T preserves
and reflects monomorphisms, epimorphisms, commutative diagrams, limits and colimits of finite
diagrams, and exact sequences.

1.1 Desired results

In the category of abelian groups, diagram chasing arguments are usually used either to establish
a property (such as surjectivity) of a certain morphism, or to construct a new morphism between
known objects. The first type of argument is easily lifted to a general abelian category using the
above embeddings. Let us show how to prove the Five Lemma in any abelian category.
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Lemma 4 (Five Lemma). Suppose the following diagram is commutative and has exact rows
in Ab:

A1

γ1

��

α1 // A2

γ2

��

α2 // A3

γ3

��

α3 // A4

γ4

��

α4 // A5

γ5

��
B1

β1

// B2
β2

// B3
β3

// B4
β4

// B5

Then

(i) If γ1 is an epimorphism and γ2 and γ4 are monomorphisms, then γ3 is a monomorphism.

(ii) If γ5 is a monomorphism and γ2 and γ4 are epimorphisms, then γ3 is an epimorphism

(iii) If γ1 is an epimorphism, γ5 is a monomorphism, and γ2 and γ4 are isomorphisms, then γ3

is an isomorphism.

We claim that if A is any abelian category, the above Lemma is true with Ab replaced by A.
Suppose we are given such a commutative diagram with exact rows, and let B be a small, full,
abelian subcategory of A containing the Ai, Bi, αi, γi, βi. Then the diagram is commutative and
the rows are exact in B. Let T : B −→ Ab be an exact embedding.

(i) Suppose that γ1 is an epimorphism, γ2, γ4 monomorphisms in A. Then γ1 is an epimorphism
in B, and γ2, γ4 are monomorphisms in B. Hence if we map the diagram into Ab using T ,
we see that T (γ3) is a monomorphism. Since T reflects monomorphisms, this implies that
γ3 is a monomorphism in B and hence in A.

(ii) Same as (i).

(iii) As above we find that T (γ3) is an isomorphism. Hence γ3 is both a monomorphism and an
epimorphism in A, so since an abelian category is balanced, γ3 is an isomorphism.

The second type of proof by diagram chasing (construction of a morphism) is more subtle. In
the next section we will show how to lift such results to arbitrary abelian categories. The most
important example is the Snake Lemma, and for convenience we give a proof in Ab.

Lemma 5 (Snake). Suppose we have a commutative diagram with exact rows in Ab:

A′ α1 //

d′

��

A

d

��

α2 // A′′ //

d′′

��

0

0 // B′ β1 // B
β2 // B′′

(1)

Then in the usual manner we obtain the following commutative diagram with exact columns and
rows:

0

��

0

��

0

��
Kerd′ //

��

Kerd //

��

Kerd′′

γ

��
A′ α1 //

d′

��

A

d

��

α2 // A′′ //

d′′

��

0

0 // B′

ε

��

β1 // B

��

β2 // B′′

��
Cokerd′ //

��

Cokerd

��

// Cokerd′′

��
0 0 0

(2)
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There exists a canonical morphism Kerd′′ −→ Cokerd′ making the following sequence exact:

Kerd′ −→ Kerd −→ Kerd′′ −→ Cokerd′ −→ Cokerd −→ Cokerd′′

Proof. By Theorem 12.3.4 of [Sch72] the top left square is a pullback and the bottom right square
is a pushout. It follows that the kernel and cokernel sequences are exact.

Let α−1
2 and β−1

1 be right inverse functions. That is, α−1
2 and β−1

1 are defined on A′′ and
Imβ1 respectively in such a way that they are inverses on these domains for α2, β1 respectively
(of course there may be many possible choices). Define ω : Kerd′′ −→ Cokerd′ by

ω(x) = εβ−1
1 dα−1

2 γ(x)

This makes sense, since d′′γ(x) = 0 so if α2(y) = γ(x) then d(y) ∈ Kerβ2 = Imβ1.
We show that ω is independent of the left inverses chosen. Since β1 is injective there is only

one choice for β−1
1 . Suppose α2(y) = α2(y′) = γ(x) for some x ∈ Kerd′′. Then y − y′ ∈ Kerα2 =

Imα1, so y = y′ + α1(a) for some a ∈ A′. Hence d(y) = d(y′) + β1d
′(a). So it is clear that we get

the same ω(x) for both y and y′.
It is not difficult to check that ω is a morphism of abelian groups. The sequence

Kerd −→ Kerd′′ −→ Cokerd′ −→ Cokerd

is clearly of order two, and a little thought shows it is exact as well. This proves the result in Ab.
Note that the morphism ω is canonical, since it is given by an explicit algorithm above.

