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In this note we give a careful exposition of the basic properties of derived categories of quasi-
coherent sheaves on a scheme. This includes Neeman’s version of Grothendieck duality [Nee96]
and the proof that every complex with quasi-coherent cohomology is isomorphic to a complex of
quasi-coherent sheaves in the derived category.
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1 Introduction

All notation and conventions are from our notes on Derived Categories (DTC) or Derived Cate-
gories of Sheaves (DCOS). In particular we assume that every abelian category comes with canon-
ical structures that allow us to define the cohomology of chain complexes in an unambiguous way.
If we write complex we mean cochain complex. As usual we write A = 0 to indicate that A is a zero
object (not necessarily the canonical one). We say that a complex is exact if all its cohomology
objects are zero, and reserve the label acyclic for complexes described in (DTC2,Definition 4).

Given a scheme X we have the abelian category Qco(X) of quasi-coherent sheaves on X, whose
derived category we denote by Dqcoh(X). If X is concentrated (CON,Definition 3) then Qco(X)
is grothendieck abelian (MOS,Proposition 66) so this class of schemes is prevalent when dealing
with derived functors defined on quasi-coherent sheaves. This is a very mild condition to put on
a scheme: for example, any noetherian or affine scheme is concentrated.

In this note we develop the basic theory of the triangulated categories Dqcoh(X). The major
theorems are as follows:

• (Theorem 31) Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes.
Then the following diagram commutes up to canonical trinatural equivalence

D(X)
Rf∗ // D(Y )

Dqcoh(X)

OO

Rqf∗

// Dqcoh(Y )

OO

Outline of Proof: Show that both ways around the diagram are bounded (Corollary 22 and
Proposition 30) thereby reducing to checking for quasi-coherent sheaves.

• (Theorem 39) Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes.
The triangulated functor Rqf∗ : Dqcoh(X) −→ Dqcoh(Y ) has a right adjoint. This is the
Grothendieck duality theorem of Neeman [Nee96].

• (Theorem 42) For a quasi-compact semi-separated scheme X the canonical triangulated
functor Dqcoh(X) −→ D(X) is fully faithful, and induces an equivalence Dqcoh(X) ∼=
Dqc(X). This is Bökstedt and Neeman’s [BN93] Corollary 5.5.

• (Theorem 63) For a quasi-compact semi-separated scheme X with an ample family of invert-
ible sheaves the triangulated category Dqcoh(X) is compactly generated and the compact
objects are precisely the perfect complexes. More generally [Nee96] shows how to remove
the ampleness hypothesis.

• (Theorem 102) For an irreducible quasi-compact semi-separated scheme X with an ample
family of invertible sheaves the units in Dqcoh(X) under the derived tensor product are
precisely the shifts of invertible sheaves. The ampleness hypothesis can again be removed
with a little more background.

See (CON,Definition 4) for the definition of a semi-separated scheme, a semi-separating cover
and a semi-separating affine basis. A quasi-compact semi-separated scheme is concentrated, and
a separated scheme is semi-separated. For the definition of hoinjective, hoprojective and hoflat
complexes see (DTC,Definition 24) and (DCOS,Definition 9). There are various other names for
these complexes in current usage (DTC,Remark 20), the most common probably beingK-injective,
K-projective and K-flat.

1.1 Remarks on Noetherian Assumptions

The original work on Grothendieck duality [Har66] relied heavily on noetherian hypotheses, which
were later removed after substantial effort by Lipman [Lip]. The approach we take in these notes
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is that of Neeman [Nee96], which goes via Brown representability and also manages to avoid any
noetherian conditions. Since this is an important point in the literature, it is worth taking a
moment here to describe what the noetherian condition buys you.

If X is a scheme then we have an exact functor (−)|U : Qco(X) −→ Qco(U) and the induced
coproduct preserving triangulated functor

(−)|U : Dqcoh(X) −→ Dqcoh(U)

If a complex F of quasi-coherent sheaves of modules onX is hoinjective as an object ofK(Qco(X)),
it is not necessarily hoinjective as an object of K(X). Moreover, the restriction F |U is not neces-
sarily hoinjective in K(Qco(U)), because the left adjoint to restriction (extension by zero) does not
necessarily preserve quasi-coherence. If we say that a quasi-coherent sheaf of modules is injective,
then we mean it is injective in Mod(X) unless there is some indication otherwise.

IfX is a noetherian scheme then the grothendieck abelian category Qco(X) is locally noetherian
(MOS,Remark 10). Moreover a quasi-coherent sheaf I is injective in Qco(X) if and only if it is
injective in Mod(X). If I is injective in Qco(X) and U ⊆ X is open, then I |U is injective in
Qco(U) (MOS,Corollary 69).

It has been known for a long time, and particularly since [Har66] that quasi-coherent injectives
on noetherian schemes are very well-behaved. They are so nice that we can use global resolutions
and develop the properties of Dqcoh(X) in exactly the same way as we studied D(X) in our notes
on Derived Categories of Sheaves (DCOS). See our notes on Derived Categories of Quasi-coherent
Sheaves on a Noetherian Scheme (DCOQSN) for this development.

For non-noetherian schemes injectives and hoinjectives are less useful: they are not even stable
under restriction. This explains why the general theory has a very different flavour. Whereas the
proofs in the noetherian case rely on finding and using global resolutions, the proofs in the general
case have the following recipe:

• Reduce to the affine case using induction on minimal affine covers, Čech resolutions (which
to some extent replace hoinjective resolutions), and the Čech triangles of Section 4.2.

• In the affine case one relies on the homotopy theoretic techniques introduced by Bökstedt
and Neeman [BN93], and the fact that Qco(X) ∼= RMod has exact products. This allows
us to take homotopy inverse limits and reduce to sheaves instead of complexes.

• Once we have reduced to individual quasi-coherent sheaves the proof is typically finished
by an application of some deep result of algebraic geometry. The reader can usually find
these results in EGA or sometimes [Har77], and also in our notes on Cohomology of Sheaves
(COS) and Higher Direct Images of Sheaves (HDIS). Since we are not working on noetherian
schemes we usually need the “hard” version of these results.

1.2 Basic Properties

Lemma 1. Let X be a scheme and ψ : F −→ G a morphism in Dqcoh(X). If {Vi}i∈I is a
nonempty open cover of X then ψ is an isomorphism if and only if ψ|Vi

is an isomorphism in
Dqcoh(Vi) for every i ∈ I.

Lemma 2. Let X be a scheme, {Fλ}λ∈Λ a nonempty family of complexes of quasi-coherent
sheaves on X and {uλ : Fλ −→ F}λ∈Λ a family of morphisms in Dqcoh(X). If {Vi}i∈I is a
nonempty open cover of X then the uλ are a coproduct in Dqcoh(X) if and only if the morphisms

uλ|Vi : Fλ|Vi −→ F |Vi

are a coproduct in Dqcoh(Vi) for each i ∈ I.
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Remark 1. Let A be a commutative ring and X a scheme over Spec(A). The abelian category
Mod(X) is A-linear and therefore for complexes F ,G ∈ C(X) the complex Hom•(F ,G ) is
canonically a complex of A-modules. That is, we have a functors additive in each variable

Hom(−,−) : Mod(X)op ×Mod(X) −→ AMod

Hom•(−,−) : C(X)op ×C(X) −→ C(A)

The former functor is homlike, so define a functor triangulated in each variable (DTC2,Definition
16)

RHom•
A(−,−) : D(X)op ×D(X) −→ D(A)

which we distinguish from the usual derived Hom with the subscript A. Given an assignment of
hoinjectives I we have an equality RHom•

A,I(F ,G ) = RHom•
I(F ,G ) in D(Ab) natural in both

variables. With this introduction, observe that the second isomorphism of (DCOS,Proposition 69)
is actually a natural isomorphism in D(A).

2 Derived Structures

2.1 Derived Direct Image

Definition 1. Let f : X −→ Y be a concentrated morphism of schemes with X concentrated.
Since Qco(X) is grothendieck abelian the functor f∗ : Qco(X) −→ Qco(Y ) has a right derived
functor

Rqf∗ : Dqcoh(X) −→ Dqcoh(Y )

This is only determined up to canonical trinatural equivalence, but for an assignment I of hoin-
jective resolutions for Qco(X) we have a canonical right derived functor Rq,If∗. We introduce the
subscript q to remind ourselves that in general, Rqf∗ and Rf∗ are different functors.

Lemma 3. Let f : X −→ Y be a concentrated morphism of schemes with X concentrated and
let i : U −→ X be the inclusion of a quasi-compact open subset. There is a canonical trinatural
equivalence

θ : Rq(fi)∗ −→ Rqf∗ ◦ Rqi∗

Proof. The functor i∗ : Qco(U) −→ Qco(X) has an exact left adjoint (restriction), so K(i∗) :
K(Qco(U)) −→ K(Qco(X)) preserves hoinjectives (DTC,Lemma 62). From (DTC2,Theorem 6)
we deduce the required trinatural equivalence.

Lemma 4. Let X be a concentrated scheme and i : U −→ X the inclusion of a quasi-compact
open subset. Then Rqi∗ : Dqcoh(U) −→ Dqcoh(X) is fully faithful.

Proof. Let (Rqi∗, ζ) be any right derived functor. The functor (−)|U : Qco(X) −→ Qco(U) is
an exact left adjoint to i∗ so it follows from (DTC2,Lemma 10) that (−)|U : Dqcoh(X) −→
Dqcoh(U) is canonically left triadjoint to Rqi∗. The unit η♦ : 1 −→ Rq(i∗) ◦ (−)|U and counit
ε♦ : (−)|U ◦Rq(i∗) −→ 1 are the unique trinatural transformations making the following diagram
commute for every complex F of quasi-coherent sheaves on X and complex G of quasi-coherent
sheaves on U

F

η

��

η♦

**UUUUUUUUUUU

Rqi∗(F |U )

i∗(F |U )
ζF|U

44jjjjjjjjj

Rqi∗(G )|U

ε♦

��

i∗(G )|U
1 **UUUUUUUUUUUU

ζG |U 55jjjjjjjjj

G

One checks as in (DCOS,Lemma 17) that ε♦ is a natural equivalence, and therefore Rqi∗ is fully
faithful. Further we deduce that ζG |U : G −→ Rqi∗(G )|U is an isomorphism in Dqcoh(U) for
any complex G of quasi-coherent sheaves on U , and also that η♦|U : F |U −→ Rqi∗(F |U )|U is an
isomorphism in Dqcoh(U) for any complex F of quasi-coherent sheaves on X.
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For the next result we introduce some notation. Let X be a concentrated scheme. For every
affine open subset with inclusion i : V −→ X we have a complex of quasi-coherent sheaves
Rqi∗(F ) on X for every complex of quasi-coherent sheaves F on V . Let Ω(X) denote the smallest
triangulated subcategory of Dqcoh(X) containing these Rqi∗(F ) as V ranges over all affine open
subsets of X. The proof of the following result is due to Neeman.

Proposition 5. Let X be a quasi-compact semi-separated scheme. Then the triangulated category
Dqcoh(X) is generated by the objects of Dqcoh(V ) for affine open V ⊆ X. That is, we have
Dqcoh(X) = Ω(X).

Proof. Given a quasi-compact semi-separated scheme X let n(X) denote the smallest number of
affine open subsets that you can use to form a semi-separating cover of X. That is, the smallest
integer n ≥ 1 for which we can write X = X1 ∪ · · · ∪Xn for affine open subsets Xi such that the
intersections Xi ∩ Xj are all affine. We proceed by induction on n = n(X). The case n = 1 is
trivial, so assume that n(X) > 1 with X = X1 ∪ · · · ∪ Xn and set U = X1, V = X2 ∪ · · · ∪ Xn.
Then V is a quasi-compact semi-separated scheme with n(V ) < n so the result is true for V . Let
j : V −→ X and i : U −→ X be the inclusions.

Let G be a complex of quasi-coherent sheaves on X. We have to show that G ∈ Ω(X). It
follows easily from Lemma 3 and (DTC,Remark 51) that Rqj∗Ω(V ) ⊆ Ω(X) and in particular
Rqj∗(G |V ) belongs to Ω(X), since by the inductive hypothesis Ω(V ) = Dqcoh(V ). Extend the
unit G −→ Rqj∗(G |V ) to a triangle in Dqcoh(X)

H −→ G −→ Rqj∗(G |V ) −→ ΣH (1)

Since Ω(X) is triangulated we need only show that H belongs to Ω(X), which we do by showing
that the unit H −→ Rqi∗(H |U ) is an isomorphism. This restricts to an isomorphism on U ,
so by Lemma 2 it is enough to show that it restricts to an isomorphism in Dqcoh(W ) for every
affine open W ⊆ V . From the triangle (1) we see that H |V = 0 in Dqcoh(V ), and in particular
H |W = 0 in Dqcoh(W ), so what we have to show is that Rqi∗(H |U )|W = 0 in Dqcoh(W ).

Since the Xi form a semi-separating cover, the inclusion i : U −→ X is affine and therefore
i∗ : Qco(U) −→ Qco(X) is exact. We can therefore replace Rqi∗ by the usual direct image i∗. In
that case i∗(H |U )|W = k∗(H |U∩W ) = 0 in Dqcoh(W ) where k : U ∩W −→ W is the inclusion
(which, as the pullback of i, is also affine). This is what we wanted to show, so the proof is
complete.

Remark 2. Let X be a quasi-compact separated scheme. Then for affine V ⊆ X the inclusion
i : V −→ X is affine and therefore i∗ is exact. It follows that in this case Ω(X) is the smallest
triangulated subcategory of Dqcoh(X) containing i∗F for every complex of quasi-coherent sheaves
of modules F and inclusion i : V −→ X of an affine open subset.

When we proved that the derived image functor was local in (DCOS,Lemma 19) and (DCO-
QSN,Lemma 3) the key point both times was that restricting some resolution on X was g∗-acyclic.
Generally such a resolution is not available, but by being clever and reducing to the case where g
is affine (so g∗ is exact and everything is g∗-acyclic) we can avoid the need for one altogether.

Lemma 6. Let f : X −→ Y be a morphism of separated schemes with X quasi-compact, and
V ⊆ Y a quasi-compact open subset. Then for any complex F of quasi-coherent sheaves of
modules on X there is a canonical isomorphism in Dqcoh(V ) natural in F

µ : (Rqf∗F )|V −→ Rqg∗(F |U )

where U = f−1V and g : U −→ V is the induced morphism of schemes.

Proof. To begin with all we assume is that we are given a concentrated morphism of schemes
f : X −→ Y and an open subset V ⊆ Y such that X and U = f−1V are concentrated. Then we
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have a commutative diagram of additive functors

Qco(X)

(−)|U
��

f∗ // Qco(Y )

(−)|V
��

Qco(U)
g∗

// Qco(V )

Choosing arbitrary right derived functors (Rqf∗, ζ), (Rqg∗, ω) we have a diagram of triangulated
functors

Dqcoh(X)

(−)|U
��

Rqf∗ // Dqcoh(Y )

(−)|V
��

Dqcoh(U)
Rqg∗

// Dqcoh(V )

By (DTC2,Corollary 7) the pair ((−)|V Rqf∗, (−)V ζ) is a right derived functor of the functor
(−)|V ◦ f∗ = g∗ ◦ (−)|U . On the other hand we have the trinatural transformation

ω(−)|U : QV K((−)|V ◦ f∗) = QV K(g∗ ◦ (−)|U ) −→ Rq(g∗)(−)|UQX

which induces a unique trinatural transformation µ : (−)|V Rqf∗ −→ Rq(g∗)(−)|U such that µQX ◦
(−)|V ζ = ω(−)|U . Observe that if g is affine then g∗ is exact, so that every complex in Qco(U) is
g∗-acyclic and by the argument of (DCOS,Lemma 19) we deduce that µ is a natural equivalence.
We want to show that under the hypotheses given in the statement of the lemma, µ is a natural
equivalence.

The morphism f is quasi-compact and separated (in particular concentrated) by the standard
results (CON,Proposition 4)(v) and (SPM,Proposition 3)(v) and the schemes X,U are concen-
trated. Let S be the full subcategory of Dqcoh(X) consisting of complexes F such that µF is
an isomorphism in Dqcoh(V ). This is a triangulated subcategory of Dqcoh(X) (TRC,Remark
30), so to show that µ is a natural equivalence it suffices by Proposition 5 to show that it is an
isomorphism for any object of Dqcoh(W ) with W ⊆ X affine.

So let j : W −→ X be the inclusion of an affine open subset. Since X is separated this
morphism is affine, and in particular if we form the following two pullback diagrams

W
j // X

f // Y

U ∩W
k

//

OO

U

OO

g
// V

OO

then k is affine. Moreover f ◦ j is a morphism from an affine scheme to a separated scheme, and
is therefore affine (SPM,Proposition 21). We deduce from the outer pullback that g ◦ k is affine.
Let H be a complex of quasi-coherent sheaves on W . Since k, g ◦ k are affine we have using
(DCOQS,Lemma 3) an isomorphism in Dqcoh(V )

Rqf∗(Rqj∗H )|V ∼= Rq(fj)∗(H )|V
∼= Rq(gk)∗(H |U∩W )
∼= Rqg∗(Rqk∗(H |U∩W ))
∼= Rqg∗(Rqj∗(H )|U )

One checks that this is µ evaluated on Rqj∗(H ), which shows that µ is a trinatural equivalence
and completes the proof.
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2.2 Derived Sheaf Hom

Throughout this section let X be a concentrated scheme. By (MOS,Definition 3) the inclusion
i : Qco(X) −→Mod(X) has a right adjoint Q called the coherator. Throughout this section we fix
a particular right adjoint Q, and whenever we say that some construction on X is “canonical” we
mean that it is canonical after this choice is fixed. In this sense we have a canonical triadjunction
between the canonical functor i : Dqcoh(X) −→ D(X) and RQ : D(X) −→ Dqcoh(X).

The problem with defining RHom•(−,−) on Dqcoh(X) is that in general Hom(F ,G ) is not
quasi-coherent, even if both sheaves F ,G are. Some further finiteness hypothesis on F is required.
So to define the sheaf Hom on Dqcoh(X) we take the sheaf Hom on D(X) and coherate.

Definition 2. Fix an assignment of hoinjectives I for Mod(X) and define Rq,IHom•(−,−) to
be the following functor triangulated in each variable

RQ ◦ RIHom•(−,−) : Dqcoh(X)op ×Dqcoh(X) −→ Dqcoh(X)

As usual we will usually drop the subscript I and just write RqHom•(−,−) when there is no
chance of confusion.

2.3 Derived Inverse Image

If f : X −→ Y is a morphism of schemes then the additive functor f∗ : Mod(Y ) −→Mod(X) has
a left derived functor Lf∗ (DCOS,Section 6). To show that Lf∗ existed we showed that every
hoflat complex was acyclic for f∗, and also that every complex of sheaves of modules admitted a
quasi-isomorphism from a hoflat complex. This latter fact follows from our ability to write every
sheaf as the quotient of a flat sheaf (since the generators OU of Mod(X) are flat).

If G is a quasi-coherent sheaf on Y then f∗G is quasi-coherent, so we have an additive functor
f∗ : Qco(Y ) −→ Qco(X). In trying to define a left derived functor Lqf

∗ we have a problem:
the sheaves OU are not generally quasi-coherent, so it is not immediately clear how to write a
quasi-coherent sheaf as a quotient of a flat quasi-coherent sheaf. At least on a quasi-compact
semi-separated scheme this is always possible, and we direct the careful reader to the proof in
Section 2.4.

Remark 3. Alternatively let X be a concentrated scheme that admits an ample family of invert-
ible sheaves (AMF,Definition 2). Then every quasi-coherent sheaf can be written as a quotient
of a locally free (hence flat and quasi-coherent) sheaf (AMF,Corollary 7). Note that any quasi-
projective variety has an ample invertible sheaf (BU,Lemma 17), so the reader only interested in
varieties can safely skip Section 2.4.

Definition 3. Let X be a scheme and F a complex of quasi-coherent sheaves. We say that
F is homotopy flat (or hoflat) if it is hoflat as a complex of sheaves of modules in the sense
of (DCOS,Definition 9). The hoflat complexes of quasi-coherent sheaves form a thick localising
subcategory of K(Qco(X)). We say that X has enough quasi-coherent hoflats if every complex
F in Qco(X) admits a quasi-isomorphism P −→ F with P a hoflat complex of quasi-coherent
sheaves.

Lemma 7. Let X be a concentrated scheme and U ⊆ X a quasi-compact open subset. If X has
enough quasi-coherent hoflats then so does U .

Proof. The scheme U is concentrated and therefore so is the inclusion i : U −→ X. Let F be a
complex of quasi-coherent sheaves on U . Then i∗F is a complex of quasi-coherent sheaves on X,
and therefore admits a quasi-isomorphism P −→ i∗F with P quasi-coherent and hoflat on X.
Restricting to U we have a quasi-isomorphism P|U −→ F with P|U quasi-coherent and hoflat,
as required.

Lemma 8. Let X be either a quasi-compact semi-separated scheme or a concentrated scheme with
an ample family of invertible sheaves. Then X has enough quasi-coherent hoflats.
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Proof. Either by Proposition 16 or (AMF,Corollary 7) every quasi-coherent sheaf F admits an
epimorphism P −→ F with P quasi-coherent and flat. Therefore the quasi-coherent flat sheaves
are a smothering class for Qco(X) in the sense of (DTC,Definition 30). Since the category of
hoflat quasi-coherent complexes is localising in K(Qco(X)) it follows from (DTC,Proposition 71)
that every complex in Qco(X) admits a quasi-isomorphism from a hoflat quasi-coherent complex.
In particular any affine scheme or quasi-projective variety over a field has enough quasi-coherent
hoflats.

Let f : X −→ Y be a morphism of schemes where Y has enough quasi-coherent hoflats. Since
f∗ : Qco(Y ) −→ Qco(X) sends an exact hoflat complex to an exact complex (DCOS,Lemma 52)
it follows as in the proof of (DCOS,Proposition 86) that every hoflat complex of quasi-coherent
sheaves on Y is left f∗-acyclic. Therefore by (DTC2,Theorem 2) the functor f∗ has a left derived
functor.

Definition 4. Let f : X −→ Y be a morphism of schemes where Y has enough quasi-coherent
hoflats. The additive functor f∗ : Qco(Y ) −→ Qco(X) has a left derived functor

Lqf
∗ : Dqcoh(Y ) −→ Dqcoh(X)

which we call the derived inverse image functor, or often just the inverse image functor. This is
only determined up to canonical trinatural equivalence, but if we fix an assignment F of hoflat
resolutions for Qco(Y ) then we have a canonical left derived functor which we denote Lq,Ff

∗.

Proposition 9. Let f : X −→ Y be a concentrated morphism of schemes where X is concentrated
and Y has enough quasi-coherent hoflats. There is a canonical triadjunction

Dqcoh(X)
Rqf∗

--
Dqcoh(Y )

Lqf∗
mm Lqf

∗ � Rqf∗

whose unit η♦ : 1 −→ Rqf∗ ◦ Lqf
∗ is the unique trinatural transformation making the following

diagram commute for every complex Y of quasi-coherent sheaves on Y

Y

η

��

η♦

// Rqf∗(Lqf
∗Y )

Rqf∗(ω)

��
f∗f

∗(Y )
ζ

// Rqf∗(f∗Y )

(2)

Proof. This is a special case of (DTC2,Theorem 9).

Remark 4. Let f : X −→ Y be a morphism of schemes where Y has enough quasi-coherent
hoflats and let Lqf

∗ be a left derived functor. The sheaf OY is quasi-coherent and flat, so it is
hoflat as a complex and we have a canonical isomorphism Lqf

∗OY
∼= f∗OY

∼= OX in Dqcoh(X).

Lemma 10. Let f : X −→ Y be a morphism of schemes and V ⊆ Y and U ⊆ f−1V open subsets
where both Y, V have enough quasi-coherent hoflats. For any complex G of quasi-coherent sheaves
on Y there is a canonical isomorphism in Dqcoh(U) natural in G

µ : (Lqf
∗G )|U −→ Lqg

∗(G |V )

where g : U −→ V is the induced morphism of schemes.

Proof. The proof is identical to (DCOS,Lemma 87). If θ : (−)|U ◦f∗ −→ g∗◦(−)|V is the canonical
natural equivalence then we obtain a canonical trinatural equivalence µ = Lθ : (−)|U ◦ Lqf

∗ −→
Lqg

∗ ◦ (−)|V making the following diagram commute

(−)|U ◦ Lqf
∗ ◦Q

(−)|U ζ

��

µQ // Lqg
∗ ◦ (−)|V ◦Q

ω(−)|V
��

Q′ ◦K((−)|U ◦ f∗)
Q′K(θ)

// Q′ ◦K(g∗ ◦ (−)|V )
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as required.

It will take quite a bit of work in Theorem 31 to show that the quasi-coherent derived direct
direct image agrees with the usual derived direct image. The analogous statement for the inverse
image is very easy, because there is no question of flats being different in Qco(X) and Mod(X).

Proposition 11. Let f : X −→ Y be a morphism of schemes where Y has enough quasi-coherent
hoflats. The diagram

D(Y )
Lf∗ // D(X)

Dqcoh(Y )

U

OO

Lqf∗
// Dqcoh(X)

u

OO

commutes up to canonical trinatural equivalence.

Proof. Let u, U be the inclusions, so that we have a commutative diagram

Mod(Y )
f∗ // Mod(X)

Qco(Y )

U

OO

f∗
// Qco(X)

u

OO

and take arbitrary left derived functors (Lf∗, ζ), (Lqf
∗, ω). The trinatural transformations are of

the form

ζ : Lf∗ ◦Q −→ Q ◦K(f∗)
ω : Lqf

∗ ◦Q −→ Q ◦K(f∗)

and by (DTC2,Theorem 8) the pair (u ◦ Lqf
∗, uω) is a left derived functor of u ◦ f∗ = f∗ ◦ U .

The trinatural transformation ζK(U) induces a unique trinatural transformation µ : Lf∗ ◦U −→
u ◦ Lqf

∗ making the following diagram commute

Lf∗ ◦ U ◦Q

ζK(U) ''OOOOOOOOOOOO
µQ // u ◦ Lqf

∗ ◦Q

uω
wwoooooooooooo

QK(u ◦ f∗)

(3)

and we claim that µ is a trinatural equivalence. Because Y has enough quasi-coherent hoflats
it suffices to check that µY is an isomorphism for Y ∈ Dqcoh(Y ) hoflat. But this is clear from
commutativity of (3), so the proof is complete.

2.4 Existence of Quasi-coherent Flats

To write a quasi-coherent sheaf as a quotient of a flat quasi-coherent sheaf, one essentially works
locally over affines and then uses Čech complexes to patch together the resolutions on the affines.
For this purpose the separatedness of the scheme is essential. Most of the proofs in this section
are a special case of those given in [ATJLL97](1.2). Note that [ATJLL97](1.2) contains a serious
gap, corrected in [ATJLL], but the gap is in a part of the proof that does not affect the discussion
here.

Throughout this section X is a fixed quasi-compact semi-separated scheme and all sheaves of
modules are over X, unless specified otherwise. Let U = {U0, . . . , Un} be a finite semi-separating
open cover of X which is totally ordered, and let B be the set of nonempty subsets of U. Given
α = {i0, . . . , in} in B we write Uα for the intersection Ui0 ∩ · · · ∩ Uin

.

9
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Definition 5. An U-module is a collection F = {Fα}α∈B of sheaves of modules on Uα together
with a morphism of sheaves of modules ϕα,β : Fβ |Uα −→ Fα whenever α ⊇ β in B, subject to
the following conditions

(i) ϕα,α = 1 for any α ∈ B.

(ii) Whenever α ⊇ β ⊇ γ in B we have ϕα,γ = ϕα,β ◦ (ϕβ,γ |Uα
).

A morphism of U-modules is a collection {φα}α∈B of morphisms of sheaves of modules φα : Fα −→
F ′

α making the following diagram commute for every pair α ⊇ β in B

Fβ |Uα

ϕα,β

��

φβ |Uα // F ′
β |Uα

ϕ′
α,β

��
Fα

φα

// F ′
α

This defines the preadditive category UMod of U-modules. If φ : F −→ F ′ is a morphism
of U-modules then we define modules Ker(φ)α = Ker(φα) and Coker(φ)α = Coker(φα) and
these are the kernel and cokernel in UMod respectively. The image is defined pointwise as well.
Observe that φ is a monomorphism (resp. epimorphism) in UMod if and only if φα has this
property for every α ∈ B. Given a nonempty family {F i}i∈I of U-modules we define a coproduct
by (⊕iF i)α = ⊕iF i

α. It is now clear that UMod is a cocomplete abelian category, in which a
sequence is exact if and only if it is pointwise exact.

We say that a U-module F is quasi-coherent or flat if every Fα has this property as a sheaf of
modules on Uα. Suppose we are just given a family {Fα}α∈B of sheaves of modules on Uα with
no morphisms ϕα,β . Define a new family of sheaves by

Gα =
⊕
α⊇β

Fβ |Uα

and let ϕα,β be the canonical morphism between the coproducts. This clearly defines an U-module,
which we denote by T (F ). A family of morphisms φα : Fα −→ F ′

α determines a morphism of
U-modules T (φ) : T (F ) −→ T (F ′). Since coproducts in Mod(X) are exact, if the φα are all
epimorphisms then so is T (φ). If F is actually a U-module then there is a canonical epimorphism
of U-modules T (F ) −→ F defined in the obvious way.

Lemma 12. Every quasi-coherent U-module is a quotient of a flat quasi-coherent U-module.

Proof. Let F be a quasi-coherent U-module. Since each Uα is affine we can find a quasi-coherent
flat sheaf Qα and an epimorphism Qα −→ Fα. Then P = T (Q) is a quasi-coherent flat U-module
and there is an epimorphism P −→ F , as required.

Let F be a U-module and define for p ≥ 0 a sheaf of modules on X by

C p(F ) =
∏

i0<···<ip

f∗Fi0,...,ip

where f : Ui0,...,ip −→ X is always the inclusion. Observe that this is a finite product, hence also
a coproduct. For p ≥ 0 and a sequence α = {i0, . . . , ip+1} we define a morphism of sheaves of
modules

dp : C p(F ) −→ C p+1(F )

(dp)V (x)α =
p+1∑
k=0

(−1)k(ϕα,βk
)V ∩Uα(xβk

|V ∩Uα)

10



where βk = {i0, . . . , îk, . . . , ip+1} is α with ik deleted. This defines a complex C (F ) of sheaves of
modules on X. Given a morphism of U-modules φ : F −→ G we have a morphism of complexes

C (φ) : C (F ) −→ C (G )

C p(φ) =
∏

i0<···<ip

f∗φi0,...,ip

and this defines an additive functor C (−) : UMod −→ C(X). Given a complex X of U-modules
we have a bicomplex Mpq = C q(X p) in Mod(X) whose totalisation (DTC,Definition 33) we
denote by Ctot(X ). That is,

C n
tot(X ) =

⊕
p+q=n

C q(X p)

The bicomplex is functorial in X and therefore so is its totalisation, so we have an additive functor
Ctot(−) : C(U) −→ C(X). Given a complex X of U-modules there is a canonical isomorphism of
complexes natural in X

ρ : Ctot(ΣX ) −→ ΣCtot(X )
ρnupq = up+1,q

Let ϕ,ψ : X −→ Y be morphisms of complexes of U-modules and suppose that there exists
a homotopy Σ : ψ −→ ϕ. Then Σn : X n −→ Y n−1 determines a morphism of complexes
C (X n) −→ C (Y n−1) and this is a homotopy of the induced morphism of bicomplexes, in the
sense of (SS,Definition 7). By (SS,Lemma 15) we deduce a homotopy between Ctot(ϕ) and Ctot(ψ),
so there is an induced additive functor Ctot(−) : K(U) −→ K(X).

Lemma 13. Let u : X −→ Y be a morphism of complexes of U-modules. There is a canonical
isomorphism of complexes Ctot(Cu) ∼= CCtot(u).

Proof. For n ∈ Z we have a canonical isomorphism of sheaves of modules κn

Ctot(Cu)n = ⊕p+q=nC q(Cp
u) = ⊕p+q=nC q(X p+1 ⊕ Y p)

= ⊕p+q=n

(
C q(X p+1)⊕ C q(Y p)

)
=

(
⊕p+q=nC q(X p+1)

)
⊕ (⊕p+q=nC q(Y p))

= Ctot(ΣX )n ⊕ Ctot(Y )n

∼= Ctot(X )n+1 ⊕ Ctot(Y )n

= Cn
Ctot(u)

Here Cn
Ctot(u) = Ctot(X )n+1 ⊕ Ctot(Y )n and C q(Cp

u) = C q(X p+1) ⊕ C q(Y p), and with this
biproduct structure understood we have

κnupq = up+1,q ⊕ upq

One checks that this is an isomorphism of complexes Ctot(Cu) −→ CCtot(u).

Lemma 14. The pair (Ctot(−), ρ) is a triangulated functor K(U) −→ K(X) which sends exact
complexes of quasi-coherent U-modules to exact complexes of quasi-coherent OX-modules. If u :
X −→ Y is a quasi-isomorphism of complexes of quasi-coherent U-modules then Ctot(u) is also
a quasi-isomorphism.

Proof. It is straightforward to check using Lemma 13 that the given pair is a triangulated functor.
Suppose that X is an exact complex of U-modules. In the definition of C p(F ) the inclusions
f : Ui0,...,ip

−→ X are all affine by definition of a semi-separating cover, so the induced functor
f∗ is exact on quasi-coherent sheaves. It follows that the rows of the bicomplex Mpq = C q(X p)
are exact, so by a spectral sequence argument (SS,Example 2) we deduce that Ctot(X ) is exact,
as required.
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Lemma 15. Let f : X −→ Y be a flat affine morphism of schemes and F a flat quasi-coherent
sheaf of modules on X. Then f∗F is also flat and quasi-coherent.

Proof. The question is local and f is affine, so we can assume X = SpecA, Y = SpecB in which
case f is induced by a flat morphism of rings ϕ : B −→ A. The result now follows from the fact
that a module flat over A is also flat over B (MAT,Lemma 16).

Proposition 16. Let X be a quasi-compact semi-separated scheme and F a quasi-coherent sheaf
of modules. There is a flat quasi-coherent sheaf of modules P and an epimorphism P −→ F .

Proof. We choose a finite semi-separating open cover of X and use the above notation. Let F ′

denote the U-module constructed from the restrictions of F in the obvious way. Then Ctot(F ′)
is canonically isomorphic (as a complex) to the usual Čech resolution of F with respect to U, so
there is a canonical quasi-isomorphism of complexes F −→ Ctot(F ′).

Now let A be the abelian category of quasi-coherent U-modules. The class P of flat quasi-
coherent U-modules forms by Lemma 12 a smothering class for A in the sense of (DTC,Definition
30). We can therefore find by (DTC,Proposition 69) a quasi-isomorphism of complexes of quasi-
coherent U-modules P −→ F ′, with P bounded above (in fact we can assume Pi = 0 for i > 0)
and each Pi flat. From Lemma 14 we conclude that there is a quasi-isomorphism Ctot(P) −→
Ctot(F ′), with the terms of the first complex being both quasi-coherent and flat by Lemma 15.
In other words, F is isomorphic in D(X) to a bounded above complex Q of flat quasi-coherent
sheaves.

If F is zero the result is trivial, so suppose otherwise and let N ≥ 0 be such that Qi = 0
for i > N and QN 6= 0. The proof is by induction on N . If N = 0 then the existence of the
isomorphism F ∼= Q in D(X) exhibits F as a quotient of a flat quasi-coherent sheaf. If N > 0
then we have a short exact sequence

0 −→ Ker∂N−1
Q −→ QN−1 −→ QN −→ 0

from which it follows that Ker∂N−1
Q is flat and quasi-coherent. Hence the truncation Q≤(N−1) of

(DTC,Definition 14) is a complex of flat quasi-coherent sheaves. Since F ∼= Q≤(N−1) in D(X) we
have reduced the problem by at least one degree, so by the inductive hypothesis we are done.

2.5 Derived Tensor

Let X be a scheme. The tensor product of two quasi-coherent sheaves is quasi-coherent, so the
tensor product on Mod(X) restricts to a functor − ⊗OX

− : Qco(X) × Qco(X) −→ Qco(X)
additive in each variable.

Definition 6. Let X be a scheme. Taking T to be the tensor product of quasi-coherent sheaves
in (DCOS,Definition 6) we have a functor additive in each variable

−⊗OX
− : C(Qco(X))×C(Qco(X)) −→ C(Qco(X))

We drop the subscript on the tensor whenever it will not cause confusion. This is just the restriction
of the tensor product on C(X) given in (DCOS,Definition 8), so in particular we have a canonical
isomorphism of complexes τ : X ⊗Y −→ Y ⊗X natural in both variables. There is an induced
functor additive in both variables

−⊗OX
− : K(Qco(X))×K(Qco(X)) −→ K(Qco(X))

In particular for a complex X in Qco(X) we have additive functors−⊗X ,X ⊗− : K(Qco(X)) −→
K(Qco(X)). For the reader’s convenience we list the properties of this tensor product that are
immediate from our earlier treatment of the tensor product on Mod(X):

• Let X ,Y be complexes of quasi-coherent sheaves. There are canonical isomorphisms of
complexes natural in both variables ρ : X ⊗ (ΣY ) −→ Σ(X ⊗ Y ) and σ : (ΣX )⊗ Y −→
Σ(X ⊗ Y ).
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• Let u : X −→ Y be a morphism of complexes of quasi-coherent sheaves. For any complex
Z of quasi-coherent sheaves there is a canonical isomorphism Z ⊗ Cu

∼= CZ⊗u.

• For any complex Z of quasi-coherent sheaves the pairs (Z ⊗−, ρ) and (−⊗Z , σ) are coprod-
uct preserving triangulated functors K(Qco(X)) −→ K(Qco(X)) and there is a canonical
trinatural equivalence τ : Z ⊗− −→ −⊗Z .

• If F is a hoflat complex of quasi-coherent sheaves then the functors F ⊗ − and − ⊗ F
preserve quasi-isomorphisms of complexes. If F is in addition exact then F ⊗X is exact
for any complex X of quasi-coherent sheaves.

• Suppose that X has enough quasi-coherent hoflats and let X be a complex of quasi-coherent
sheaves. Then any hoflat complex F of quasi-coherent sheaves is left acyclic for the trian-
gulated functors Q ◦ (−⊗X ), Q ◦ (X ⊗−) : K(Qco(X)) −→ Dqcoh(X).

Definition 7. Let X be a scheme with enough quasi-coherent hoflats and X a complex of quasi-
coherent sheaves. The triangulated functor Q ◦ (X ⊗ −) : K(Qco(X)) −→ Dqcoh(X) has a left
derived functor

X
=
⊗− : Dqcoh(X) −→ Dqcoh(X)

To be precise, for each assignment F of quasi-coherent hoflat resolutions for X we have a canonical
left derived functor X

=
⊗F − of Q◦ (X ⊗−). In particular X

=
⊗F Y = X ⊗FY , where FY −→ Y

is the chosen hoflat resolution.

Let X be a scheme with enough quasi-coherent hoflats. We use the notation of Definition 7
and fix an assignment F of quasi-coherent hoflat resolutions. Given a morphism ψ : X −→ X ′

in K(Qco(X)) we can define a trinatural transformation

ψ ⊗− : X ⊗− −→X ′ ⊗−
(ψ ⊗−)Y = ψ ⊗ Y

This gives rise to a trinatural transformation Q(ψ ⊗ −) : Q(X ⊗ −) −→ Q(X ′ ⊗ −) which by
(TRC,Definition 53) induces a canonical trinatural transformation

ψ
=
⊗F − : X

=
⊗F − −→X ′

=
⊗F −

which by (TRC,Lemma 127) must have the form ψ
=
⊗F Y = Q(ψ ⊗ FY ) where FY −→ Y is the

chosen quasi-coherent hoflat resolution of Y . For any complex Y of quasi-coherent sheaves we
write RY for the additive functor K(Qco(X)) −→ Dqcoh(X) defined on objects by RY (X ) =
X

=
⊗F Y and on a morphism ψ : X −→ X ′ by RY (ψ) = ψ

=
⊗F Y . In fact this is equal as

an additive functor to the composite Q(−⊗ FY ) : K(Qco(X)) −→ Dqcoh(X), so RY becomes a
triangulated functor in a canonical way. Since FY is hoflat, the functor RY contains the exact
complexes of K(Qco(X)) in its kernel, and therefore induces a triangulated functor

−
=
⊗F Y : Dqcoh(X) −→ Dqcoh(X)

One checks that for morphisms ϕ : Y −→ Y ′ and ψ : X −→X ′ in Dqcoh(X) we have

(ψ
=
⊗F Y ′)(X

=
⊗F ϕ) = (X ′

=
⊗F ϕ)(ψ

=
⊗F Y ) (4)

Definition 8. Let X be a scheme with enough quasi-coherent hoflats. Then for every assignment
F of quasi-coherent hoflat resolutions for X there is a canonical functor additive in each variable

−
=
⊗F − : Dqcoh(X)×Dqcoh(X) −→ Dqcoh(X)

with ϕ
=
⊗F ψ defined to be the equal composites of (4). The partial functors in each variable are

triangulated functors in a canonical way. To be explicit, for complexes X ,Y we have

X
=
⊗F Y = X ⊗ FY
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As part of the data we have a morphism in Dqcoh(X) trinatural in both variables

ζ : X
=
⊗F Y −→X ⊗ Y

which is an isomorphism if either of X ,Y is hoflat.

Remark 5. With the notation of Definition 8 the partial functors X
=
⊗− and−

=
⊗Y are canonically

triangulated functors, and moreover these triangulated structures are compatible. That is, the
isomorphisms in Dqcoh(X)

X
=
⊗ (ΣY ) ∼= Σ(X

=
⊗ Y )

(ΣX )
=
⊗ Y ∼= Σ(X

=
⊗ Y )

are natural in both variables. The structure sheaf OX is also a unit for the tensor product, in the
sense that the triangulated functors OX =

⊗− and −
=
⊗OX are canonically trinaturally equivalent

to the identity.

Remark 6. The analogues of (DCOS,Lemma 54), (DCOS,Lemma 55) and (DCOS,Lemma 56)
hold for the quasi-coherent derived tensor product.