2 Walks in Abelian Categories

We want to use the embedding theorem to lift the Snake Lemma to an arbitrary abelian category.
Suppose we are given a small abelian category A and an exact embedding T : A −→ Ab. Then we
can identify T with an abelian subcategory of Ab . The construction of the connecting morphism
above works by composing morphisms and their inverses and showing that the result is a morphism
of groups with the required property. But since T is not in general full, it is not clear that we
can reflect the connecting morphism back to A (one can avoid this by using a more powerful
embedding, but one is still stuck with the problem of canonicity). However, we can reflect any
morphism (such as the connecting morphism) constructed by a diagram chase. We make some
general definitions:

Definition 1. A relation m from an abelian group A to an abelian group B is a subset of A×B,
written m : A −→ B. Given relations m : A −→ B and n : B −→ C we write n ◦ m for the
following relation:

n ◦m = {(a, c) ∈ A× C | There exists b ∈ B with (a, b) ∈ m, (b, c) ∈ n}

If m,n are functions then n ◦m is the usual composition. The domain of a relation n : A −→ B
is the set of all a for which there exists b with (a, b) ∈ n.

Any morphism α : A −→ B of abelian groups is a relation A −→ B. But α also gives rise to
the inverse relation α : B −→ A defined to be the set of all tuples (b, a) with b = α(a). Note that
if α : A −→ B and β : B −→ C are morphisms then βα = α ◦ β.

Definition 2. Let A be a subcategory of Ab, and let A,B be two objects of A. An A-morphism
from A to B is a morphism A −→ B belonging to A, and an A-antimorphism from A to B
is the inverse relation of a morphism B −→ A belonging to A. Clearly A-morphisms and A-
antimorphisms are closed under composition.

An A-relation from A to B is a relation A −→ B which can be written as the composition of
relations αn ◦ · · ·α2 ◦ α1 where for each 1 ≤ i ≤ n, αi is an A-morphism or an A-antimorphism
from Ai to Ai+1 and A1 = A,An+1 = B. An A-relation from A to B which is a function with
domain A is called an A-function from A to B. A simple A-relation is a relation A −→ B which
can be written as the composite of an A-antimorphism followed by an A-morphism.
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Proposition 6. Let A be an abelian subcategory of Ab. Then all A-relations are simple A-
relations. If a simple A-relation is an A-function, then it is actually a morphism in A.

Proof. To show that all A-relations are simple, It would suffice to show that any composite of an
A-morphism followed by an A-antimorphism was a simple relation, because then we could arrange
the factors of any A-relation to get it into the required form.

So suppose α : A −→ B, β : C −→ B are morphisms of A and we are dealing with the
A-relation βα. Form the pullback diagram in A:

P
p //

q

��

A

α

��
C

β
// B

Since the inclusion is exact, this is a pullback diagram of abelian groups, so there is an isomorphism
P ∼= Q and a commutative diagram

Q

�#
??

??
??

?

??
??

??
?

q′

��/
//

//
//

//
//

//
/

p′

''OOOOOOOOOOOOOO

P
p //

q

��

A

α

��
C

β
// B

where Q = {(x, y) ∈ C × A |β(x) = α(y)} is the canonical pullback of abelian groups. It is not
hard to check that both βα and q′p′ are the relation {(a, c) |α(a) = β(c)} and one checks easily
that qp = q′p′, so the proof is complete.

Now suppose a simple A-relation αβ for morphisms β : B −→ A and α : B −→ C is actually
a function A −→ C. So we have a diagram

B

α

��

β // A

C

This relation being defined on all of A implies that β is an epimorphism. Let K −→ B be the
kernel of β in A and therefore in Ab. Then since αβ is a function the composite K −→ B −→ C is
zero. Since B −→ A is the cokernel of K −→ B this means that there is a morphism θ : A −→ C
in A such that B −→ A −→ C = α. It is not hard to see that αβ = θ, completing the proof.

Corollary 7. Let A be an abelian subcategory of Ab. Then all A-functions are A-morphisms.

How do you show that an A-relation is an A-function?

Lemma 8. Let A be a subcategory of Ab. An A-relation αn ◦ · · · ◦ α1 from A to B is an A-
function if and only if for every a ∈ A there is a sequence a1, . . . , an+1 with ai ∈ Ai, a = a1 and
(ai, ai+1) ∈ αi for 1 ≤ i ≤ n, and moreover any such sequence terminates with the same element
of B.

Proof. Note that by definition αn ◦ · · · ◦ α1 is the set of all pairs (a, b) for which there exists a
sequence a1, · · · , an+1 with ai ∈ Ai, a1 = a, an+1 = b and (ai, ai+1) ∈ αi for 1 ≤ i ≤ n, so this is
obvious.

So given an abelian subcategory A of Ab and two objects A,B ∈ A, suppose we can get from
A to B by going along some morphisms of A and “backwards” along other morphisms. Suppose
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that this path makes sense, in that any a ∈ A can be carried to B by mapping along the morphisms
and taking some inverse image along the backwards morphisms (we don’t require that arbitrary
choices of inverse images will lead to such a sequence, only that at each antimorphism we can make
some choice which does lead to a sequence), and moreover that this end result does not depend
on which inverse image we choose at any backward step. Then this process defines a morphism
of abelian groups A −→ B and moreover this morphism belongs to A. We say the morphism
A −→ B was constructed by diagram chasing.

The way is this is usually applied is by taking an abelian category A, finding a small, abelian
subcategory C containing an interesting diagram, and an embedding T : C −→ Ab. If we construct
morphisms between objects in C using a diagram chase then we lift the result up to C. It is not
immediately obvious that this result will be independent of the embedding T .

Definition 3. Let A be an abelian category. A walk W : A −→ B in A is a sequence of morphisms
α1, . . . , αn where for each 1 ≤ i ≤ n, αi : Ai −→ Ai+1 or αi : Ai+1 −→ Ai (called a forward and
backward step respectively) and A1 = A,An+1 = B. The length of a walk is the number of
occurring morphisms. A walk is simple if all the backward steps occur before any forward step.

Let T : A −→ Ab be an exact embedding. Any walk in A determines an A-relation T (W )
in Ab. The concatenation of two walks determines the composed relation, and a simple walk
determines a simpleA-relation. We say two walks W,W ′ between the same objects are T -equivalent
if T (W ) = T (W ′) and equivalent if they are T -equivalent for every exact embedding T : A −→ Ab.

Proposition 9. Let A be an abelian category and suppose the following diagram is a pullback:

P

q

��

p // A

α

��
C

β
// B

Then the walks α, β and p, q are equivalent.

Proof. We already proved the first claim in Proposition 6.

Corollary 10. Let A be an abelian category and suppose the following diagrams are commutative,
with isomorphisms as indicated:

B

��

// A

C

??~~~~~~~

A

��
C //

??~~~~~~~
B

Then the two ways from A to C in both diagrams give equivalent walks.

This motivates the following definition:

Definition 4. Let A be an abelian category and let W,V : A −→ B be two walks. We write
V � W if either V,W are the same walk, or they both have the same length n ≥ 1 and there
exists 1 < i < n such that αj = βj for 1 ≤ j ≤ n with j 6= i, j 6= i + 1, and there is a pullback
diagram:

Bi+1

βi

}}zz
zz

zz
zz βi+1

##FFFFFFFF

Bi

αi !!DD
DD

DD
DD

Bi+2

αi+1{{xxxxxxxx

Ai+1
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So either the walks are the same, or the walk W is obtained from V by forming a pullback diagram
at some pair of morphisms in V consisting of a forward step followed by a backward step. We
say W is obtained from V by pullback if there is a finite sequence of walks V1, . . . , Vm+1 with
V1 = V, Vm+1 = W and Vi � Vi+1 for 1 ≤ i ≤ m. Clearly W is equivalent to V .

Lemma 11. Let V be a walk in an abelian category A. Then there is a simple walk W obtained
from V by pullback. Hence any walk is equivalent to a simple walk β, α consisting of one backward
and one forward step.

Proof. Simply use the pullback technique to shift all the backward steps to the beginning of the
walk, which gives a simple walk obtained from V by pullback. Then compose all the backward
steps and all the forward steps, to get the required simple walk β, α.

2.1 Diagram chasing

We say a walk W in an abelian category A is a function walk if T (W ) is a function for every exact
embedding T : A −→ Ab.

Proposition 12. Let A be a small abelian category, and W a walk in A. Then W is a function
walk if and only if whenever β, α is a simple walk consisting of one backward and one forward step
which is equivalent to W , β is an epimorphism and α factors through β.

Proof. Suppose W is a function walk, and let T : A −→ Ab be an exact embedding. Then T (W ) =
T (α)T (β) is a function, from which it follows by the argument in the proof of Proposition 6 we
see that β is an epimorphism and α factors through β. Conversely, suppose β is an epimorphism
and α = γβ and let T : A −→ Ab be an exact embedding. Then clearly T (α)T (β) = T (γ), which
is a function.

So being a function walk in a small abelian category is actually independent of any particular
embedding, it is a condition which is intrinsic to the category. We have shown that the following
conditions on a walk W in a small abelian category are equivalent:

(i) For every exact embedding T : A −→ Ab, T (W ) is a function.

(ii) For some exact embedding T : A −→ Ab, T (W ) is a function.

(iii) Whenever β, α is a simple walk consisting of one backward and one forward step which is
equivalent to W , β is an epimorphism and α factors through β.

Definition 5. Let A be an abelian category. A walk W : A −→ B is amenable to a diagram
chase if there is a small, full, abelian subcategory C of A containing W in which W is a function
walk. A morphism d : A −→ B is said to be constructed from W by a diagram chase if for every
small, full, abelian subcategory C of A in which W is a function walk we have T (d) = T (W ) for
any exact embedding T : C −→ Ab.