Lemma 17. Let X be a scheme with enough quasi-coherent hoflats, and let F ,F ′ be assignments
of quasi-coherent hoflat resolutions. For complexes X ,Y of quasi-coherent sheaves there is a
canonical isomorphism in Dqcoh(X) natural in both variables

µ : X
=
⊗F Y −→X

=
⊗F

′
Y

which on the partial functors gives trinatural equivalences

X
=
⊗F − −→X

=
⊗F

′
− (5)

−
=
⊗F Y −→ −

=
⊗F

′
Y (6)

Proof. By definition of a left derived functor we have trinatural transformations

ζ : (X
=
⊗F −)Q −→ Q(X ⊗−)

ζ ′ : (X
=
⊗F

′
−)Q −→ Q(X ⊗−)

and therefore a trinatural equivalence µ : X
=
⊗F − −→ X

=
⊗F ′ − which is the unique trinatural

transformation making the following diagram commute

(X
=
⊗F −)Q

ζ ''OOOOOOOOOOO

µQ // (X
=
⊗F ′ −)Q

ζ′wwooooooooooo

Q(X ⊗−)

(7)

This yields the desired isomorphism X
=
⊗FY −→X

=
⊗F ′

Y which one checks is also natural in X .
It remains to check that the induced natural equivalence (6) is trinatural. For any quasi-coherent
hoflat complex Y the morphisms ζ, ζ ′ of (7) are isomorphisms, and by hypothesis every object
of Dqcoh(X) is isomorphic to such a Y , so it is easy to see that in fact µ is the unique natural
transformation making (7) commute. Using this observation together with the fact that ζ, ζ ′ are
actually trinatural in X as well as Y , it is straightforward to check that (6) is trinatural.

In the next result we justify our use of the same notation X
=
⊗Y for the quasi-coherent derived

tensor product and the derived tensor product of (DCOS,Definition 13).
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Lemma 18. Let X be a scheme with enough quasi-coherent hoflats. Then the following diagram
of functors commutes up to canonical natural equivalence

D(X)×D(X)
−

=
⊗−

// D(X)

Dqcoh(X)×Dqcoh(X)

OO

−
=
⊗−

// Dqcoh(X)

OO

Proof. For the duration of the proof, write X
=
⊗qcY for the quasi-coherent derived tensor product.

Let F be an assignment of hoflat resolutions for Mod(X) and F ′ an assignment quasi-coherent
hoflat resolutions for Qco(X). Given complexes X ,Y of quasi-coherent sheaves let FY −→ Y
and F ′Y −→ Y be the hoflat resolutions of Y in Mod(X),Qco(X) respectively. Then we have a
canonical isomorphism in D(X)

X
=
⊗F

′

qc Y = X ⊗ F ′Y ∼= X
=
⊗F F ′Y ∼= X

=
⊗F Y

where the first isomorphism comes from the fact that F ′Y is left acyclic for the tensor product of
sheaves of modules. It is straightforward to check naturality in both variables.

3 Sheaves with Quasi-coherent Cohomology

Definition 9. If X is a scheme then the abelian subcategory Qco(X) of Mod(X) is plump
(DTC,Definition 22) and closed under coproducts. Denote by Kqc(X),Dqc(X) the corresponding
localising subcategories of K(X),D(X) respectively, consisting of complexes with quasi-coherent
cohomology. If F is a complex of sheaves of modules on X with quasi-coherent cohomology then
the same is true of the truncations F≤n,F≥n for any n ∈ Z.

We write Dqc(X)≤n,Dqc(X)≥n for those complexes with quasi-coherent cohomology belonging
to the subcategories D(X)≤n,D(X)≥n respectively (DTC,Definition 20). It is clear that these are
replete additive subcategories of Dqc(X).

In (DTC,Proposition 75) we described a way to explicitly construct a hoinjective resolution of
a complex. This construction is nice, because there is a strong connection between the resolution
of the whole complex and the resolutions of the truncations, which allows us in many cases to
reduce to complexes which are bounded below. Unfortunately (DTC,Proposition 75) was only
proved under very restrictive hypotheses. In particular the construction does not apply to the
category Mod(X) of sheaves of modules on a scheme X. Nonetheless, we will show in the next
result that this construction can be successfully carried out provided our complex of sheaves has
quasi-coherent cohomology.

The next result is [BN93] Lemma 5.3. Although our proof is slightly different (in particular
we can avoid spectral sequences) the underlying insight is the same: use the quasi-coherent co-
homology to show that the presheaf cohomology of the In stabilises, then apply (DTC,Lemma
78).

Proposition 19. Let X be a scheme and F a complex of sheaves of modules with quasi-coherent
cohomology. Suppose we have a commutative diagram in K(X)

· · · // F≥n
//

��

· · · // F≥−2

��

// F≥−1

��

// F≥0

��
· · · // In

// · · · // I−2
// I−1

// I0

(8)

satisfying the following conditions

(i) Every vertical morphism is a quasi-isomorphism.
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(ii) The In are hoinjective complexes.

Then the induced morphism ϑ : F −→ holim←−−−n≤0In is a hoinjective resolution.

Proof. A holimit in K(X) of the bottom row is defined by a triangle

holim←−−−In //
∏

n≤0 In
1−ν //

∏
n≤0 In // Σholim←−−−In

The morphisms F −→ F≥n −→ In induce a morphism into the product
∏

In which composes
with 1−ν to give zero, so we deduce a (non-canonical) factorisation ϑ : F −→ holim←−−−In in K(X).
We claim that this is a quasi-isomorphism. For each n ≤ −1 we have a commutative square in
K(X)

F≥n

��

// F≥n+1

��
In

// In+1

Taking homotopy kernels of the horizontal morphisms, we have a morphism of triangles

An

��

// F≥n

��

// F≥n+1

��

// ΣAn

��
Cn

// In
// In+1

// ΣCn

(9)

from which it is clear that An −→ Cn is a hoinjective resolution. Let U ⊆ X be affine. Since
Cn is hoinjective it is acyclic for the additive functor Γ(U,−) : Mod(X) −→ Ab, so we have an
isomorphism in D(Ab)

Γ(U,Cn) ∼= RΓ(U,Cn) ∼= RΓ(U,An) (10)

Now in D(X) there is a canonical triangle (DTC,Lemma 27)

cnH
n(F ) −→ F≥n −→ F≥n+1 −→ ΣcnHn(F )

and therefore an isomorphism An
∼= cnH

n(F ) in D(X). Combining this with (10) we have an
isomorphism Γ(U,Cn) ∼= Σ−nRΓ(U,Hn(F )) in D(Ab), and therefore by (DTC2,Corollary 12) an
isomorphism of abelian groups for m ≥ n

HmΓ(U,Cn) ∼= Hm−nRΓ(U,Hn(F )) ∼= Hm−n(U,Hn(F ))

which is of course zero for m > n by Serre’s theorem (COS,Theorem 14), because F has quasi-
coherent cohomology. Now applying Γ(U,−) to the triangle in the bottom row of (9) we have a
triangle in K(Ab), whose long exact cohomology sequence includes the following for m > n

HmΓ(U,Cn) −→ HmΓ(U,In) −→ HmΓ(U,In+1) −→ Hm+1Γ(U,Cn)

Therefore HmΓ(U,In) −→ HmΓ(U,In+1) is an isomorphism for m > n. In other words, for any
m ∈ Z the sequence

· · · −→ HmΓ(U,I−2) −→ HmΓ(U,I−1) −→ HmΓ(U,I0)

eventually consists entirely of isomorphisms: the presheaf cohomology of the In stabilises over
open affines. Applying (DTC,Lemma 78) with A = Ab and using (DCOS,Lemma 7) we find that
for n ≤ m we have an isomorphism

HmΓ(U, holim←−−−In) = Hm(holim←−−−Γ(U,In)) −→ HmΓ(U,In)

Sheafifying and using (DCOS,Lemma 3) we infer that

Hm(holim←−−−In) −→ Hm(In)
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is an isomorphism for n ≤ m. For any m ∈ Z and n ≤ 0 we have commutative diagrams in K(X)
and Mod(X) respectively

F

��

ϑ // holim←−−−In

��
F≥n

// In

Hm(F )

��

Hm(ϑ) // Hm(holim←−−−In)

��
Hm(F≥n) // Hm(In)

Taking n = m in the right hand diagram, it is clear that Hm(ϑ) : Hm(F ) −→ Hm(holim←−−−In)
is an isomorphism. Since m ∈ Z was arbitrary, this shows that ϑ : F −→ holim←−−−In is a quasi-
isomorphism. Since holim←−−−In is the homotopy limit of hoinjective complexes it is clearly hoinjec-
tive, so the proof is complete.

Remark 7. The theory of resolutions of unbounded complexes has been independently discovered
several times from different directions. The analogue of Proposition 19 was first stated and proved
for the inverse limit, not the homotopy limit, in Spaltenstein [Spa88] Proposition 3.13. We give
this proof in the Appendix.

For the homotopy limit the result is [BN93] Lemma 5.3, which introduced homotopy limits
and colimits to the algebraists. In fact comparing the proofs of Proposition 19 and Proposition
104 one begins to see why holimits and hocolimits are the “right” tool. This is the important
insight of Bökstedt and Neeman in [BN93].

The two approaches, using the inverse limit and the homotopy limit, have almost the same
content because in this case the two constructions agree (up to quasi-isomorphism). This is the
observation of Corollary 105. However, Proposition 19 is more flexible because it works in the
homotopy category, not on the level of complexes. This becomes essential, for example, in the
proof of Proposition 41.

Remark 8. Given a complex F with quasi-coherent cohomology, a commutative diagram (8)
with the properties (i), (ii) exists by the inductive construction given in (DTC,Proposition 75).
In fact this construction yields a commutative diagram of complexes having much more specific
properties (see the conditions of Proposition 104).

Corollary 20. Let X be a scheme and F a complex of sheaves of modules with quasi-coherent
cohomology. There exists a hoinjective resolution F −→ I with I a complex of injectives.

Proof. Using the inductive construction of (DTC,Proposition 75) we can find a commutative
diagram of complexes whose image in K(X) is of the type studied in Proposition 19, with each
In a bounded below complex of injectives. If we take I = holim←−−−In to be the canonical holimit
on the level of complexes (DTC,Definition 29) then it is clear from the definition of the homotopy
kernel that I is a complex of injectives. Since it is also a hoinjective resolution of F by Proposition
19, the proof is complete.

3.1 Generalising Serre’s Theorem

Let f : X −→ Y be a concentrated morphism of schemes with Y quasi-compact, and let F be a
quasi-coherent sheaf on X. Then the quasi-coherent sheaves Rif∗(F ) are the relative version of
the cohomology groups Hi(X,F ). So Serre’s theorem (COS,Theorem 14) reaches its final form
in the statement that there exists d ≥ 0 such that Rif∗(F ) = 0 for i > d and any quasi-coherent
F (HDIS,Proposition 33) (taking Y = SpecZ and d = 0 recovers Serre’s theorem).

Thinking in terms of complexes, this says that if you start with a complex concentrated in
degree zero and apply Rf∗, the cohomology of the resulting complex is bounded above. Moreover
this “growth” is bounded by a single integer for every quasi-coherent sheaf. The next result
extends this to arbitrary complexes, and can therefore be considered as the ultimate generalisation
of Serre’s theorem.
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Theorem 21. Let f : X −→ Y be a concentrated morphism of schemes. Then

Rf∗(Dqc(X)) ⊆ Dqc(Y ) (11)

Rf∗(Dqc(X)≥n) ⊆ Dqc(Y )≥n n ∈ Z (12)

If Y is quasi-compact there exists d ≥ 0 such that for every n ∈ Z

Rf∗(Dqc(X)≤n) ⊆ Dqc(Y )≤(n+d) (13)

Proof. In words, if F is a complex of sheaves of modules on X with quasi-coherent cohomology,
then Rf∗F also has quasi-coherent cohomology. Moreover there exists d ≥ 0 such that if whenever
the cohomology of F vanishes above n the cohomology of Rf∗F vanishes above n+ d. Our proof
follows [Lip] (3.9.2) which appears to be based on the proof of [Spa88] (3.13), but we use holimits
instead of inverse limits.

As a right derived functor it is trivial that Rf∗ has lower dimension zero, and in particular sends
objects of D(X)≥n to D(Y )≥n (DTC2,Lemma 33). We claim that if F is a complex of sheaves
of modules with quasi-coherent cohomology and F ∈ D(X)≥n for some n ∈ Z, then Rf∗F has
quasi-coherent cohomology. By (DTC2,Proposition 40) it would be enough to show that Rf∗F
has quasi-coherent cohomology for any quasi-coherent sheaf F on X. But from (DTC2,Corollary
12) we know that Hi(Rf∗F ) = 0 for i < 0 and for i ≥ 0 there is an isomorphism of sheaves of
modules

Hi(Rf∗F ) −→ Rif∗(F )

Since f is concentrated the sheaf Rif∗F is quasi-coherent (HDIS,Corollary 31), and therefore
Rf∗F ∈ Dqc(Y ) as claimed. This establishes the formula (12).

By (DCOS,Lemma 19) the functor Rf∗ is local, so to prove (11) we can reduce to the case
where Y is quasi-compact. Assume that Y is quasi-compact, so that by (HDIS,Proposition 33)
there exists an integer d ≥ 0 with Rif∗(G ) = 0 for every i > d and quasi-coherent sheaf G on X.
Let F be a complex of sheaves of modules on X with quasi-coherent cohomology. The proof is
modelled on that of Proposition 19. We can construct a commutative diagram of complexes

· · · // F≥n
//

��

· · · // F≥−2

��

// F≥−1

��

// F≥0

��
· · · // In

// · · · // I−2
// I−1

// I0

with the properties (i), (ii) described in Proposition 19. As in the proof of Proposition 19 we
deduce a morphism of triangles in K(X) for n < 0

An

��

// F≥n

��

// F≥n+1

��

// ΣAn

��
Cn

// In
// In+1

// ΣCn

Given an open affine subset V ⊆ Y we set U = f−1V and from the isomorphism Γ(U,Cn) ∼=
Σ−nRΓ(U,Hn(F )) in D(Ab) we deduce an isomorphism of abelian groups for m > n+ d

HmΓ(U,Cn) ∼= Hm−n(U,Hn(F )) ∼= Γ(V,Rm−nf∗(Hn(F ))) = 0

using (HDIS,Corollary 31). The argument given in the proof of Proposition 19 applies here to
show that for m ≥ n+ d we have an isomorphism

HmΓ(U, holim←−−−In) −→ HmΓ(U,In)

Sheafifying and using (DCOS,Lemma 3) together with the fact that holim←−−−In and In are hoin-
jective we have isomorphisms for m ≥ n+ d

Hm(f∗holim←−−−In) −→ Hm(f∗In)

Hm(Rf∗holim←−−−In) −→ Hm(Rf∗In)
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For any m ∈ Z and n ≤ 0 we have commutative diagrams in K(X) and Mod(Y ) respectively

F

��

// holim←−−−In

��
F≥n

// In

Hm(Rf∗F )

��

// Hm(Rf∗holim←−−−In)

��
Hm(Rf∗F≥n) // Hm(Rf∗In)

Taking m ≥ n + d in the right hand diagram, and using the fact that by Proposition 19 the
morphism F −→ holim←−−−In is a quasi-isomorphism, we have an isomorphism

Hm(Rf∗F ) −→ Hm(Rf∗(F≥n))

We already know from the first part of the proof that Rf∗(F≥n) has quasi-coherent cohomology,
so Hm(Rf∗F ) is quasi-coherent. Since n was arbitrary, this shows that Rf∗F has quasi-coherent
cohomology, thus proving (11).

If F belongs to Dqc(X)≤−1 then for m ≥ d we have an isomorphism

Hm(Rf∗F ) ∼= Hm(Rf∗(F≥0)) = 0

which shows that Rf∗F ∈ Dqc(Y )≤(d−1), establishing (13) and completing the proof.

Corollary 22. Let f : X −→ Y be a concentrated morphism of schemes with Y quasi-compact.
Then the restricted functor Rf∗ : Dqc(X) −→ D(Y ) is bounded.

Proof. See (DTC2,Definition 19) for what we mean by a bounded triangulated functor. Let d ≥ 0
be such that Rif∗(F ) = 0 for any i > d and quasi-coherent sheaf F on X. Then the proof of
Theorem 21 shows that dim−T = 0 and dim+T ≤ d, and in particular T is bounded.

3.2 Local Cohomology

Definition 10. Let (X,OX) be a ringed space, Z ⊆ X a closed subset with open complement U
and F a sheaf of modules on X. We define a submodule ΓZ(F ) of F by

Γ(V,ΓZ(F )) = {s ∈ Γ(V,F ) | s|U∩V = 0}

for open V ⊆ X, called the submodule of sections with support in Z. This construction defines an
additive functor

ΓZ(−) : Mod(X) −→Mod(X)

together with a natural transformation ΓZ −→ 1 given by the inclusions. In fact ΓZ(F ) is the
kernel of the canonical morphism F −→ j∗(F |U ) where j : U −→ X is the inclusion. That is, we
have an exact sequence

0 −→ ΓZ(F ) −→ F −→ j∗(F |U )

Remark 9. In (DCOS,Section 1.2) we encountered the functor ΓZ(X,−) and its derived functors
Hi

Z(X,−), which define the cohomology with support in Z. We saw that these cohomology groups
are represented in the derived category by the suspensions of the sheaf OZ .

Remark 10. With the notation of Definition 10 suppose that F is flasque. Then it is easy to
check that F −→ j∗(F |U ) is an epimorphism, so we have a short exact sequence

0 −→ ΓZ(F ) −→ F −→ j∗(F |U ) −→ 0

In the next result we construct the local cohomology triangle of Grothendieck. The key tech-
nical point is the existence of a hoinjective resolution consisting of injective sheaves. Such a
resolution exists for arbitrary sheaves by a result of Spaltenstein [Spa88] Theorem 4.5, but the
proof of this result would take us on a lengthy detour. Instead we restrict ourselves to complexes
with quasi-coherent cohomology, where the existence of such a resolution is just Proposition 19.
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Lemma 23 (Local cohomology triangle). Let X be a scheme and j : U −→ X the inclusion
of an open subset with complement Z. For any complex F of sheaves of modules on X with
quasi-coherent cohomology, there is a canonical triangle in D(X)

RΓZ(F ) −→ F −→ Rj∗(F |U ) −→ ΣRΓZ(F )

This triangle is natural with respect to morphisms of complexes.

Proof. Let F be a complex of flasque sheaves of modules on X. We have a canonical short exact
sequence of complexes in Mod(X)

0 −→ ΓZ(F ) −→ F −→ j∗(F |U ) −→ 0

and therefore a canonical triangle in D(X) by (DTC,Proposition 20) which is natural with respect
to morphisms of complexes

ΓZ(F ) // F // j∗(F |U )
−z // ΣΓZ(F ) (14)

As described in the proof of (DCOS,Lemma 21) there is a canonical trinatural transformation
η♦ : F −→ Rj∗(F |U ) defined for any complex F in Mod(X). The natural transformation
ΓZ(−) −→ 1 induces a trinatural transformation

κ : RΓZ(F ) −→ F

Given a complex F in Mod(X) with quasi-coherent cohomology, we can by Corollary 20 find a
hoinjective resolution I of F with each I i injective, therefore flasque. There is a morphism in
D(X)

w : Rj∗(F |U ) ∼= Rj∗(I |U ) ∼= j∗(I |U ) −→ ΣΓZ(I ) ∼= ΣRΓZ(I ) ∼= ΣRΓZ(F )

using the connecting morphism zI : j∗(I |U ) −→ ΣΓZ(I ) of (14). One checks as in the proof of
(DCOS,Lemma 21) that w does not actually depend on the choice of resolution I , and that it is
natural in F with respect to morphisms of complexes.

We have now constructed a canonical sequence of morphisms in D(X)

RΓZ(F ) κ // F
η♦

// Rj∗(F |U )
−w // ΣRΓZ(F )

which is natural with respect to morphisms of complexes. It remains to show that this sequence
is a triangle. For this we can reduce immediately to the case where F is a hoinjective complex I
with each I i injective, in which case we have a commutative diagram in D(X)

RΓZ(I )

��

// I

1

��

// Rj∗(I |U )

��

// ΣRΓZ(I )

��
ΓZ(I ) // I // j∗(I |U ) // ΣΓZ(I )

Since we know the bottom row is a triangle, so is the top row, which completes the proof.

4 Grothendieck Duality

Classical Serre duality states that for a nonsingular projective scheme X of finite dimension n over
a field k, there exists a coherent sheaf ω◦X together with canonical isomorphisms of k-modules for
any coherent sheaf F of the form

θi : Hn−i(X,F )∨ −→ Exti(F , ω◦X)
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Actually something slightly more general is true, but we direct the reader to [Har77] or our notes
on the subject (SDT,Theorem 7) for the precise statement. If we define a complex $X = Σnω◦X
and use the derived category we can rewrite this as an isomorphism

Hk(X,F )∨ −→ HomD(X)(ΣkF , $X/k) (15)

A far reaching generalisation of Serre duality is Grothendieck duality, first described in Hartshorne’s
book [Har77] and later clarified by many authors, including Neeman [Nee96] who gave the first
purely formal proof using Brown representability. It turns out that we can recover classical Serre
duality from a powerful abstract statement about the existence of adjoints (Theorem 39).

In this section we first introduce a class of quasi-coherent sheaves called the dilute sheaves.
Intuitively these play the role of injective or flasque quasi-coherent sheaves. They have enough
good properties that we can use dilute resolutions in Corollary 29 to calculate explicitly the derived
direct image functor. This is one of the major inputs into the proof of Theorem 31. Next we study
the Čech triangles which are a useful tool in the theory of derived categories of quasi-coherent
sheaves, since they allow us to efficiently reduce global problems to local problems. Using these
results we conclude the section with the proof of Neeman’s version of Grothendieck duality.

4.1 Dilute Resolutions

Throughout this section let A be an abelian category. Let X be a complex in A, M ≥ 0 an integer
and suppose that for every n ∈ Z we have an exact sequence

0 −→ Xn −→ An,0 −→ An,1 −→ · · · −→ An,M −→ 0

which fit into a commutative diagram

0 0 0

· · · // An−1,M //

OO

An,M

OO

// An+1,M

OO

// · · ·

...

OO

...

OO

...

OO

· · · // An−1,1 //

OO

An,1 //

OO

An+1,1 //

OO

· · ·

· · · // An−1,0 //

OO

An,0 //

OO

An+1,0

OO

// · · ·

· · · // Xn−1

OO

// Xn //

OO

Xn+1

OO

// · · ·

0

OO

0

OO

0

OO

Write A for the bicomplex formed by the objects An,q, so that we have a canonical morphism of
complexes X −→ A•,0. Taking the totalisation Tot(A) of this bicomplex (DTC,Definition 33) we
have a canonical morphism of complexes ψ : X −→ Tot(A).

Lemma 24. The morphism ψ : X −→ Tot(A) is a quasi-isomorphism.

Proof. Here is the quick proof using spectral sequences. There is a canonical spectral sequence
(SS,Proposition 8)

Epq
2 = Hp(H•,q

I (A)) =⇒ Hp+q(Tot(A))

and of course Hn,q
I (A) = 0 for q > 0 because the columns are exact, so this spectral sequence

degenerates and we deduce an isomorphism Hp(X) ∼= Hp(Tot(A)). Of course one has to actually
check that this is equal to Hp(ψ).

There is another proof by diagram chasing, which has the advantage of making the statement
intuitively “obvious” after working through the proof. Firstly, all involved coproducts are finite so
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we can apply an embedding theorem to reduce to the case A = Ab (DCAC,Theorem 1). Suppose
we are given a sequence (aij)i+j=n in the kernel of ∂n : Tot(A)n −→ Tot(A)n+1. Since the
bicomplex vanishes above M we must have an−M,M ∈ Ker∂n−M,M

2 , and since the columns are
exact we can choose bn−M,M−1 ∈ An−M,M−1 with

(−1)n−M∂n−M,M−1
2 (bn−M,M−1) = an−M,M

But then ∂n−M,M−1
1 (bn−M,M−1) and an−M+1,M−1 map to the same element under ∂n−M+1,M−1

2 .
We deduce an element bn−M+1,M−2 ∈ An−M+1,M−2 with

(−1)n−M+1∂n−M+1,M−2
2 (bn−M+1,M−2) + ∂n−M,M−1

1 (bn−M,M−1) = an−M+1,M−1

Proceeding in this way, we construct a sequence (bij)i+j=n−1 ∈ Tot(A)n−1 together with an
element x ∈ Ker(∂n

X) such that

(aij)i+j=n − ∂n−1(bij)i+j=n−1 = ψn(x)

In other words, the morphism Hn(ψ) : Hn(X) −→ Hn(Tot(A)) is surjective. An easy diagram
chase shows that it is also injective, and the proof is complete.

Remark 11. Let X be a quasi-compact semi-separated scheme (CON,Definition 4). Equivalently,
X is a scheme which admits a finite open cover U by affine open sets with affine pairwise inter-
sections. Suppose that U contains d ≥ 1 open affines. If F is a quasi-coherent sheaf on X, then
we have the canonical Čech resolution

0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · · −→ C d−1(U,F ) −→ 0 (16)

which is an exact sequence of quasi-coherent sheaves, such that the sheaf C p(U,F ) is Γ(X,−)-
acyclic for p ≥ 0 (COS,Theorem 35). More generally, if f : X −→ Y is a morphism of schemes
with Y semi-separated then C p(U,F ) is f∗-acyclic (HDIS,Proposition 9).

Let V ⊆ X be an open subset whose inclusion i : V −→ X is affine and let U|V = {U ∩V }U∈U

denote the restricted affine open cover of V , which still has affine pairwise intersections. It is clear
that C p(U,F )|V = C p(U|V ,F |V ), so the restriction to V of the Čech resolution (16) is the Čech
resolution for V,U|V and F |V .

Definition 11. Let X be a scheme and F a quasi-coherent sheaf of modules on X. We say that
F is predilute if it has the following properties:

(a) Hi(X,F ) = 0 for any i > 0.

(b) Rif∗(F ) = 0 for any i > 0 and morphism of schemes f : X −→ Y with Y quasi-compact
and semi-separated.

A quasi-coherent sheaf of modules F on X is dilute if it is predilute and the sheaf F |V is
predilute for every open subset V ⊆ X with affine inclusion V −→ X. This property is stable
under isomorphism. If F is dilute then so is F |V for any open set V ⊆ X with affine inclusion.

Remark 12. Any flasque quasi-coherent sheaf is dilute, and this is the motivation for the def-
inition of a dilute sheaf. In the category of quasi-coherent sheaves injective objects are not well
behaved (in general they are not even stable under restriction). A dilute sheaf has many of the
good properties of an injective sheaf, but it is much more robust.

Lemma 25. Let X be a quasi-compact semi-separated scheme, F a quasi-coherent sheaf of mod-
ules on X and U a finite semi-separating cover of X. For p ≥ 0 the sheaves C p(U,F ) are dilute.

Proof. It is clear from Remark 11 that C p(U,F ) is predilute. For the same reason, if V ⊆ X
is an open subset with affine inclusion V −→ X then C p(U,F )|V = C p(U|V ,F |V ) is predilute.
Therefore C p(U,F ) is dilute.
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Remark 13. It follows from Lemma 25 that every quasi-coherent sheaf on a quasi-compact semi-
separated scheme admits a finite resolution (16) by dilute sheaves.

Lemma 26. Let X be a quasi-compact semi-separated scheme. Then

(i) If {Di}i∈I is a family of dilute sheaves on X then
⊕

i∈I Di is dilute.

(ii) If {Dα, ϕαβ}α∈Λ is a direct system of dilute sheaves on X then lim−→Dα is dilute.

Proof. The diluteness property is stable under restriction along affine inclusions, so it suffices in
both cases to show that the given sheaves are predilute. The scheme X is concentrated, and there-
fore its underlying topological space is quasi-noetherian, so on X both the cohomology Hi(X,−)
and derived direct image Rif∗(−) commute with coproducts and direct limits (COS,Theorem 26)
(HDIS,Corollary 38).

Proposition 27. Let X be a quasi-compact semi-separated scheme and F a complex of quasi-
coherent sheaves on X. There is quasi-isomorphism F −→ D with D a complex of dilute sheaves.

Proof. Let U be a finite semi-separating cover of X, with d ≥ 1 elements. Then every quasi-
coherent sheaf on X has a Čech resolution of the same length (16) and moreover these resolutions
are natural in the sheaf, so we have a commutative diagram with exact columns

0 0 0

· · · // C d−1(U,Fn−1) //

OO

C d−1(U,Fn)

OO

// C d−1(U,Fn+1)

OO

// · · ·

...

OO

...

OO

...

OO

· · · // C 1(U,Fn−1) //

OO

C 1(U,Fn) //

OO

C 1(U,Fn+1) //

OO

· · ·

· · · // C 0(U,Fn−1) //

OO

C 0(U,Fn) //

OO

C 0(U,Fn+1)

OO

// · · ·

· · · // Fn−1

OO

// Fn //

OO

Fn+1

OO

// · · ·

0

OO

0

OO

0

OO

with every C i(U,Fn) dilute by Lemma 25. Dropping the complex F from this diagram and
totalising the remaining bicomplex, we have a complex D of dilute sheaves and a canonical quasi-
isomorphism F −→ D as defined in Lemma 24.

Definition 12. Let X be a quasi-compact semi-separated scheme, U a finite semi-separating cover
and F a complex of quasi-coherent sheaves on X. We write Ctot(U,F ) for the canonical complex
D of dilute sheaves given in Proposition 27. There is a canonical quasi-isomorphism

F −→ Ctot(U,F ) (17)

called the Čech resolution of F with respect to U. For n ∈ Z we have

C n
tot(U,F ) =

⊕
i+j=n

C j(U,F i)

The resolution (17) is natural in F . Given a morphism of complexes F −→ G in Qco(X) the
morphisms C i(U,Fn) −→ C i(U,G n) induce a canonical morphism of complexes Ctot(U,F ) −→
Ctot(U,G ) making the following diagram commute

F

��

// Ctot(U,F )

��
G // Ctot(U,G )
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Proposition 28. Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes. Then
any complex of dilute sheaves on X is acyclic for the additive functor fqc

∗ : Qco(X) −→ Qco(Y ).

Proof. First, observe that f is concentrated because it is a morphism of concentrated schemes
(CON,Lemma 16). Let X be a complex of dilute sheaves on X. We claim that X is right acyclic
for fqc

∗ in the sense of (DTC2,Definition 4). Given Proposition 27 it suffices to show that if X
is an exact complex of dilute sheaves, then fqc

∗ (X ) is exact. Let n ∈ Z be arbitrary and set
K = Ker∂n

X so that we have a resolution of K by dilute sheaves

0 −→ K −→X n −→X n+1 −→X n+2 −→ · · ·

By definition every dilute sheaf is acyclic for f∗ : Ab(X) −→ Ab(Y ), so by (DTC2,Remark 14) or
(DF,Proposition 54) we can use this resolution to calculate Rif∗. That is, for k > 0 we have

Hn+kf∗(X ) ∼= Rkf∗(K )

Since f is concentrated and Y quasi-compact, we can find by (HDIS,Proposition 33) an integer
d ≥ 0 such that Rif∗(F ) = 0 for i > d and F quasi-coherent. Therefore Hif∗(K ) = 0 for
i > n+ d. But n was arbitrary, so we conclude that f∗(X ) must be exact, as required.

In our study of the higher direct image functors (HDIS,Proposition 9) played a central role. It
tells us how to calculate the higher direct image of a quasi-coherent sheaf using the Čech complex.
We are now in a position to prove the analogue for the derived direct image.

Corollary 29. Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes and F
a complex of quasi-coherent sheaves on X. For a finite semi-separating cover U of X there is a
canonical isomorphism in Dqcoh(Y ) natural in F

Rqf∗(F ) −→ f∗(Ctot(U,F ))

Proof. By definition we have a canonical quasi-isomorphism F −→ Ctot(U,F ), and the complex
Ctot(U,F ) is acyclic for f∗ : Qco(X) −→ Qco(Y ) by Proposition 28. We have therefore a canonical
isomorphism in Dqcoh(Y ) natural in F

Rqf∗(F ) ∼= Rqf∗(Ctot(U,F )) ∼= f∗(Ctot(U,F ))

using the isomorphism of (DTC2,Remark 2).

Proposition 30. Let f : X −→ Y be a concentrated morphism of schemes with X concentrated.
Then for n ∈ Z

Rqf∗(Dqcoh(X)≥n) ⊆ Dqcoh(Y )≥n

If X,Y are quasi-compact and semi-separated there exists d ≥ 0 such that for every n ∈ Z

Rqf∗(Dqcoh(X)≤n) ⊆ Dqcoh(Y )≤(n+d)

and in particular the triangulated functor Rqf∗ : Dqcoh(X) −→ Dqcoh(Y ) is bounded.

Proof. As a right derived functor it is trivial that Rqf∗ has lower dimension zero, and in particular
sends objects of Dqcoh(X)≥n to Dqcoh(Y )≥n (DTC2,Lemma 33). For the rest of the proof we
assume that X,Y are quasi-compact and semi-separated.

Let U be a finite semi-separating cover of X with d ≥ 1 elements and let a complex F in
Dqcoh(X)≤n be given. We may as well assume that F i = 0 for i > n. Consider the bicomplex of
Čech sheaves given in Proposition 27. It is zero above row d− 1 and beyond column n. Therefore
when we totalise to produce the Čech resolution Ctot(U,F ) the higher diagonals must all vanish.
To be precise, we have C i(U,F ) = 0 for i > n+ d− 1, and therefore

f∗(Ctot(U,F )) ∈ Dqcoh(Y )≤(n+d−1)

By Corollary 29 we have an isomorphism Rqf∗(F ) ∼= f∗(Ctot(U,F )) from which it follows that
Rqf∗(F ) ∈ Dqcoh(Y )≤(n+d−1) as required. This shows in particular that Rqf∗ is bounded in the
sense of (DTC2,Definition 19).
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Theorem 31. Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes. The
diagram

D(X)
Rf∗ // D(Y )

Dqcoh(X)

u

OO

Rqf∗

// Dqcoh(Y )

U

OO

commutes up to canonical trinatural equivalence.

Proof. Let u, U be the inclusions, so that we have a commutative diagram

Mod(X)
f∗ // Mod(Y )

Qco(X)

u

OO

f∗

// Qco(Y )

U

OO

and take arbitrary right derived functors (Rf∗, ζ), (Rqf∗, ω). The trinatural transformations are
of the form

ζ : Q ◦K(f∗) −→ Rf∗ ◦Q
ω : Q ◦K(f∗) −→ Rqf∗ ◦Q

and by (DTC2,Corollary 7) the pair (U ◦Rqf∗, Uω) is a right derived functor of U ◦f∗ = f∗◦u. The
trinatural transformation ζK(u) induces a unique trinatural transformation µ : U◦Rqf∗ −→ Rf∗◦u
making the following diagram commute

QK(f∗ ◦ u)
Uω

wwnnnnnnnnnnn
ζK(u)

''OOOOOOOOOOO

U ◦ Rqf∗ ◦Q
µQ

// Rf∗ ◦ u ◦Q

and we claim that µ is a trinatural equivalence. The triangulated functor Rf∗ ◦ u is bounded by
(DCOQS,Corollary 22), and U◦Rqf∗ is bounded by Proposition 30. Therefore by (DTC2,Proposition
38) it is enough to show that

µ : Rqf∗(F ) −→ Rf∗(F )

is an isomorphism in D(Y ) for any quasi-coherent sheaf F on X. Let U be a finite semi-separating
cover of X and consider the Čech complex

C (U,F ) : 0 −→ C 0(U,F ) −→ C 1(U,F ) −→ · · ·

This is a complex of quasi-coherent sheaves, and we have a quasi-isomorphism F −→ C (U,F ).
We already know that C (U,F ) is acyclic for fqc

∗ : Qco(X) −→ Qco(Y ) from Proposition 28. Each
sheaf C p(U,F ) is acyclic for f∗ : Mod(X) −→ Mod(Y ) by definition of a dilute sheaf, so the
complex C (U,F ) is acyclic for f∗ : Mod(X) −→Mod(Y ) by (DTC2,Corollary 43). We deduce a
commutative diagram in D(Y )

Rqf∗(F )

µ

��

+3 Rqf∗(C (U,F ))

µ

��

+3 f∗(C (U,F ))

1

��
Rf∗(F ) +3 Rf∗(C (U,F )) +3 f∗(C (U,F ))

from which it is clear that µ : Rqf∗(F ) −→ Rf∗(F ) is an isomorphism, as required.

Remark 14. Let f : X −→ Y be an affine morphism of schemes with X concentrated and Y
quasi-compact. Then the conclusion of Theorem 31 holds.
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4.2 The Čech Triangles

Throughout this section X is a fixed quasi-compact semi-separated scheme and all sheaves of
modules are over X, unless specified otherwise. Let F be a quasi-coherent sheaf of modules and U
a finite semi-separating open cover of X which is totally ordered. Then we have an exact sequence
in Qco(X) (COS,Theorem 35)

0 −→ F −→ C 0(U,F ) −→ C 1(U,F ) −→ · · ·

called the Čech resolution of F . We can split this into a series of short exact sequences

0 −→ F −→ C 0(U,F ) −→ D1(U,F ) −→ 0

0 −→ D1(U,F ) −→ C 1(U,F ) −→ D2(U,F ) −→ 0
...

That is, we define for i ≥ 1 a canonical quasi-coherent sheaf of modules

D i(U,F ) = Im
(
C i−1(U,F ) −→ C i(U,F )

)
= Ker

(
C i(U,F ) −→ C i+1(U,F )

)
In order to simplify some statements, we set D0(U,F ) = F . The Čech resolution is functorial in
F and therefore so are the sheaves D i. That is, for i ≥ 0 we have additive functors

C i(U,−) : Qco(X) −→ Qco(X)

D i(U,−) : Qco(X) −→ Qco(X)

together with a natural transformation D i(U,−) −→ C i(U,−).

Proposition 32. For i ≥ 0 the additive functors C i(U,−) and D i(U,−) are exact and coproduct
preserving.

Proof. Suppose we have an exact sequence X of quasi-coherent sheaves

0 −→ F ′ −→ F −→ F ′′ −→ 0

To show that C i(U,X ) or D i(U,X ) are exact, it suffices to show that these complexes are exact
after we apply Γ(V,−) for every V belonging to a semi-separating affine basis of X (DCOS,Lemma
3). Note that for any such V , the inclusion V −→ X is affine, and in particular Γ(V,C i(U,X )) is
the product of a finite number of complexes of the form

0 −→ Γ(V ∩ Ui0,...,ip ,F
′) −→ Γ(V ∩ Ui0,...,ip ,F ) −→ Γ(V ∩ Ui0,...,ip ,F

′′) −→ 0

which is exact because V ∩ Ui0,...,ip
is affine. Therefore C i(U,−) is an exact functor. It remains

to check that the sequence

0 // Γ(V,D i(U,F ′)) // Γ(V,D i(U,F )) // Γ(V,D i(U,F ′′)) // 0 (18)

is exact. Since V itself is affine the functor Γ(V,−) is exact on Qco(X), and we have a commutative
diagram in which the top and bottom rows are exact, the top triple of vertical morphisms are
epimorphisms and the bottom triple are monomorphisms

0 // Γ(V,C i−1(U,F ′))

��

// Γ(V,C i−1(U,F ))

��

// Γ(V,C i−1(U,F ′′))

��

// 0

0 // Γ(V,D i(U,F ′)) //

��

Γ(V,D i(U,F )) //

��

Γ(V,D i(U,F ′′)) //

��

0

0 // Γ(V,C i(U,F ′)) // Γ(V,C i(U,F )) // Γ(V,C i(U,F ′′)) // 0
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Since kernels are left exact it is easy to see that the middle row must also be exact, as required.
It is straightforward to check from the definition that C i(U,−) is coproduct preserving for i ≥ 0,
and then since coproducts are exact we deduce that the D i(U,−) are coproduct preserving as
well.

Definition 13 (Derived Čech complexes). For p ≥ 0 the exact functors of Proposition 32
extend to coproduct preserving triangulated functors

C p(U,−),Dp(U,−) : Dqcoh(X) −→ Dqcoh(X)

Given a complex F of quasi-coherent sheaves we call C p(U,F ) the pth derived Čech complex.
Given indices i0, . . . , ip of U we write Ui0,...,ip

for Ui0 ∩ · · · ∩ Uip
, and by abuse of notation write

f : Ui0,...,ip
−→ X for any inclusion. These are all affine morphisms, so f∗ is exact and therefore

C p(U,F ) =
⊕

i0<···<ip

f∗(F |Ui0,...,ip
) =

⊕
i0<···<ip

Rqf∗(F |Ui0,...,ip
)

Proposition 33 (Čech Triangles). For any complex F of quasi-coherent sheaves on X there
is a canonical triangle in Dqcoh(X) natural in F

F −→ C 0(U,F ) −→ D1(U,F ) −→ ΣF

and for p ≥ 1 another canonical triangle natural in F

Dp(U,F ) −→ C p(U,F ) −→ Dp+1(U,F ) −→ ΣDp(U,F )

Proof. From the short exact sequences of complexes

0 −→ F −→ C 0(U,F ) −→ D1(U,F ) −→ 0
0 −→ Dp(U,F ) −→ C p(U,F ) −→ Dp(U,F ) −→ 0

we deduce canonical triangles in Dqcoh(X)

F −→ C 0(U,F ) −→ D1(U,F ) −→ ΣF

Dp(U,F ) −→ C p(U,F ) −→ Dp(U,F ) −→ ΣDp(U,F )

which are clearly natural in F .

Remark 15. Suppose our cover U contains d > 1 open affines. Then C p(U,−) = 0 for p ≥ d and
therefore the functor Dp(U,−) is zero for p ≥ d. By definition we have Dd−1(U,F ) = C d−1(U,F )
so our sequence of triangles is of the form

F −→ C 0(U,F ) −→ D1(U,F ) −→ ΣF

D1(U,F ) −→ C 1(U,F ) −→ D2(U,F ) −→ ΣD1(U,F )
...

Dd−2(U,F ) −→ C d−2(U,F ) −→ C d−1(U,F ) −→ ΣDd−2(U,F )

The derived Čech complexes are very simple objects. Once we establish some property for them,
we can climb our way back up the sequence of triangles and show that F possesses this property.
See for example the proof of Theorem 42. If our cover U consists of two open affines U, V then
the sequence consists of one triangle

F −→ RqiU ∗(F |U )⊕ RqiV ∗(F |V ) −→ RqiU∩V ∗(F |U∩V ) −→ ΣF
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4.3 Applications of the Čech Triangles

The derived Čech triangles are a very simple and useful technical tool. They will be the key to our
proof of unbounded Grothendieck duality and also to the proof of the equivalence Dqcoh(X) ∼=
Dqc(X). In this section we use the derived Čech triangles to strengthen and simplify the proof of
Proposition 5.

Definition 14. Let X be a quasi-compact semi-separated scheme with finite semi-separating
cover U. Let Ω(U, X) denote the smallest triangulated subcategory of Dqcoh(X) containing the
complexes Rqf∗(F ), as f : W −→ X ranges over the inclusions of finite intersections W =
Ui0 ∩ · · · ∩Uip of elements of U, and F ranges over all complexes of quasi-coherent sheaves on W .
Clearly Ω(U, X) ⊆ Ω(X) in the notation of Section 1.2.

Remark 16. With the notation of Definition 14 any of the inclusions f : W −→ X is an affine
morphism, so Rqf∗(F ) ∼= f∗(F ).