Theorem 13. Let A be an abelian category with an amenable walk W : A −→ B. Then there is
precisely one morphism d : A −→ B constructed from W by a diagram chase.

Proof. Let C be a small, full, abelian subcategory of A containing W in which W is a function
walk (by assumption such a subcategory exists). Let β, α be an equivalent simple walk consisting
of one backward and one forward step. Then by Proposition 12, β is an epimorphism and α factors
through β. Let d : A −→ B be the unique morphism making the following diagram commute:

C

α

��

β // A

d��~~
~~

~~
~

B
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For any exact embedding T : C −→ Ab we have T (d) = T (W ), so this morphism d does not
depend on the simple walk β, α. We have produced a morphism dC : A −→ B with the property
that T (dC) = T (W ) for any exact embedding T : C −→ Ab.

To complete the proof it would be enough to show that dC = dC′ for any other small, full,
abelian subcategory C′ in which W is a function walk. Let B be a small, full, abelian subcategory
of A containing C, C′ and let S : B −→ Ab be an exact embedding. Then S|C and S|C′ are exact
embeddings of the respective subcategories in Ab and therefore by construction S(dC) = S(W ) =
S(dC′). Since S is faithful we see that dC = dC′ , as required.

So given an amenable walk W pick any small, full, abelian subcategory C in which W is a
function walk and let d = dC . Then d is constructed from W by a diagram chase, in the precise
sense above.

Lemma 14. The Snake Lemma holds in any abelian category A.

Proof. That is, if we replace Ab by A in the statement of the Snake Lemma, the result is still true.
Note that given the first diagram, choose any kernels and cokernels for the vertical morphisms, and
induce morphisms between them in the canonical way. Then the sequences of kernels and cokernels
are exact (the argument given in the proof of the Lemma in Ab uses categorical arguments valid
in A). So we have to prove the existence of ω : Kerd′′ −→ Cokerd′ and show the extended
sequence is exact. We do this by showing that the walk W : γ, α2, d, β1, ε is amenable in A.

Let C be a small, full, abelian subcategory of A containing all the objects in the larger second
diagram in the statement of the Snake Lemma. In C the rows and columns of the diagram are
still exact, since they were exact in A. Let T : C −→ Ab be an exact embedding, which identifies
C with an abelian subcategory of Ab. Apply the Snake Lemma in Ab to see that T (W ) is a
function, which shows that W is amenable to a diagram chase. Let ω : Kerd′′ −→ Cokerd′ be the
unique morphism constructed from W by a diagram chase, which exists and is unique by Theorem
13. Then T (ω) = T (W ), and since T reflects exact sequences, we see that the required sequence
of kernels in A followed by ω, followed by cokernels in A is exact.

We call ω the connecting morphism, and it is the unique morphism ω : Kerd′′ −→ Cokerd′

in A with the property that for any small, full, abelian subcategory C in which W is a function
walk, and for any exact embedding T : C −→ Ab we have T (ω) = T (W ), which means that T (ω)
is the canonical connecting morphism for the image under T of the diagram in Ab (provided C
contains the whole diagram, and not just the walk). Note that ω depends only on the morphisms
in the walk W , so if we choose alternative kernels for d′, d or cokernels for d, d′′ we will get the
same connecting morphism.

We claim that the connecting morphism is natural with respect to the diagram in the Snake
Lemma. More precisely:

Lemma 15. Suppose there is a morphism of diagrams of the form (1) in A. That is, a commu-
tative diagram with exact rows:

D

α

��

// E

β

��

// F //

γ

��

0

0 // D′ // E′ // F ′

A

XX111111111111111
//

ε

��

B

XX111111111111111
//

δ

��

C

XX111111111111111
//

ξ

��

0

0 // A′ //

XX11111111111111

B′ //

XX11111111111111

C ′

XX11111111111111

We claim that the induced morphisms between the kernels and cokernels fit into a commutative
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diagram

Kerα // Kerβ // Kerγ
ω // Cokerα // Cokerβ // Cokerγ

Kerε

OO

// Kerδ //

OO

Kerξ
ω′

//

OO

Cokerε //

OO

Cokerδ //

OO

Cokerξ

OO

where ω and ω′ are the canonical connecting morphisms.

Proof. Pick kernels and cokernels for the morphisms α, β, γ and ε, δ, ξ and let C be a small, full,
abelian subcategory of A containing all these objects and let T : C −→ Ab be an exact embedding.
Then T (ω), T (ω′) are the connecting morphisms for the respective diagrams, so we reduce to
proving the result in Ab. But using the explicit algorithm for the connecting morphisms, this is
straightforward to check.
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