Proposition 34. Let X be a quasi-compact semi-separated scheme with finite semi-separating
cover U. Then the triangulated category Dqcoh(X) is generated by the objects of Dqcoh(Ui0,...,ip)
for sequences i0 < · · · < ip of indices of U. That is, we have Dqcoh(X) = Ω(U, X).

Proof. Given p ≥ 0 and a complex F of quasi-coherent sheaves on X, it is clear that the derived
Čech complex C p(U,F ) belongs to Ω(U, X), because by definition it is a finite coproduct of
complexes of the form Rqf∗(F |W ). Climbing up the sequence of derived Čech triangles of Remark
15 we conclude that F ∈ Ω(U,F ), as required.

We can now give a very slight improvement of Lemma 6 which we will make use of in our proof
of unbounded Grothendieck duality.

Lemma 35. Let f : X −→ Y be a morphism of semi-separated schemes with X quasi-compact,
and V ⊆ Y a quasi-compact open subset. Then for any complex F of quasi-coherent sheaves of
modules on X there is a canonical isomorphism in Dqcoh(V ) natural in F

µ : (Rqf∗F )|V −→ Rqg∗(F |U )

where U = f−1V and g : U −→ V is the induced morphism of schemes.

Proof. It follows from (CON,Proposition 15) that f is concentrated, so as described at the begin-
ning of the proof of Lemma 6 we have a canonical trinatural transformation µ : (−)|V Rqf∗ −→
Rq(g∗)(−)|U . Let S be the full subcategory of Dqcoh(X) consisting of complexes F such that
µF is an isomorphism in Dqcoh(V ). This is a triangulated subcategory of Dqcoh(X), and so by
Proposition 34 it suffices to show that it is an isomorphism for any object of Dqcoh(W ) with
W = Ui0,...,ip

for a sequence of indices i0 < · · · < ip of a finite semi-separating open cover U of X.
In this case the inclusion j : W −→ X is affine, and one checks that any morphism from

an affine scheme to a semi-separated scheme is affine, so the rest of the proof is the same as for
Lemma 6.

Proposition 36. Let X be a quasi-compact semi-separated scheme with finite semi-separating
cover U. A complex X ∈ Dqcoh(X) is compact in Dqcoh(X) if and only if X |V is compact in
Dqcoh(V ) for every open set V ∈ U.

Proof. Let V = Ui0 ∩ · · · ∩ Uip
be a finite intersection of open sets in the cover U. Then V is

affine and the inclusion f : V −→ X is an affine morphism, so f∗ : Qco(V ) −→ Qco(X) is exact
and Rqf∗ = D(f∗). In particular Rqf∗ preserves coproducts (HDIS,Proposition 37), from which
we deduce that (−)|V : Dqcoh(X) −→ Dqcoh(V ) preserves compactness (TRC3,Lemma 22).

Now suppose that X |V is compact in Dqcoh(V ) for every open set V ∈ U. It is clear that the
same is true whenever V is a finite intersection V = Ui0 ∩ · · · ∩ Uip of elements in the cover. Let
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d > 1 be the number of open affines in U. Suppose we are given a family of complexes {Fi}i∈I in
Dqcoh(X). By Proposition 33 we have canonical triangles in Dqcoh(X) for each i ∈ I

Fi −→ C 0(U,Fi) −→ D1(U,Fi) −→ ΣFi

D1(U,Fi) −→ C 1(U,Fi) −→ D2(U,Fi) −→ ΣD1(U,Fi)
...

Dd−2(U,Fi) −→ C d−2(U,Fi) −→ C d−1(U,Fi) −→ ΣDd−2(U,Fi)

We prove that X is compact by climbing the sequence and using the local compactness. Observe
that for p ≥ 0 we have (all Homs taken in Dqcoh(X) or the local Dqcoh(V ))

Hom(X ,⊕iC
p(U,Fi)) ∼= Hom(X ,C p(U,⊕iFi))

∼= Hom(X ,⊕i0<···<ipRqf∗(⊕iFi|Ui0,...,ip
))

∼= ⊕i0<···<ipHom(X ,Rqf∗(⊕iFi|Ui0,...,ip
))

∼= ⊕i0<···<ip
Hom(X |Ui0,...,ip

,⊕iFi|Ui0,...,ip
)

∼= ⊕i0<···<ip
⊕i Hom(X |Ui0,...,ip

,Fi|Ui0,...,ip
)

∼= ⊕i0<···<ip
⊕i Hom(X ,Rqf∗(Fi|Ui0,...,ip

))
∼= ⊕iHom(X ,C p(U,Fi))

That is, the composite HomDqcoh(X)(X ,C p(U,−)) preserves coproducts. Using the final Čech
triangle and the Five Lemma we deduce that the canonical map

⊕iHomDqcoh(X)(X ,Dd−2(U,Fi)) −→ HomDqcoh(X)(X ,⊕iD
d−2(U,FI))

is an isomorphism. Then from the second last Čech triangle we deduce that the analogous map
for Dd−1(U,−) is an isomorphism. Climbing up the sequence we end up showing that the map

⊕iHomDqcoh(X)(X ,Fi) −→ HomDqcoh(X)(X ,⊕iFi)

is an isomorphism. That is, X is compact in Dqcoh(X), as required.

4.4 Proof of Grothendieck Duality

The result of this section asserts the existence of a certain right adjoint, which we deduce from
Brown representability following [Nee96].

Proposition 37. If h : X −→ Y is a morphism of semi-separated schemes with X quasi-compact
then the triangulated functor Rqh∗ : Dqcoh(X) −→ Dqcoh(Y ) preserves coproducts.

Proof. Let V be a semi-separating cover of Y . For each V ∈ V the inclusion V −→ Y is affine, and
therefore by pullback so is h−1V −→ X, so h−1V is quasi-compact semi-separated. Coproducts
in the derived category are local by Lemma 2, and Rqh∗ is local by Lemma 35, so we can reduce
to the case where Y is affine.

If X is also affine then h : SpecB −→ SpecA is induced by a morphism of rings A −→ B. In
this case the additive functor h∗ : Qco(X) −→ Qco(Y ) is exact: it is just restriction of scalars.
Therefore Rqh∗ = D(h∗) acts by the usual direct image on complexes, and trivially preserves
coproducts.

For the general case let U be a finite semi-separating cover of X with d > 1 elements. The
idea is to apply Rqh∗ to the derived Čech triangles of Proposition 33 and use the affine case of
the previous paragraph to climb the sequence of triangles until we reach Rqh∗(−). More precisely
we have for i ≥ 0 a pair of triangulated functors

Rqh∗ ◦D i(U,−),Rqh∗ ◦ C i(U,−) : Dqcoh(X) −→ Dqcoh(Y )
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Using Lemma 3 we have for each F ∈ Dqcoh(X) a canonical isomorphism natural in F

Rqh∗
(
C i(U,F )

)
= Rqh∗

(
⊕i0<···<ip

Rqf∗(F |Ui0,...,ip
)
)

∼= ⊕i0<···<ipRq(hf)∗(F |Ui0,...,ip
)

Since each Ui0,...,ip
is affine the functors Rq(hf) preserve coproducts, and it follows that the

composite Rqh∗ ◦C i(U,−) preserves coproducts. Given a nonempty family {Fλ}λ∈Λ in Dqcoh(X)
if we set F =

⊕
λ Fλ then the last Čech triangle of Remark 15 yields a morphism of triangles⊕

λ Rqh∗Dd−2(Fλ)

α

��

// ⊕
λ Rqh∗C d−2(Fλ) //

β

��

⊕
λ Rqh∗C d−1(Fλ) //

γ

��

Σ
⊕

λ Rqh∗Dd−2(Fλ)

��
Rqh∗Dd−2(F ) // Rqh∗C d−2(F ) // Rqh∗C d−1(F ) // ΣRqh∗Dd−2(F )

where we have dropped U from the notation to fit the triangles on the page. Our earlier discus-
sion shows that β, γ are isomorphisms, and therefore α is an isomorphism. In other words, the
triangulated functor Rqh∗ ◦Dd−2(U,−) preserves coproducts.

Now from the second last Čech triangle we deduce using the same argument that Rqh∗ ◦
Dd−3(U,−) preserves coproducts, and so on until we reach the first Čech triangle. The argument
applied to this triangle shows that Rqh∗ preserves coproducts, and completes the proof.

Corollary 38. Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes. The
composite of Rf∗ : D(X) −→ D(Y ) with the inclusion Dqcoh(X) −→ D(X) is a coproduct pre-
serving triangulated functor.

Proof. By Theorem 31 we have a diagram of triangulated functors which commutes up to canonical
trinatural equivalence

D(X)
Rf∗ // D(Y )

Dqcoh(X)

u

OO

Rqf∗

// Dqcoh(Y )

U

OO

The triangulated functor Rqf∗ preserves coproducts by Proposition 37, and the functor U preserves
coproducts because the inclusion Qco(Y ) −→ Mod(X) does. Hence the composite Rf∗ ◦ u must
preserve coproducts, as required.

Theorem 39. Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes. The
triangulated functor Rqf∗ : Dqcoh(X) −→ Dqcoh(Y ) has a right adjoint.

Proof. Both schemes are concentrated, so Qco(X),Qco(Y ) are grothendieck abelian and therefore
their derived categories are mildly portly (DTC,Corollary 114). By (DTC2,Theorem 52) the
triangulated category Dqcoh(X) satisfies the representability theorem, and by Proposition 37 the
functor Rqf∗ preserves coproducts, so it follows from (TRC3,Corollary 27) that Rqf∗ has a right
adjoint.

5 A Comparison of Derived Categories

One of the main results of [BN93] is that for a quasi-compact and separated schemeX the canonical
functor Dqcoh(X) −→ D(X) is fully faithful, with essential image consisting of those complexes
with quasi-coherent cohomology. In this section we prove this result, following [BN93].

Let X be an arbitrary scheme and Qco(X) the abelian category of quasi-coherent sheaves
on X. This is an abelian subcategory of Mod(X), so there is a canonical triangulated functor
Dqcoh(X) −→ D(X). First we study the case where X is affine.
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Proposition 40. Let X = Spec(R) be an affine scheme. Then the canonical triangulated functor
Dqcoh(X) −→ D(X) is fully faithful.

Proof. The abelian category Qco(X) is a full replete subcategory of Mod(X), so we already know
that K(Qco(X)) −→ K(X) is fully faithful (DTC,Lemma 38). Given complexes X ,Y of quasi-
coherent sheaves, we have to show that the map

HomDqcoh(X)(X ,Y ) −→ HomD(X)(X ,Y ) (19)

is a bijection. The first step is to reduce to the case where Y is bounded below. We do this by
writing Y as a holimit of bounded below complexes in two ways (one for Qco(X) and one for
Mod(X)) and then comparing these limits. Some care is necessary because products in Qco(X)
and Mod(X) do not agree. Throughout the proof we use a superscript holim←−−−

qc to denote a limit
or holimit taken in Qco(X).

We can apply the technique of (DTC,Proposition 75) to construct a commutative diagram of
complexes in Qco(X)

· · · // Y≥−2

��

// Y≥−1

��

// Y≥0

��
· · · // I−2

// I−1
// I0

(20)

with each vertical morphism a quasi-isomorphism and the In bounded below complexes of injec-
tives in Qco(X). Now consider the bottom row of this diagram as a sequence of morphisms of
complexes in Mod(X), which we can inductively resolve in Mod(X) to produce a commutative
diagram of complexes

· · · // I−2

��

// I−1

��

// I0

��
· · · // J−2

// J−1
// J0

(21)

which vertical quasi-isomorphisms and the Jn bounded below complexes of injectives in Mod(X).
That is, so that the composite of the two diagrams (20) and (21) is a diagram with all the good
properties listed in Proposition 19.

Take the triangle defining holim←−−−
qcIn and map it into K(X). It is still a triangle, but the

involved products are not necessarily products in Mod(X). Nonetheless, we deduce a morphism
of triangles from this to the triangle defining holim←−−−Jn

holim←−−−
qcIn

α

��

// ∏qc In

��

// ∏qc In

��

// Σholim←−−−
qcIn

��
holim←−−−Jn // ∏ Jn

// ∏ Jn
// Σholim←−−−Jn

(22)

We claim that α is a quasi-isomorphism. Since Qco(X) ∼= RMod has exact products and a projec-
tive generator, we know from (DTC,Proposition 75) that there is a canonical quasi-isomorphism
Y −→ holim←−−−

qcIn. The composite

Y −→ holim←−−−
qcIn −→ holim←−−−Jn

in K(X) is a factorisation of the induced morphism Y −→
∏

Jn through the holimit, and
therefore by the proof of Proposition 19 must be a quasi-isomorphism. It is now immediate that
α is a quasi-isomorphism as well.

We know that Y is quasi-isomorphic to both of the holimits in (22), so we can use this
morphism of triangles to compare the Hom sets in Dqcoh(X) and D(X). We do this by applying
HomK(X)(X ,−) and deducing a morphism of long exact sequences (note that K(Qco(X)) −→
K(X) is fully faithful, so we can replace K(X) by K(Qco(X)) and then commute the products in
the top row outside the Hom)
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· · · !!
∏

HomK(Qco(X))(X ,Σ−1In)

""

!! HomK(Qco(X))(X , holim←−−−
qcIn) !!

""

∏
HomK(Qco(X))(X ,In) !!

""

· · ·

· · · !!
∏

HomK(X)(X ,Σ−1Jn) !! HomK(X)(X , holim←−−−Jn) !!
∏

HomK(X)(X ,Jn) !! · · ·

All the complexes in the second position of these Hom sets are hoinjective, so we can replace
K(−) with D(−) throughout. If we can show that (19) is a bijection for Y bounded below then
we would deduce from the Five Lemma that the canonical map

HomDqcoh(X)(X , holim←−−−
qcIn) −→ HomD(X)(X , holim←−−−Jn)

is a bijection, from which it follows that (19) is a bijection for our original Y . This completes the
reduction step, so we can now assume that Y is bounded below.

In the first variable all the reductions are very easy, because we can use hocolimits which are
much better behaved than holimits. Write X as the direct limit lim−→X≤n of its truncations. By
(DTC,Proposition 65) we have a triangle in Dqcoh(X)

⊕
n≥0 X≤n

1−ν //
⊕

n≥0 X≤n // X // Σ
⊕

n≥0 X≤n

Applying HomD(X)(−,Y ) and using the Five Lemma we reduce to the case where X is bounded
above. Now there is a rapid series of reductions for X :

• Since Qco(X) ∼= RMod we can use (DTC,Proposition 69) to reduce to the case where X
is a bounded above complex of free sheaves of modules (i.e. a coproduct of copies of OX).

• Writing X as the direct limit of its brutal trunctions X = lim−→n≤0 bX≥n we reduce to the
case where X is a bounded complex of free sheaves.

• Such a complex can be built up successively from single free sheaves by (DTC,Remark 32),
so finally we can assume X = OX .

That is, we have reduced to showing that for a bounded below complex Y in Qco(X) the map

HomDqcoh(X)(OX ,Y ) −→ HomD(X)(OX ,Y ) (23)

is a bijection. The final reduction is to replace Y by a single quasi-coherent sheaf. For any n ∈ Z
we have a triangle in Dqcoh(X) (DTC,Lemma 27)

cnH
n(Y ) −→ Y≥n −→ Y≥(n+1) −→ ΣcnHn(Y )

Assuming that (23) is a bijection for Y a quasi-coherent sheaf, it follows from induction and
applying HomD(X)(OX ,−) to this triangle that (23) is a bijection for any bounded below Y
(here we use the fact that HomD(X)(OX ,Y ) = 0 if Y is nonzero only in positive degrees). So
finally we reduce to showing that

HomDqcoh(X)(OX ,ΣnF ) −→ HomD(X)(OX ,ΣnF )

is a bijection for a quasi-coherent sheaf F and n ∈ Z. If n < 0 both groups are zero. If
n = 0 then both sides are Γ(X,F ) (DTC,Proposition 28). If n > 0 then the left hand side is
Extn(OX ,F ) = 0 (DTC2,Lemma 28) and the right hand side is Hn(X,F ) (DCOS,Theorem 12)
which is zero by Serre’s theorem (COS,Theorem 14).

Proposition 41. Let X = Spec(R) be an affine scheme. Then the canonical triangulated functor
F : Dqcoh(X) −→ D(X) induces a triequivalence

Dqcoh(X) −→ Dqc(X)
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Proof. We already know that Dqcoh(X) −→ D(X) is fully faithful, and we are claiming that
every complex in Mod(X) with quasi-coherent cohomology is isomorphic in D(X) to a complex
of quasi-coherent sheaves. That is, we claim Dqc(X) = Q where Q is the essential image of F .
The proof is divided into several steps.

Step 1: Every bounded complex in Dqc(X) is in Q. The proof is by induction on the number n
of nonzero terms in the complex. If n ≤ 1 this is trivial. Given a bounded complex Y in Dqc(X)
we have a triangle

Y≤k −→ Y −→ Y≥(k+1) −→ ΣY≤k

where we choose k so that Y≤k,Y≥(k+1) have strictly fewer nonzero terms. By the inductive
hypothesis Y≤k,Y≥(k+1) are in Q, and since F is full there is a morphism α in Dqcoh(X) corre-
sponding to Y≥(k+1) −→ ΣY≤k. Completing α to a triangle in Dqcoh(X) and mapping to D(X),
we deduce that Y is in the essential image of F .

Step 2: Every bounded below complex in Dqc(X) is in Q. If Y is a bounded below complex in
Dqc(X) then Y = holim−−−→n≥0Y≤n. That is, there is a triangle in D(X) (DTC,Proposition 65)

⊕
Y≤n

// ⊕ Y≤n
// Y // Σ

⊕
Y≤n

But the Y≤n are all in the essential image of F , so we can form this hocolimit already in Dqcoh(X).
The functor F preserves coproducts, so mapping this hocolimit in Dqcoh(X) into D(X) we deduce
that Y is in the essential image of F .

Step 3: Every complex in Dqc(X) is in Q. The general idea is to write a complex Y in Dqc(X)
as a holimit of bounded below complexes, therefore reducing to Step 2. But as usual, the devil is
in the details.

For each n ≤ 0 we can by Step 2 find an isomorphism Y≥n −→ In in D(X) where In is a
complex of injectives in Qco(X) with I i

n = 0 for i < n. Since the functor Dqcoh(X) −→ D(X) is
fully faithful and the In hoinjective in K(Qco(X)), we deduce a canonical sequence in K(Qco(X))

· · · −→ I−3 −→ I−2 −→ I−1 −→ I0 (24)

which fits into a commutative diagram in D(X)

· · · // Y≥n
//

��

· · · // Y≥−2

��

// Y≥−1

��

// Y≥0

��
· · · // In

// · · · // I−2
// I−1

// I0

(25)

Notice that the vertical isomorphisms in D(X) don’t necessarily lift to quasi-isomorphisms in
K(X), because while the In are hoinjective in K(Qco(X)), they may not be hoinjective in K(X).

Considering (24) as a sequence in K(X) we can inductively resolve it to produce a commutative
diagram in K(X)

· · · // In

��

// · · · // I−2

��

// I−1

��

// I0

��
· · · // Jn

// · · · // J−2
// J−1

// J0

(26)

with vertical quasi-isomorphisms and the Jn bounded below complexes of injectives in Mod(X).
The composite Y≥n −→ In −→ Jn in D(X) must lift uniquely to K(X) because Jn is hoin-
jective. In other words, the composite of the two diagrams (25) and (26) is the image in D(X)
of a resolution of the truncations of Y in K(X) as described by Proposition 104. In particular
Y −→ holim←−−−Jn is a quasi-isomorphism.
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Take the triangle defining holim←−−−
qcIn and map it into K(X). The morphism of sequences (26)

induces a morphism of triangles

holim←−−−
qcIn

ϑ

��

// ∏qc In

��

// ∏qc In

��

// Σholim←−−−
qcIn

��
holim←−−−Jn // ∏ Jn

// ∏ Jn
// Σholim←−−−Jn

(27)

and we claim that ϑ is a quasi-isomorphism. Then we would have Y isomorphic in D(X) to the
quasi-coherent complex holim←−−−

qcIn, so the proof would be complete.
We dealt successfully with a very similar situation in Proposition 40. The difference is that

there our complex Y was already assumed to be in Qco(X). We can reuse the argument, but
there is a trick: we have to find a complex of quasi-coherent sheaves Y ′ so that the sequence (24)
can be reinterpreted as a resolution in Qco(X) of the truncations of Y ′. The obvious candidate
is Y ′ = holim←−−−

qcIn.
From commutativity of (25) in D(X) we deduce that Hi(In−1) −→ Hi(In) is an isomorphism

for i ≥ n. This puts us in the situation of (DTC,Lemma 78) with A = Qco(X) and the sequence
(24), from which we conclude that Hi(holim←−−−

qcIn) −→ Hi(In) is an isomorphism for i ≥ n.
This yields a canonical quasi-isomorphism Y ′

≥n −→ In in K(Qco(X)). There is a commutative
diagram in K(Qco(X))

· · · // Y ′
≥n

//

��

· · · // Y ′
≥−2

��

// Y ′
≥−1

��

// Y ′
≥0

��
· · · // In

// · · · // I−2
// I−1

// I0

(28)

with vertical quasi-isomorphisms. This realises (24) as the resolution in Qco(X) of the truncations
of Y ′. Now we are in precisely the situation studied in the proof of Proposition 40 and in the
same way we deduce that ϑ : holim←−−−

qcIn −→ holim←−−−Jn is a quasi-isomorphism, which completes
the proof.

Theorem 42 (Bökstedt-Neeman). Let X be a quasi-compact semi-separated scheme. The
canonical triangulated functor U : Dqcoh(X) −→ D(X) is fully faithful and induces a triequiva-
lence

Dqcoh(X) −→ Dqc(X)

Proof. First we show that U is fully faithful. To make the exposition clearer, for the duration of
this proof we say that a complex Y in Qco(X) is swift if for every complex X in Qco(X) the
canonical map

HomDqcoh(X)(X ,Y ) −→ HomD(X)(X ,Y ) (29)

is a bijection. We want to show that every complex is swift, which we do in two steps.
Step 1. For any complex F in Qco(X), finite semi-separating cover U and p ≥ 0 the derived

Čech complex C p(U,F ) is swift. It is clear that a finite coproduct in Dqcoh(X) of swift complexes
is swift, so it suffices to show that for f : W −→ X the inclusion of an affine open subset, the
complex Rqf∗(F |W ) is swift. We have a bijection

HomDqcoh(X)(X ,Rqf∗(F |W )) ∼= HomDqcoh(W )(X |W ,F |W )
∼= HomD(W )(X |W ,F |W )
∼= HomD(X)(X ,Rf∗(F |W ))
∼= HomD(X)(X ,Rqf∗(F |W ))

where we have used the following facts: (i) Restriction is left adjoint to Rqf∗ for quasi-coherent
sheaves, and to Rf∗ for arbitrary sheaves. (ii) In the affine case every complex is swift by Propo-
sition 40. (iii) For morphisms of quasi-compact semi-separated schemes Rf∗ and Rqf∗ agree by
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Theorem 31. To check that this bijection is actually (29), let a morphism α : X −→ Rqf∗(F |W ) in
Dqcoh(X) be given. We check that α,U(α) end up at the same element of HomD(W )(X |W ,F |W ).
This amounts to showing that the following diagram commutes

Rqf∗(F |W )|W
µ|W //

U(ε♦) &&MMMMMMMMMMM
Rf∗(F |W )|W

ε♦
xxqqqqqqqqqq

F |W

We observed in the proof of Lemma 4 that ε♦ = (ζ|W )−1, so commutativity of the above diagram
follows from the defining property of µ given in Theorem 31. This shows that C p(U,F ) is swift.

Step 2. Every complex is swift. Any translation of a swift complex is swift, and if we have a
triangle in Dqcoh(X)

Y ′ −→ Y −→ Y ′′ −→ ΣY ′

with Y and Y ′′ swift, a simple argument using long exact sequences and the Five Lemma shows
that Y ′ is swift. We know that the derived Čech complexes are swift, so the result now follows
by climbing up the sequence of Čech triangles given in Proposition 33.

To be precise, let an arbitrary complex Y in Qco(X) be given and let U be a finite semi-
separating cover of X. Since we know the result for affines, we may as well assume it contains
d > 1 elements. By Remark 15 we have a sequence of triangles in Dqcoh(X)

Y −→ C 0(U,Y ) −→ D1(U,Y ) −→ ΣY

D1(U,Y ) −→ C 1(U,Y ) −→ D2(U,Y ) −→ ΣD1(U,Y )
...

Dd−2(U,Y ) −→ C d−2(U,Y ) −→ C d−1(U,Y ) −→ ΣDd−2(U,Y )

In the last triangle the second and third objects are swift by Step 1, so it follows that Dd−2(U,Y )
is swift. Proceeding in this way, we end up showing that Y is swift which completes the proof
that U is fully faithful.

It remains to show that every complex Y in Mod(X) with quasi-coherent cohomology is in the
essential image of U . Let n(X) denote the smallest number of affine open subsets that you can use
to form a semi-separating cover of X. We proceed by induction on n(X), with the case n(X) = 1
having already been established in Proposition 41. Assume that n(X) > 1 with X = X1∪· · ·∪Xn

and set U = X1, V = X2∪ · · ·∪Xn. This is a semi-separating open cover for V , which is therefore
quasi-compact semi-separated with n(V ) < n. Set Z = X \U and let j : U −→ X, i : V −→ X be
the inclusions. Consider the local cohomology triangle in D(X) of Lemma 23

RΓZ(Y ) // Y // Rj∗(Y |U ) τ // ΣRΓZ(F ) (30)

Restricting to U it is clear that RΓZ(Y )|U = 0. From the Mayer-Vietoris triangle for RΓZ(Y )
(DCOS,Lemma 21) we conclude that the canonical morphism

RΓZ(Y ) −→ Ri∗(RΓZ(Y )|V ) (31)

is an isomorphism in D(X). Now Y |U has quasi-coherent cohomology and U is affine, so there is an
isomorphism in D(U) of Y |U with a complex of quasi-coherent sheaves. Both i, j are morphisms
of quasi-compact semi-separated schemes, so from Theorem 31 we deduce that Ri∗,Rj∗ send
quasi-coherent complexes into complexes in the essential image of U : Dqcoh(X) −→ D(X). In
particular Rj∗(Y |U ) is in the essential image of U .

From the triangle (30) we infer that RΓZ(Y ) has quasi-coherent cohomology, so the same
argument together with the inductive hypothesis on V and the isomorphism (31) shows that
ΣRΓZ(F ) is in the essential image of U . Since U is fully faithful, τ is (up to isomorphism) the
image in D(U) of a morphism τ ′ in Dqcoh(U). If we extend τ ′ to a triangle in Dqcoh(U), this
triangle must be isomorphic in D(U) to (30) from which we deduce that Y is in the essential
image of U , completing the proof.
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Corollary 43. If f : X −→ Y is a morphism of schemes then Lf∗(Dqc(Y )) ⊆ Dqc(X).

Proof. That is, we claim the triangulated functor Lf∗ : D(Y ) −→ D(X) sends complexes with
quasi-coherent cohomology to complexes with quasi-coherent cohomology. The derived inverse
image is local (DCOS,Lemma 87) so we can reduce to Y affine. Let Y be a complex of sheaves of
modules on Y with quasi-coherent cohomology. In light of Proposition 41 we may as well assume
that Y is actually a complex of quasi-coherent sheaves. An affine scheme has enough quasi-
coherent hoflats, so it follows from (DCOQS,Proposition 11) that Lf∗(Y ) has quasi-coherent
cohomology.

Corollary 44. If X is a scheme and X ,Y complexes of sheaves of modules with quasi-coherent
cohomology, then X

=
⊗ Y also has quasi-coherent cohomology.

Proof. Here X
=
⊗ Y denotes the derived tensor product on D(X) (DCOS,Definition 13). The

derived tensor is local (DCOS,Lemma 55) so we may as well assume X is affine. By Proposition
41 it is then enough to consider the case where X ,Y are complexes of quasi-coherent sheaves.
An affine scheme has enough quasi-coherent hoflats, so it follows from (DCOQS,Lemma 18) that
X

=
⊗ Y has quasi-coherent cohomology. For an alternative proof see [Lip] (2.5.8).

Corollary 45. Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes. The
restricted functor Rf∗ : Dqc(X)→ D(Y ) preserves coproducts.

Proof. The triangulated functor Rf∗ : D(X) −→ D(Y ) composed with Dqcoh(X) −→ D(X)
preserves coproducts by Corollary 38. By Theorem 42 this second functor factors as an equivalence
Dqcoh(X) −→ Dqc(X) followed by the inclusion k : Dqc(X) −→ D(X), so it is clear that Rf∗ ◦ k
also preserves coproducts.

Proposition 46. Let X be a quasi-compact semi-separated scheme. For complexes X ,Y ,Z of
quasi-coherent sheaves on X there is a canonical isomorphism of abelian groups natural in all three
variables

HomDqcoh(X)(X =
⊗q Y ,Z ) −→ HomDqcoh(X)(X ,RqHom•(Y ,Z ))

In particular we have an adjoint pair

Dqcoh(X)
RqHom•(Y ,−)

--
Dqcoh(X)

−
=
⊗qY

mm −
=
⊗q Y � RqHom•(Y ,−)

Proof. To avoid confusion we write −
=
⊗q− for the derived tensor product on Dqcoh(X) defined in

Definition 8. This exists because X has enough quasi-coherent hoflats by Lemma 8. The derived
sheaf Hom on Dqcoh(X) is the one given in Definition 2. The functor i : Dqcoh(X) −→ D(X) is
fully faithful by Theorem 42 so using the adjunction on D(X) we have a canonical isomorphism
of abelian groups natural in all variables

HomDqcoh(X)(X ,RQRHom•(Y ,Z )) ∼= HomD(X)(X ,RHom•(Y ,Z ))
∼= HomD(X)(X =

⊗ Y ,Z )
∼= HomD(X)(X =

⊗q Y ,Z )
∼= HomDqcoh(X)(X =

⊗q Y ,Z )

as required.

Corollary 47. Let X be a quasi-compact semi-separated scheme and X a complex of quasi-
coherent sheaves. The triangulated functors X

=
⊗q − and −

=
⊗q X preserve coproducts.
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5.1 Quasi-coherent Hypercohomology

Recall the definition of hypercohomology from (DCOS,Definition 19). There is a version for quasi-
coherent sheaves, just as there is a quasi-coherent version of sheaf cohomology (HDIS,Section 6).
For any reasonable scheme, the two types of hypercohomology agree.

Definition 15. Let X be a concentrated scheme, Γqc(X,−) : Qco(X) −→ Ab the global sections
functor, and Hq(X,−) a right derived functor. We call Hq(X,F ) the quasi-coherent hypercoho-
mology of a complex F of quasi-coherent sheaves, and write Hm

q (X,F ) for HmH(X,F ).

Lemma 48. Let X be a quasi-compact semi-separated scheme. Any complex of dilute sheaves on
X is acyclic for the additive functor Γqc(X,−) : Qco(X) −→ Ab.

Proof. Just copy the proof of Proposition 28, but instead of applying (HDIS,Proposition 33) use
(HDIS,Lemma 32).

To actually calculate sheaf cohomology one uses the Čech cohomology and (COS,Theorem 35).
We can now give the analagous result for quasi-coherent hypercohomology.

Proposition 49. Let X be a quasi-compact semi-separated scheme and F a complex of quasi-
coherent sheaves on X. For a finite semi-separating cover U of X there is a canonical isomorphism
in D(Ab) natural in F

Hq(X,F ) −→ Γ(X,Ctot(U,F ))

Proof. By definition we have a canonical quasi-isomorphism F −→ Ctot(U,F ), and the complex
Ctot(U,F ) is acyclic for Γqc(X,−) : Qco(X) −→ Ab by Lemma 48. We have therefore a canonical
isomorphism in D(Ab) natural in F

Hq(X,F ) ∼= Hq(X,Ctot(U,F )) ∼= Γ(X,Ctot(U,F ))

using the isomorphism of (DTC2,Remark 2).

On a concentrated scheme X the sheaf cohomology functors Hi(X,−) preserve coproducts
(COS,Theorem 26). The next result should be interpreted as generalising this statement to quasi-
coherent hypercohomology.

Corollary 50. Let X be a quasi-compact semi-separated scheme. The triangulated functor

Hq(X,−) : Dqcoh(X) −→ D(Ab)

preserves coproducts.

Proof. To be precise, we have an additive functor Γqc(X,−) : Qco(X) −→ Ab and we claim that
any right derived functor Hq(X,−) = RΓqc(X,−) : Dqcoh(X) −→ D(Ab) preserves coproducts.
The unique morphism f : X −→ Spec(Z) has a coproduct-preserving derived functor Rqf∗ by
Proposition 37. Composing with the canonical equivalence Dqcoh(Spec(Z)) ∼= D(Ab) yields the
desired result.

By (HDIS,Lemma 32) if you take a reasonable scheme X then there is a uniform bound on
the number of nonzero cohomology groups of any quasi-coherent sheaf. This is also true of the
quasi-coherent hypercohomology, and moreover it is true of the usual hypercohomology restricted
to complexes with quasi-coherent cohomology.

Proposition 51. Let X be a concentrated scheme. The restricted hypercohomology functor

H(X,−) : Dqc(X) −→ D(Ab)

is bounded. If X is a quasi-compact semi-separated scheme the quasi-coherent hypercohomology
functor

Hq(X,−) : Dqcoh(X) −→ D(Ab)

is also bounded.
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Proof. To be precise, let (H(X,−), ζ) be an arbitrary right derived functor of the additive functor
Γ(X,−) : Mod(X) −→ Ab and (Hq(X,−), ω) be an arbitrary right derived functor of Γqc(X,−) :
Qco(X) −→ Ab. It follows immediately from Proposition 30 and the discussion given in the proof
of Corollary 50 that if X is quasi-compact semi-separated then Hq(X,−) is bounded. It remains
to show that the functor H(X,−) composed with the inclusion Dqc(X) −→ D(X) is bounded
whenever X is concentrated.

This is not a special case of Theorem 21, but as one might expect a small modification of the
proof gives the desired result. To be precise, let F be a complex of sheaves of modules on X with
quasi-coherent cohomology. Then with the notation used in the proof of Theorem 21 we have an
isomorphism Γ(X,Cn) ∼= Σ−nRΓ(X,Hn(F )) in D(Ab) for n < 0. Since X is concentrated we
can by (HDIS,Lemma 32) find an integer d ≥ 0 such that Hi(X,G ) = 0 for every quasi-coherent
sheaf G and i > d. Then for m > n+ d we have

HmΓ(X,Cn) ∼= Hm−n(X,Hn(F )) = 0

and by the now standard argument we deduce for m ≥ n+ d an isomorphism

HmΓ(X,holim←−−−In) −→ HmΓ(X,In)

Since the complexes holim←−−−In and In are hoinjective, this is actually an isomorphism

Hm(H(X,holim←−−−In)) −→ Hm(H(X,In))

Copying the proof of Theorem 21 we end up with an isomorphism for arbitrary n ≤ 0 andm ≥ n+d

Hm(H(X,F )) −→ Hm(H(X,F≥n))

from which it follows that H(X,−) sends Dqc(X)≤−1 into D(Ab)≤(d−1), completing the proof
that H(X,−) is bounded on Dqc(X).

On a quasi-compact semi-separated scheme the quasi-coherent sheaf cohomology Hi
qc(X,−)

agrees with the usual sheaf cohomology Hi(X,−) (HDIS,Corollary 41). Again this generalises to
quasi-coherent hypercohomology.

Proposition 52. Let X be a quasi-compact semi-separated scheme. The diagram of triangulated
functors

Dqcoh(X)

Hq(X,−) ''OOOOOOOOOOO
U // D(X)

H(X,−)xxqqqqqqqqqq

D(Ab)

commutes up to canonical trinatural equivalence.

Proof. We have a commutative diagram of additive functors

Qco(X)

Γqc(X,−) $$HH
HH

HH
HH

H
U // Mod(X)

Γ(X,−)zzuuuuuuuuu

Ab

Let (H(X,−), ζ) and (Hq(X,−), ω) be arbitrary right derived functors of Γ(X,−) and Γqc(X,−)
respectively. The trinatural transformation ζK(U) induces a unique trinatural transformation
µ : Hq(X,−) −→ H(X,−)U unique making the following diagram commute

QK(Γqc(X,−))
ζK(U)

))RRRRRRRRRRRRR
ω

vvmmmmmmmmmmmmm

Hq(X,−) ◦Q
µQ

// H(X,−) ◦ U ◦Q
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and we claim that µ is a trinatural equivalence. The triangulated functors Hq(X,−) and H(X,−)◦
U are bounded by Proposition 51. Therefore by (DTC2,Proposition 38) it is enough to show that

µ : Hq(X,F ) −→ H(X,F )

is an isomorphism in D(Ab) for any quasi-coherent sheaf F on X. Let U be a finite semi-
separating cover of X and consider the Čech complex

C (U,F ) : 0 −→ C 0(U,F ) −→ C 1(U,F ) −→ · · ·

This is a complex of dilute sheaves, so C (U,F ) is acyclic for Γqc(X,−) by Lemma 48. Each
C p(U,F ) is acyclic for Γ(X,−) by the definition of a dilute sheaf, so the complex C (U,F )
is acyclic for Γ(X,−) by (DTC2,Corollary 43). It follows easily from these observations that
µ : Hq(X,F ) −→ H(X,F ) is an isomorphism, as required.

Remark 17. Let A be a commutative ring and X a quasi-compact semi-separated scheme over
Spec(A). Then Dqcoh(X) and D(X) are A-linear triangulated categories (DTC,Remark 11) and
we have additive functors

Γq(X,−) : Qco(X) −→ AMod

Γ(X,−) : Mod(X) −→ AMod

Take arbitrary right derived functors Hq(X,−) : Dqcoh(X) −→ D(A) and H(X,−) : D(X) −→
D(A). It is easily verified that these agree up to canonical trinatural equivalence with the hyper-
cohomologies defined with values in Ab (see (DCOS,Remark 35)). It is therefore a consequence of
Proposition 51 that that Hq(X,−) and H(X,−) are bounded triangulated functors (to be precise,
the latter functor is bounded on Dqc(X)). One can check exactly as in Proposition 52 that the
diagram

Dqcoh(X)

Hq(X,−) ''NNNNNNNNNNN
U // D(X)

H(X,−)yyrrrrrrrrrr

D(A)

commutes up to canonical trinatural equivalence.

Corollary 53. Let X be a quasi-compact semi-separated scheme. The restricted functor

H(X,−) : Dqc(X) −→ D(Ab)

preserves coproducts.

Proof. Here H(X,−) denotes an arbitrary right derived functor of Γ(X,−) : Mod(X) −→ Ab.
Given a coproduct in Dqc(X) we can by Theorem 42 assume all the objects are actually in
Dqcoh(X), in which case H(X,−) preserves the coproduct by Proposition 52 and Corollary 50.

Here is the derived version of (HDIS,Theorem 30), one of the most important properties of the
“old-fashioned” derived direct image.

Proposition 54. Let f : X −→ Y be a morphism of schemes where X is concentrated and
Y = SpecA is affine. Then for any complex F of quasi-coherent sheaves of modules on X there
is a canonical isomorphism in Dqcoh(Y ) natural in F

γ : Hq(X,F )˜ −→ Rqf∗(F )

Proof. We have three additive functors

f∗ : Qco(X) −→ Qco(Y )
Γqc(X,−) : Qco(X) −→ AMod

−̃ : AMod −→ Qco(Y )
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where the last is actually an equivalence. In particular it is exact, so it extends to the derived
category and −̃◦Hq(X,−) is a right derived functor of −̃◦Γ(X,−), which is naturally equivalent to
f∗(−). We deduce a canonical trinatural equivalence −̃ ◦Hq(X,−) −→ Rqf∗(−), as required..

The reader will observe that Proposition 54 is completely trivial, so it seems like we should
be able to take cohomology of both sides and obtain a very easy proof of (HDIS,Theorem 30).
Unfortunately this is an illusion, because of the possible distinction between the right derived
functors of f∗ : Mod(X) −→ Mod(Y ) and f∗ : Qco(X) −→ Qco(Y ) (see [TT90] or our HDIS
notes). Somewhere one has to prove something.

Corollary 55. Let f : X −→ Spec(k) be a concentrated scheme over a field k. Then for any com-
plex F of quasi-coherent sheaves of modules on X there is a canonical isomorphism in Dqcoh(k)
natural in F between Rqf∗(F ) and the following complex

· · · 0 // Hn−1
q (X,F )˜ 0 // Hn

q (X,F )˜ 0 // Hn+1
q (X,F )˜ 0 // · · ·

Proof. From Proposition 54 we have the isomorphism Rqf∗(F ) ∼= Hq(X,F )˜. Since k is a field
the abelian category kMod is semisimple (DTC,Definition 23), so complexes in Dqcoh(k) are
canonically isomorphic to complexes with zero differentials and the cohomology of the complex in
each position (DTC,Proposition 39). This isomorphism is natural, so the proof is complete.

6 Perfect Complexes

Definition 16. Let (X,OX) be a ringed space and F a sheaf of modules onX. Then the following
conditions are equivalent:

(i) F is locally finitely free (MRS,Definition 14).

(ii) F is locally free of finite type (MOS,Lemma 56).

In the literature such sheaves are more commonly known as vector bundles. A vector bundle on a
scheme is clearly a coherent sheaf. If X is a noetherian scheme then F is a vector bundle if and
only if it is a locally free coherent sheaf (MOS,Corollary 28) (MOS,Lemma 34).

Lemma 56. Let X be a scheme and F a locally finitely presented sheaf of modules on X. Then
the following conditions are equivalent:

(i) F is a vector bundle.

(ii) For every x ∈ X the OX,x-module Fx is free (equivalently, projective or flat).

(iii) For every x ∈ X there is an open affine neighborhood x ∈ U with F |U projective in Qco(U).

Proof. (i)⇒ (ii) is trivial. See (MAT,Proposition 24) for the proof that free ⇔ projective ⇔ flat
over a local ring. (ii) ⇒ (i) follows from (MRS,Corollary 90). Clearly on an affine scheme a free
sheaf is projective in Qco(X), so (i) ⇒ (iii). For (iii) ⇒ (ii) suppose that x ∈ X is given with
open affine neighborhood U and F |U projective in Qco(U). Then F |U is a direct summand in
Qco(U) of some coproduct of copies of OX |U , from which we deduce that Fx is projective.

Remark 18. If you have a bounded complex of vector bundles on a neighborhood of a point, then
you can shrink your open neighborhood until all the objects of the complex are simultaneously free
of finite rank. So replacing the occurrence of “vector bundles” in (i), (ii) above with “free sheaves
of finite rank” we have two new conditions (i)′, (ii)′ which are equivalent to (i), (ii) respectively.

In the theory of sheaves of modules on a scheme, vector bundles play an important role. As
an example, see the basic results of (MRS,Section 1.12) where we observe that various canonical
isomorphisms connecting constructions on sheaves are isomorphisms for vector bundles. The
perfect complexes are the analogous objects in the derived category. Our definition follows the one
given in SGA6 I §4 and [TT90] Definition 2.2.10. We make no attempt to develop the theory in
utmost generality, for which we would need pseudo-coherence, tor-dimension etc. For these details
the reader is referred to SGA6 I.
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Definition 17. Let X be a scheme and X a complex of sheaves of modules on X. We say that
X is a strict perfect complex if it is a bounded complex of vector bundles, and a perfect complex if
it is locally isomorphic in the derived category to a strict perfect complex. That is, X is a perfect
complex if for every x ∈ X there is an open neighborhood x ∈ U and an isomorphism P ∼= X |U
in D(U) where P is a bounded complex of vector bundles on U . This property is stable under
isomorphism in D(X), and it is clear that a perfect complex has quasi-coherent cohomology.

If U ⊆ X is open and X a perfect complex on X, then X |U is a perfect complex on U .
Conversely if X is a complex of sheaves of modules which is perfect on a neighborhood of every
point, then X is perfect.

Lemma 57. Given a scheme X and a complex X of quasi-coherent sheaves the following condi-
tions are equivalent:

(i) X is perfect.

(ii) For every x ∈ X there is an open neighborhood x ∈ U and a quasi-isomorphism P −→X |U
where P is a bounded complex of vector bundles on U .

(iii) For every x ∈ X there is an open neighborhood x ∈ U and an isomorphism P ∼= X |U in
Dqcoh(U) where P is a bounded complex of vector bundles on U .

Proof. Clearly (ii) ⇒ (iii), (iii) ⇒ (i). For (iii) ⇒ (ii) let x ∈ X be given. Since P is bounded
we can, by shrinking the neighborhood U if necessary, assume that P is a bounded complex
of free sheaves of finite rank and that U is affine. Such a sheaf is projective in Qco(U), so P
is hoprojective as an object of K(Qco(U)). Therefore any isomorphism P ∼= X |U must lift to
a quasi-isomorphism of complexes P −→ X |U . (i) ⇒ (iii) Let x ∈ X be given and find an
open affine neighborhood x ∈ U together with an isomorphism P ∼= X |U in D(U) where P is
a bounded complex of vector bundles (in particular, a complex of quasi-coherent sheaves). By
Theorem 42 the canonical functor Dqcoh(U) −→ D(U) is fully faithful, so this isomorphism must
come from an isomorphism in Dqcoh(U).

Remark 19. The equivalence of the conditions (ii), (iii) is true more generally, but the proof
is complicated (see SGA I). In some sense we only really care about perfect complexes of quasi-
coherent sheaves, because for a quasi-compact semi-separated scheme X any perfect complex
has quasi-coherent cohomology, and is therefore by Theorem 42 isomorphic in D(X) to a quasi-
coherent complex (which is trivially perfect). However, it is technically convenient to allow perfect
complexes of arbitrary sheaves of modules.

Proposition 58. Let X be a scheme and X a perfect complex on X. The triangulated functor

RHom•(X ,−) : D(X) −→ D(X)

preserves coproducts and sends Dqc(X) into Dqc(X).

Proof. The derived sheaf Hom is local (DCOS,Lemma 24), and we can check locally if a cocone
is a coproduct (DCOS,Lemma 2), so in proving both claims we can reduce to the case where X
is a bounded complex of free sheaves of finite rank.

Let S be the full subcategory of D(X) consisting of those complexes F for which the triangu-
lated functor RHom•(F ,−) preserves coproducts. This is clearly replete, and it is closed under
Σ−1 by (DTC2,Remark 8). Suppose we have a triangle in D(X)

F −→ G −→H −→ ΣF

with F ,G ∈ S and let a coproduct {Aλ −→ A }λ∈Λ in D(X) be given. Applying the triangulated
functors RIHom•(−,Aλ) and RIHom•(−,A ) to the following triangle of D(X)op

Σ−1H ←− F ←− G ←−H
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and taking coproducts we deduce a morphism of triangles in D(X)

Σ⊕λ RHom•(H ,Aλ)

��

⊕λRHom•(F ,Aλ)oo

β

��

⊕λRHom•(G ,Aλ)

γ

��

oo ⊕λRHom•(H ,Aλ)oo

α

��
ΣRHom•(H ,A ) RHom•(F ,A )oo RHom•(G ,A )oo RHom•(H ,A )oo

By assumption β, γ are isomorphisms, so α is an isomorphism. It follows that H ∈ S, which by
(TRC,Lemma 33) is enough to show that S is a triangulated subcategory of D(X).

Next we claim that the sheaf OX belongs to S. This follows from the natural isomorphism

RHom•(OX ,Y ) ∼= Y (32)

of (DCOS,Lemma 25). But if S contains OX then it contains any bounded complex built out of
finite coproducts of copies of OX in Mod(X) (DTC,Lemma 79). That is, it contains any bounded
complex of free sheaves of finite rank. Since we have already reduced to this case, this proves that
RHom•(X ,−) preserves coproducts for any perfect X .

For the second claim, fix a complex A ∈ Dqc(X) and let S be the full subcategory of D(X)
consisting of those complexes F for which RHom•(F ,A ) has quasi-coherent cohomology. One
checks that this is a triangulated subcategory of D(X), which contains OX by virtue of (32). It
therefore contains any bounded complex of free sheaves of finite rank, which is what we needed
to show.

Corollary 59. Let X be a quasi-compact semi-separated scheme. If X is a perfect complex of
quasi-coherent sheaves on X then it is compact as an object of Dqcoh(X).

Proof. See (AC,Definition 18) for the definition of a compact object in a category. Let X be a
perfect complex on X and {Fλ}λ∈Λ a family of objects in Dqcoh(X). For each λ ∈ Λ the complex
RHom•(X ,Fλ) has quasi-coherent cohomology by Proposition 58, so we have an isomorphism
in D(Ab)

RHom•(X ,⊕λFλ) ∼= H(X,RHom•(X ,⊕λFλ))
∼= H(X,⊕λRHom•(X ,Fλ))
∼= ⊕λH(X,RHom•(X ,Fλ))
∼= ⊕λRHom•(X ,Fλ)

(33)

using (DCOS,Proposition 75), Proposition 58 and Corollary 53. In other words, the composite
triangulated functor

Dqcoh(X) // D(X)
RHom•(X ,−) // D(Ab)

preserves coproducts. Taking H0 of both sides of (33) and using (DTC2,Lemma 26) we have an
isomorphism of abelian groups

HomD(X)(X ,⊕λFλ) ∼= ⊕λHomD(X)(X ,Fλ)

and since by Theorem 42 the canonical functor Dqcoh(X) −→ D(X) is fully faithful, this yields
an isomorphism HomDqcoh(X)(X ,⊕λFλ) ∼= ⊕λHomDqcoh(X)(X ,Fλ) from which it follows that
X is compact in Dqcoh(X), as required.

Remark 20. From the above results we see that a perfect complex X of quasi-coherent sheaves
is compact in every way you can imagine: the functors RHom•(X ,−),RHom•(X ,−) and
HomDqcoh(X)(X ,−) all preserve coproducts.

Proposition 60. Let X be a quasi-compact semi-separated scheme with an ample family {Lα}α∈Λ

of invertible sheaves. Then Dqcoh(X) is compactly generated by the set

C = {ΣmL ⊗n
α |α ∈ Λ,m, n ∈ Z}
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Proof. See (AMF,Definition 2) for the definition of an ample family. An invertible sheaf is a
vector bundle, so the sheaves L ⊗n

α are perfect as complexes and therefore compact in Dqcoh(X)
by Corollary 59. To see that C is a family of compact generators in the sense of (TRC3,Definition
9) suppose we are given a complex X of quasi-coherent sheaves with

HomDqcoh(X)(ΣmL ⊗n
α ,X ) = 0

for every α ∈ Λ,m, n ∈ Z. The category Qco(X) has enough hoinjectives, so we may as well
assume that X is hoinjective in K(Qco(X)), and consequently that

HomK(Qco(X))(ΣmL ⊗n
α ,X ) = 0

for every α ∈ Λ,m, n ∈ Z. It follows from (DTC,Lemma 31) that every morphism of sheaves
of modules L ⊗n

α −→ Ker∂−m
X factors through X −m−1 −→ Ker∂−m

X . Since the sheaves L ⊗n
α

generate Qco(X) (AMF,Lemma 8) it follows that the epimorphism Ker∂−m
X −→ H−m(X ) is the

zero morphism, and therefore trivially H−m(X ) = 0. Since m is arbitrary we conclude that X
is exact and hence zero in Dqcoh(X). Hence C compactly generates Dqcoh(X), as claimed. To
be pedantic, you can actually omit the non-negative tensor powers; that is, the compact objects
{ΣmL ⊗n

α }α∈Λ,m∈Z,n<0 generate Dqcoh(X).

Remark 21. Neeman has shown that Dqcoh(X) is compactly generated even without the exis-
tence of an ample family of invertible sheaves [Nee96]. The careful reader can therefore delete
this hypothesis from any results in these notes that rely on Proposition 60. We do not include
the more general result here because we are mainly interested in quasi-projective varieties, which
automatically admit an ample family.

Proposition 61. Let X be a scheme and P the full subcategory of Dqcoh(X) consisting of the
perfect complexes. Then P is a thick triangulated subcategory of Dqcoh(X).

Proof. We use the criterion of (TRC,Lemma 33). It is easy to check that P is replete and closed
under Σ−1. Suppose that we have a triangle in Dqcoh(X)

X −→ Y −→ Z −→ ΣX

with X ,Y perfect. Given x ∈ X let x ∈ U be an affine open neighborhood small enough that
X |U ,Y |U are isomorphic in Dqcoh(U) to bounded complexes of free sheaves of finite rank P,Q
respectively. Then we have a triangle in Dqcoh(U)

P −→ Q −→ Z |U −→ ΣP

The morphism P −→ Q must lift to K(Qco(U)) because P is hoprojective, and therefore Z |U is
isomorphic in Dqcoh(U) to the mapping cone on a morphism of bounded complexes of free sheaves
of finite rank. Such a mapping cone is clearly itself a bounded complex of free sheaves of finite
rank, so Z is perfect and P triangulated.

To see that P is thick, suppose we have X = Y ⊕Z in Dqcoh(X) with X perfect. Given x ∈ X
let U be an affine neighborhood of x so small that X is isomorphic in Dqcoh(U) to a bounded
complex of free sheaves of finite rank. Passing to D(R) where U ∼= Spec(R) we have X = Y ⊕ Z
where X is a bounded complex of finitely generated free R-modules. From (DTC2,Proposition
50) we deduce that Y is isomorphic in D(R) to a bounded complex of finitely presented projective
R-modules (since a finitely generated projective R-module is finitely presented).

Returning to Dqcoh(U) we see that Y |U is isomorphic in Dqcoh(U) to a bounded complex Q
of finitely presented sheaves projective in Qco(U). Therefore Qx is a bounded complex of free
OX,x-modules of finite rank (for finitely generated modules over a local ring free ⇔ projective).
Using (MRS,Corollary 90) we can find an open neighborhood x ∈ V ⊆ U such that Q|V is a
bounded complex of free sheaves of finite rank, which proves that Y is perfect and completes the
proof.

Corollary 62. If X is a scheme the perfect complexes form a triangulated subcategory of D(X).
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Proof. First of all assume thatX is affine. Let P,Q denote the full subcategories of Dqcoh(X),D(X)
respectively consisting of the perfect complexes. By Theorem 42 the canonical functor U :
Dqcoh(X) −→ D(X) is fully faithful, and as we observed in Remark 19 the subcategory Q is
the essential image of P under U . Since P is triangulated, it follows that Q is as well. In other
words, the claim is true for affine schemes.

Now for general X let Q be the full subcategory of perfect complexes in D(X). This is clearly
replete and closed under Σ−1. If we have a triangle in D(X)

X −→ Y −→ Z −→ ΣX

with X ,Y perfect, then restricting to affine open neighborhoods and using the previous paragraph
we deduce that Z is perfect on a neighborhood of every point, and therefore perfect. Hence Q is
a triangulated subcategory of D(X).

Theorem 63. Let X be a quasi-compact semi-separated scheme with an ample family of invertible
sheaves. Then Dqcoh(X) is compactly generated and an object of Dqcoh(X) is compact if and only
if it is a perfect complex.

Proof. Let {Lα}α∈Λ be an ample family of invertible sheaves and set T = Dqcoh(X). If T c

denotes the triangulated subcategory of compact objects and P the subcategory of perfect objects,
then we know from Corollary 59 that P ⊆ T c. By Proposition 60 the triangulated category
Dqcoh(X) is compactly generated by complexes ΣmL ⊗n

α and therefore by (TRC3,Lemma 17)
the subcategory T c is the smallest thick triangulated subcategory of Dqcoh(X) containing these
compact generators. By Proposition 61 the subcategory P is thick, and since each of the generators
is perfect we must have T c ⊆ P. Therefore T c = P as required.

7 Projection Formula and Friends

Lemma 64 (Projection Formula). Let f : X −→ Y be a morphism of concentrated schemes
and X ,Y complexes of sheaves of modules on X,Y respectively. There is a canonical morphism
of complexes of sheaves of modules on Y trinatural in both variables

π : f∗(X )⊗ Y −→ f∗(X ⊗ f∗(Y ))

which is an isomorphism if for every j ∈ Z the sheaf Y j is locally finitely free.

Proof. Since the schemes X,Y are concentrated the additive functor f∗ : Mod(X) −→ Mod(Y )
preserves coproducts (HDIS,Proposition 37). This is essential for the proof, which is why we
work over schemes instead of arbitrary ringed spaces. Using the projection morphism for sheaves
(MRS,Lemma 80) we have for n ∈ Z a canonical morphism of sheaves of modules

πn : (f∗(X )⊗ Y )n = ⊕i+j=nf∗(X i)⊗ Y j

−→ ⊕i+j=nf∗(X i ⊗ f∗(Y j))
∼= f∗

(
⊕i+j=nX i ⊗ f∗(Y j)

)
= f∗(X ⊗ f∗(Y ))n

and together these define the required morphism of complexes π, which is clearly natural in both
variables. If every Y j is locally finitely free then it follows from (MRS,Lemma 80) that π is an
isomorphism. When we say that π is trinatural in both variables we mean that the following
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diagrams commute

f∗(ΣX )⊗ Y

��

π // f∗((ΣX )⊗ f∗(Y ))

��
Σ(f∗(X )⊗ Y )

Σπ
// Σf∗(X ⊗ f∗(Y ))

f∗(X )⊗ (ΣY ) π //

��

f∗(X ⊗ f∗(ΣY ))

��
Σ(f∗X ⊗ Y )

Σπ
// Σf∗(X ⊗ f∗Y )

which is easily checked.

Remark 22. With the notation of Lemma 64 let V ⊆ Y be a quasi-compact open subset and
g : U −→ V the induced morphism of schemes, where U = f−1V . Observe that U, V are both
concentrated. Then one checks that the projection morphism is local, by which we mean that the
following diagram commutes

(f∗(X )⊗ Y )|V

��

π|V // f∗(X ⊗ f∗(Y ))|V

��
g∗(X |U )⊗ Y |V π

// g∗(X |U ⊗ g∗(Y |V ))

Commutativity of this diagram follows immediately from (MRS,Remark 16).

Next we generalise the projection formula to the derived category, following [Nee96] Proposition
5.3. In the ordinary projection formula (MRS,Lemma 80) it is crucial that the sheaf E be locally
finitely free. By passing to the derived category we can prove that the projection morphism is an
isomorphism for essentially every pair of complexes, which is quite surprising.

Proposition 65 (Derived Projection Formula). Let f : X −→ Y be a morphism of con-
centrated schemes and X ,Y complexes of sheaves of modules on X,Y respectively. There is a
canonical morphism in D(Y ) trinatural in both variables

$ : Rf∗(X )
=
⊗ Y −→ Rf∗(X =

⊗ Lf∗(Y ))

If X,Y are quasi-compact semi-separated schemes and X ,Y have quasi-coherent cohomology, this
is an isomorphism.

Proof. First assume that X is hoinjective and Y hoflat. In that case we using Lemma 64 a
canonical morphism in D(Y )

Rf∗(X )
=
⊗ Y ∼= f∗(X )

=
⊗ Y ∼= f∗(X )⊗ Y

−→ f∗(X ⊗ f∗(Y )) −→ Rf∗(X ⊗ f∗(Y ))
∼= Rf∗(X =

⊗ f∗(Y )) ∼= Rf∗(X =
⊗ Lf∗(Y ))

where we have used the fact that f∗(Y ) is also hoflat (DCOS,Lemma 52). Given arbitrary
complexes X ,Y we can find isomorphic complexes X ′,Y ′ which are respectively hoinjective and
hoflat, and define $X ,Y to be the composite

Rf∗(X )
=
⊗ Y +3 Rf∗(X ′)

=
⊗ Y ′ $ // Rf∗(X ′

=
⊗ Lf∗(Y ′)) +3 Rf∗(X =

⊗ Lf∗(Y ))

which does not depend on the choice of X ′,Y ′ and is therefore canonical. It is straightforward
to check that $ is natural in both variables, with respect to morphisms of the derived categories.
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When we say that $ is trinatural in both variables we mean that the following diagrams commute

Rf∗(X )
=
⊗ (ΣY )

��

$ // Rf∗(X =
⊗ Lf∗(ΣY ))

��
Rf∗(X =

⊗ ΣLf∗(Y ))

��
Rf∗Σ(X

=
⊗ Lf∗(Y ))

��
Σ(Rf∗(X )

=
⊗ Y )

Σ$
// ΣRf∗(X =

⊗ Lf∗(Y ))

Rf∗(ΣX )
=
⊗ Y

��

$ // Rf∗((ΣX )
=
⊗ Lf∗(Y ))

��
(ΣRf∗(X ))

=
⊗ Y

��

Rf∗Σ(X
=
⊗ Lf∗(Y ))

��
Σ(Rf∗(X )

=
⊗ Y )

Σ$
// ΣRf∗(X =

⊗ Lf∗(Y ))

which is easily checked. Now suppose that X,Y are quasi-compact semi-separated schemes and
fix an arbitrary complex X of quasi-coherent sheaves. We can then consider $ as a trinatural
transformation between two triangulated functors Dqcoh(Y ) −→ D(Y )

$ : Rf∗(X )
=
⊗ (−) −→ Rf∗(X =

⊗ Lf∗(−))

The derived tensor product preserves coproducts (DCOS,Corollary 74), as does Lf∗ by virtue of
having a right adjoint (DCOS,Proposition 86). The restricted functor Rf∗ : Dqc(X) −→ D(Y )
preserves coproducts by Corollary 42. These facts together with Corollary 43 and Corollary
44 show that $ is a trinatural transformation of coproduct preserving triangulated functors
Dqcoh(Y ) −→ D(Y ). We claim that this is a trinatural equivalence.

The derived projection morphism $ is local (see Remark 23 for precisely what we mean by
this statement) so in verifying the claim we can reduce to the case where Y is affine.

Let S be the full subcategory of Dqcoh(Y ) consisting of those complexes Y for which $Y

is an isomorphism. Since both functors preserve coproducts this is a localising subcategory of
Dqcoh(Y ) (TRC,Remark 30). The scheme Y is affine so OY is ample and Proposition 60 implies
that Dqcoh(Y ) is compactly generated by the shifts {ΣmOY }m∈Z. It is clear that OY ∈ S so all
of these generators must belong to S, and therefore S = Dqcoh(Y ) by (TRC3,Corollary 9). This
shows that$ is a trinatural equivalence for affine Y , and therefore also for arbitrary quasi-compact
semi-separated Y .

To complete the proof we need only refer to Theorem 42 which tells us that complexes
with quasi-coherent cohomology on X,Y are actually isomorphic to complexes of quasi-coherent
sheaves.

Remark 23. Let f : X −→ Y be a morphism of concentrated schemes, V ⊆ Y a quasi-compact
open subset and let g : U −→ V be the induced morphism of schemes where U = f−1V . The
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derived projection morphism $ is local, in the sense that the following diagram commutes(
Rf∗(X )

=
⊗ Y

)
|V

$|V //

��

Rf∗(X =
⊗ Lf∗(Y ))|V

��
Rf∗(X )|V =

⊗ Y |V

��

Rg∗
(
(X

=
⊗ Lf∗(Y

)
|U )

��
Rg∗(X |U =

⊗ Lf∗(Y )|U )

��
Rg∗(X |U )

=
⊗ Y |V $

// Rg∗(X |U =
⊗ Lg∗(Y |V ))

One checks commutativity of this diagram using Remark 22 and various other compatibilities
verified earlier in these notes.

It is worthwhile writing down the analogue of Proposition 65 in the world of quasi-coherent
sheaves.

Proposition 66. Let f : X −→ Y be a morphism of quasi-compact semi-separated schemes and
X ,Y complexes of quasi-coherent sheaves on X,Y respectively. There is a canonical isomorphism
in Dqcoh(Y ) trinatural in both variables

$ : Rqf∗(X )
=
⊗q Y −→ Rqf∗(X =

⊗q Lqf
∗(Y ))

Proof. The schemes X,Y have enough quasi-coherent hoflats Proposition 16 so Dqcoh(X) and
Dqcoh(Y ) acquire canonical derived tensor products −

=
⊗q − as in Definition 8, and the additive

functor f∗ : Qco(Y ) −→ Qco(X) has a left derived functor Lqf
∗ : Dqcoh(Y ) −→ Dqcoh(X). One

proves existence and trinaturality of $ as in Proposition 65.
The morphism $ is local, in the following sense: let V ⊆ Y be an open subset whose inclusion

is affine. Then both V and U = f−1V are quasi-compact semi-separated and $ is well-defined
for the morphism g : U −→ V and complexes X |U ,Y |V , and we obtain a commutative diagram
of the form given in Remark 23, mutatis mutandis. The rest of the proof proceeds exactly as in
(DCOQS,Proposition 65).

Most of what follows can be found in SGA I §7. However, since the publication of SGA we
have learned how to work more effectively with unbounded complexes, so the development here
can avoid some of the boundedness hypotheses of SGA.

Proposition 67 (Derived Double Dual). Given a scheme X and a complex X of sheaves of
modules there is a canonical morphism in D(X) trinatural in X

τ ′ : X −→ (X ∨)∨

which is an isomorphism if X is perfect.

Proof. See (DCOS,Definition 16) for the definition of the derived dual complex X ∨ and for the
existence of a canonical morphism τ ′ : X −→ (X ∨)∨ see (DCOS,Lemma 77). The double derived
dual is a triangulated functor (−∨)∨ : D(X) −→ D(X) and τ ′ is a trinatural transformation
1 −→ (−∨)∨, so the full subcategory of objects X ∈ D(X) for which τ ′ is an isomorphism is a
triangulated subcategory S of D(X). First we claim that OX ∈ S.

From (DCOS,Lemma 77) we have a commutative diagram in D(X)

OX

τ ′

��

τ // Hom•(Hom•(OX ,OX),OX)

��
RHom•(RHom•(OX ,OX),OX) // RHom•(Hom•(OX ,OX),OX)

(34)
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We observed in the proof of (DCOS,Lemma 25) that the canonical morphism Hom•(OX ,OX) −→
RHom•(OX ,OX) is an isomorphism, from which we deduce that the right and bottom sides of
(34) are isomorphisms. To show that OX ∈ S it therefore suffices to show that τ is an isomorphism
of complexes. We know τ explicitly from the proof of (DCOS,Lemma 77), so this is easily checked.

Having shown that OX ∈ S we also know that any bounded complex of free sheaves of fi-
nite rank belongs to S (DTC,Lemma 79). We can check locally whether τ ′ is an isomorphism
(DCOS,Remark 23), and locally a perfect complex is isomorphic to a bounded complex of free
sheaves of finite rank, so the proof is complete.

Lemma 68. Let X be a scheme and X ,Y complexes of sheaves of modules with X strictly
perfect. The canonical morphism ζ : Hom•(X ,Y ) −→ RHom•(X ,Y ) is an isomorphism.

Proof. Fix the object Y and consider this morphism as a trinatural transformation of triangulated
functors K(X)op −→ D(X). The full subcategory of complexes X for which ζ is an isomorphism
is therefore a triangulated subcategory T ⊆ K(X). We observed in the proof of (DCOS,Lemma
25) that OX ∈ T , and therefore T contains any bounded complex of free sheaves of finite rank. We
can check locally whether ζ is an isomorphism (DCOS,Lemma 24), and locally a strictly perfect
complex is equal to a bounded complex of free sheaves of finite rank, so the proof is complete.

Lemma 69. If X is a scheme and X a perfect complex then X ∨ is a perfect complex.

Proof. The question is local, so it suffices to show that for X affine and X a bounded complex of
free sheaves of finite rank, X ∨ is perfect. Let S be the full subcategory of D(X) consisting of those
complexes X for which X ∨ is perfect. This is the inverse image under the triangulated functor
(−)∨ of the triangulated subcategory of perfect complexes (see Corollary 62), so S is a triangulated
subcategory of D(X). The dual O∨X is perfect, because O∨X = RHom•(OX ,OX) ∼= OX . Therefore
S contains OX , and hence any bounded complex of free sheaves of finite rank, as required.

Lemma 70. If X is a scheme and X ,Y are perfect complexes then X
=
⊗ Y is perfect.

Proof. The question is local, so we may as well assume that X ,Y are bounded complexes of free
sheaves of finite rank. Such complexes are hoflat, so we need to show that X ⊗Y is perfect. But
this is clearly a bounded complex of free sheaves of finite rank, so the proof is complete.

Lemma 71. Given a scheme X and complexes E ,F ,G of sheaves of modules there is a canonical
morphism in D(X) natural in all three variables

ξ′ : RHom•(E ,F )
=
⊗ G −→ RHom•(E ,F

=
⊗ G )

which is an isomorphism if E or G is perfect.

Proof. For the existence and properties of the morphism ξ′ see (DCOS,Lemma 78). Since ξ′ is
trinatural in E and G and local, we can reduce by the now standard argument (see the proof of
Proposition 67) to the two cases (i) E = OX and (ii) G = OX . We deal with each case separately.

(i) By naturality we can assume that F is hoinjective and G hoflat. Then by virtue of Lemma
68 every vertical morphism in the compatibility diagram for ξ, ξ′ of (DCOS,Lemma 78) is an
isomorphism in D(X), and therefore we have reduced to showing that

ξ : Hom•(OX ,F )⊗ G −→Hom•(OX ,F ⊗ G )

is an isomorphism of complexes for arbitrary complexes F ,G . The left hand side is canonically
isomorphic to ((−1)•+1F )⊗ G and the right to (−1)•+1(F ⊗ G ), and one checks that ξ is none
other than the isomorphism α of (DCOS,Remark 7).

(ii) By naturality we can assume that F is hoinjective, and therefore as in (i) we reduce to
showing that the canonical morphism

ξ : Hom•(E ,F )⊗OX −→Hom•(E ,F ⊗OX)

is an isomorphism of complexes, which is again straightforward.
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Lemma 72. Given a scheme X and complexes E ,G of sheaves of modules there is a canonical
morphism in D(X) trinatural in both variables

E ∨
=
⊗ G −→ RHom•(E ,G )

which is an isomorphism if E or G is perfect.

Proof. This is the special case of Lemma 71 where F = OX , together with the canonical isomor-
phism OX =

⊗ G −→ G . Observe that this morphism is local with respect to open subsets.

Lemma 73. Given a scheme X and complexes E ,F ,G of sheaves of modules there are canonical
morphisms in D(X) and D(Ab) respectively natural in all three variables

RHom•(F ,E ∨
=
⊗ G ) −→ RHom•(F

=
⊗ E ,G )

RHom•(F ,E ∨
=
⊗ G ) −→ RHom•(F

=
⊗ E ,G )

which are isomorphisms if E or G is perfect. Taking cohomology we have a canonical morphism
of abelian groups natural in all three variables

HomD(X)(F ,E ∨
=
⊗ G ) −→ HomD(X)(F =

⊗ E ,G )

which is an isomorphism if E or G is perfect.

Proof. The canonical morphism is the following composite, using the adjunction isomorphism of
(DCOS,Proposition 69) and the canonical morphism of Lemma 72

RHom•(F ,E ∨
=
⊗ G ) −→ RHom•(F ,RHom•(E ,G )) ∼= RHom•(F

=
⊗ E ,G )

By construction this is natural in all three variables and an isomorphism for E or G perfect.
Similarly one defines the morphism for RHom•(−,−). Observe that if X is a scheme over an
affine scheme Spec(A) then this is a morphism in D(A) in the spirit of Remark 1. Consequently
the third map is a morphism of A-modules.

Remark 24. With the notation of Lemma 73 we can describe the morphism

Φ : HomD(X)(F ,E ∨
=
⊗ G ) −→ HomD(X)(F =

⊗ E ,G )

explicitly as follows. Given α : F −→ E ∨
=
⊗ G in D(X) it is a consequence of (DCOS,Lemma 84)

that Φ(α) is the following composite

F
=
⊗ E

α
=
⊗1

// (E ∨
=
⊗ G )

=
⊗ E +3 E ∨

=
⊗ (G

=
⊗ E ) +3 E ∨

=
⊗ (E

=
⊗ G )

��
G OX =

⊗ Gks (E ∨
=
⊗ E )

=
⊗ G

ε
=
⊗1

oo

Using this observation it is straightforward to check that the following triadjunction diagram of
(TRC,Theorem 42) commutes

HomD(X)(ΣF ,E ∨
=
⊗ G )

��

// HomD(X)((ΣF )
=
⊗ E ,G )

��
HomD(X)(F ,Σ−1(E ∨

=
⊗ G ))

��

HomD(X)(Σ(F
=
⊗ E ),G )

��
HomD(X)(F ,E ∨

=
⊗ (Σ−1G )) // HomD(X)(F =

⊗ E ,Σ−1G )
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Lemma 74. Given a scheme X and a perfect complex E of sheaves of modules, there is a canonical
triadjunction

D(X)

E∨
=
⊗−

,,
D(X)

−
=
⊗E

ll −
=
⊗ E � E ∨

=
⊗−

Proof. The third isomorphism of Lemma 73 is natural in F and G , so it defines an adjunction
between −

=
⊗ E and E ∨

=
⊗−, which is a triadjunction by virtue of Remark 24.

Lemma 75. Given a scheme X and complexes E ,F of sheaves of modules there are canonical
isomorphisms in D(X),D(Ab) and Ab respectively, natural in both variables

RHom•(F ,E ∨) −→ RHom•(E ,F∨)
RHom•(F ,E ∨) −→ RHom•(E ,F∨)

HomD(X)(F ,E ∨) −→ HomD(X)(E ,F∨)

Proof. Note that we do not require either of E ,F to be perfect. Using (DCOS,Proposition 69)
we have a canonical isomorphism in D(X) natural in both variables

RHom•(F ,E ∨) = RHom•(F ,RHom•(E ,OX)) ∼= RHom•(F
=
⊗ E ,OX)

∼= RHom•(E
=
⊗F ,OX) ∼= RHom•(E ,RHom•(F ,OX)) = RHom•(E ,F∨)

The proofs for RHom•(−,−) and HomD(X)(−,−) are identical, using (DCOS,Corollary 70) in
the second case.

Lemma 76. Given a scheme X and complexes E ,F of sheaves of modules there are canonical
morphisms in D(X),D(Ab) and Ab respectively, natural in both variables

RHom•(F ,E ) −→ RHom•(E ∨,F∨)
RHom•(F ,E ) −→ RHom•(E ∨,F∨)

HomD(X)(F ,E ) −→ HomD(X)(E ∨,F∨)

which are isomorphisms if E is perfect.

Proof. Using Lemma 75 and Proposition 67 we have a canonical morphism in D(X) natural in both
variables RHom•(F ,E ) −→ RHom•(F , (E ∨)∨) ∼= RHom•(E ∨,F∨) that is an isomorphism if
E is perfect. The proof for RHom•(−,−) and HomD(X)(−,−) is similar. Observe that given
complexes E ,F the map

HomD(X)(F ,E ) −→ HomD(X)(E ∨,F∨)

is actually the map determined by the contravariant triangulated functor (−)∨.

Lemma 77. Given a scheme X and complexes E ,F of sheaves of modules there is a canonical
morphism in D(X) natural in both variables

E ∨
=
⊗F∨ −→ (E

=
⊗F )∨

which is an isomorphism if E or F is perfect.

Proof. Using Lemma 72 and Lemma 73 with G = F∨ and G = OX respectively, we have a
canonical morphism in D(X)

E ∨
=
⊗F∨ −→ RHom•(E ,F∨) ∼= RHom•(E ,F∨

=
⊗OX)

−→ RHom•(E
=
⊗F ,OX) = (E

=
⊗F )∨

If either of E ,F is perfect then this is an isomorphism, using Lemma 69.
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Definition 18. Let X be a scheme. We denote by Dper(X) the full subcategory of D(X) con-
sisting of the perfect complexes. By Corollary 62 this is a triangulated subcategory.

Proposition 78. Given a scheme X the dualising functor (−)∨ : D(X)op −→ D(X) restricts to a
triangulated functor (−)∨ : Dper(X)op −→ Dper(X) and moreover this functor is an equivalence.

Proof. By Lemma 69 the dual of a perfect complex is perfect, so (−)∨ certainly restricts to a
triangulated functorD : Dper(X)op −→ Dper(X), whose opposite functor is a triangulated functor
Dop : Dper(X) −→ Dper(X)op. From Proposition 67 we have canonical trinatural equivalences

1 −→ Dop ◦D, 1 −→ D ◦Dop

so D is an equivalence, as claimed.

Proposition 79. Given a scheme X, a point x ∈ X and complexes E ,F of sheaves of modules
there is a canonical morphism in D(OX,x) natural in both variables

RHom•
X(E ,F )x −→ RHom•

OX,x
(Ex,Fx)

which is an isomorphism if E is perfect.

Proof. For the existence and properties of this morphism see (DCOS,Lemma 107). The morphism
is trinatural in E and local by (DCOS,Remark 34), so by the standard argument (see the proof
of Proposition 67) we can assume E = OX . We have a commutative diagram in D(OX,x)

Hom•
X(OX ,F )x

��

// Hom•
OX,x

(OX,x,Fx)

��
RHom•

X(OX ,F )x
// RHom•

OX,x
(OX,x,Fx)

in which the vertical morphisms are clearly isomorphisms, so we have reduced to checking that
the top is an isomorphism of complexes. But the domain and codomain are both canonically
isomorphic to (−1)•+1Fx and one checks the determined morphism is just the identity, so the
proof is complete. This result should be compared with (MRS,Proposition 89) for sheaves.

Let us establish some notation for the next few results. Let X be a scheme, x ∈ X a point and
x ∈ U an open neighborhood. We have a canonical isomorphism of rings κ : (OX |U )x −→ OX,x

which induces an isomorphism of triangulated categories, fitting into a diagram that commutes
up to canonical trinatural equivalence

D(X)

(−)|U
��

// D(OX,x)

κ∗

��
D(U) // D((OX |U )x)

For clarity we typically pretend that κ∗ is the identity when making statements, but we are usually
more careful in the proofs. If we are given complexes E ,F of sheaves of modules on X and a
morphism φ : E |U −→ F |U in D(U) then by abuse of notation we write φx for both the morphism
(E |U )x −→ (F |U )x in D((OX |U )x) and the composite

Ex
+3 (E |U )x

κ−1
∗ (φx) // (F |U )x

+3 Fx

Corollary 80. Let X be a scheme, x ∈ X a point and E ,F complexes of sheaves of modules.
There is a canonical morphism of OX,x-modules natural in both variables

lim−→
x∈U

HomD(U)(E |U ,F |U ) −→ HomD(OX,x)(Ex,Fx) (35)

which is an isomorphism if E is perfect.
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Proof. For an open set U ⊆ X the abelian group HomD(U)(E |U ,F |U ) is canonically a Γ(U,OX)-
module, and similarly HomD(OX,x)(Ex,Fx) is canonically an OX,x-module (DCOS,Remark 3).
Therefore the left hand side of (35) becomes a OX,x-module in the usual way. For each open
neighborhood x ∈ U we have a canonical morphism of abelian groups natural in both variables

HomD(U)(E |U ,F |U ) −→ HomD((OX |U )x)((E |U )x, (F |U )x) ∼= HomD(OX,x)(Ex,Fx)

which sends the action of Γ(U,OX) to the action of OX,x. One checks that this map is compatible
with the direct system on the left, so we have an induced morphism of OX,x-modules (35) natural
in both variables.

It remains to show that this map is an isomorphism if E is perfect. In that case we have using
Proposition 79, (DCOS,Proposition 29) and (DTC2,Lemma 26) an isomorphism of OX,x-modules

DHom(E ,F )x
∼= H0(RHom•

X(E ,F )x)
∼= H0(RHom•

OX,x
(Ex,Fx))

∼= HomD(OX,x)(Ex,Fx)

(36)

Here DHom(E ,F ) is the sheafification of the presheaf of OX -modules defined by

Γ(U,DHom(E ,F )) = HomD(U)(E |U ,F |U )

so there is a canonical isomorphism of OX,x-modules

lim−→
x∈U

HomD(U)(E |U ,F |U ) ∼= DHom(E ,F )x
∼= HomD(OX,x)(Ex,Fx)

To complete the proof we have to show that this isomorphism agrees with the map (35) that we
have already defined. In checking this we can assume F hoinjective. The proof is straightforward
and involves checking commutativity of various diagrams, which we leave to the reader.

Corollary 81. Let X be a scheme, x ∈ X a point and E ,F complexes of sheaves of modules with
E perfect. Then

(a) Given open neighborhoods x ∈ U, V and morphisms φ : E |U −→ F |U and ψ : E |V −→ F |V
in D(U),D(V ) respectively, we have φx = ψx in D(OX,x) if and only if φ|W = ψ|W for
some open neighborhood x ∈W ⊆ U ∩ V .

(b) Given a morphism t : Ex −→ Fx in D(OX,x) there exists an open neighborhood x ∈ U and
a morphism φ : E |U −→ F |U in D(U) with φx = t.

Proof. Both statements are immediate from Corollary 80.

Corollary 82. Let X be a scheme, x ∈ X a point and E ,F perfect complexes of sheaves of
modules. If Ex

∼= Fx in D(OX,x) then E |U ∼= F |U in D(U) for some open neighborhood x ∈ U .

Proof. More precisely, if we are given an isomorphism t : Ex −→ Fx in D(OX,x) with inverse s
then there is by Corollary 81 an open neighborhood x ∈ U and morphisms φ : E |U −→ F |U and
ψ : F |U −→ E |U in D(U) with φx = t, ψx = s and φψ = 1, ψφ = 1 in D(U).

Lemma 83. Let f : X −→ Y be a morphism of schemes. For complexes of sheaves of modules
E ,F on Y there is a canonical morphism in D(X) natural in both variables

Lf∗RHom•
Y (E ,F ) −→ RHom•

X(Lf∗E ,Lf∗F )

which is an isomorphism if E is perfect.
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Proof. See (DCOS,Lemma 99) for the definition of this morphism, which is local and trinatural in
E , so by the usual argument we may assume E = OX . The first step is to verify that the following
diagram commutes in D(Y ) for any complex F of sheaves of modules on Y

Rf∗RHom•
X(Lf∗OY ,F )

��

ℵ // RHom•
Y (OY ,Rf∗F )

��

Rf∗RHom•
X(OX ,F )

��
Rf∗(−1)•+1F // (−1)•+1Rf∗F

where ℵ is defined in (DCOS,Proposition 98) and all other morphisms are canonical. One also
checks that the following diagram commutes in D(Y )

(−1)•+1F //

))

(−1)•+1Rf∗Lf∗F

��
Rf∗(−1)•+1Lf∗F

��
Rf∗Lf∗(−1)•+1F

Using these facts one checks that the composite

Lf∗(−1)•+1F ∼= Lf∗RHom•
Y (OY ,F ) −→ RHom•

X(Lf∗OY ,Lf∗F )
∼= RHom•

X(OX ,Lf∗F ) ∼= (−1)•+1Lf∗F ∼= Lf∗(−1)•+1F
(37)

corresponds under the adjunction to the unit (−1)•+1F −→ Rf∗Lf∗(−1)•+1F . It follows that
(37) is the identity, and therefore Lf∗RHom•

Y (OY ,F ) −→ RHom•
X(Lf∗OY ,Lf∗F ) is an iso-

morphism as required.

Lemma 84. Let f : X −→ Y be a morphism of schemes. For a complex E of sheaves of modules
on Y there is a canonical natural morphism in D(X)

Lf∗(E ∨) −→ (Lf∗E )∨

which is an isomorphism if E is perfect.

Proof. This is the special case F = OY of Lemma 83.

Lemma 85. Let f : X −→ Y be a morphism of schemes and E a perfect complex on Y . Then
Lf∗E is a perfect complex on X.

Proof. By Corollary 62 the perfect complexes form a triangulated subcategory of D(Y ), so the full
subcategory of D(Y ) consisting of those perfect E for which Lf∗E is perfect is also a triangulated
subcategory of D(Y ). The question is local, so we can assume E is a bounded complex of free
sheaves of finite rank. But by what we have just said it is then enough to prove the claim for
E = OY which is trivial since Lf∗OY

∼= OX .

7.1 Commutative Diagrams

Continuing in the spirit of (DCOS,Section 5.3) we take the time to record here some commutative
diagrams relating the various constructions of the previous section.
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Lemma 86. Let X be a scheme and E ,F ,G ,H complexes of sheaves of modules on X. The
following diagram commutes in D(X)

RHom•(F ,E ∨
=
⊗ G )

=
⊗H

��

// RHom•(F , (E ∨
=
⊗ G )

=
⊗H )

��
RHom•(F ,E ∨

=
⊗ (G

=
⊗H ))

��
RHom•(F

=
⊗ E ,G )

=
⊗H // RHom•(F

=
⊗ E ,G

=
⊗H )

Proof. To be clear, the morphisms are the ones defined in Lemma 71 and Lemma 73. Commuta-
tivity of this diagram follows from (DCOS,Lemma 79) and (DCOS,Lemma 81).

Lemma 87. Let X be a scheme and ω,E ,G complexes of sheaves of modules on X with ω perfect.
The following diagram commutes in D(X)

E ∨
=
⊗ (ω∨

=
⊗ G )

��

// RHom•(E , ω∨
=
⊗ G )

��

(E ∨
=
⊗ ω∨)

=
⊗ G

��
(E

=
⊗ ω)∨

=
⊗ G // RHom•(E

=
⊗ ω,G )

Proof. To be clear, the morphisms are the ones defined in Lemma 72, Lemma 73 and Lemma 77.
Commutativity of this diagram follows from (DCOS,Lemma 79) and other minor facts.

8 Invertible Complexes

The Picard group of a scheme X is the group of units in Mod(X) under the tensor product, and
this invariant is closely connected with the properties of divisors on X. A result of Balmer tells
roughly that X can be reconstructed from the triangulated category of perfect complexes Dper(X)
together with its derived tensor product, so it should be possible to extract Pic(X) directly from
Dper(X). The contents of this section have also been published recently by Balmer.

Lemma 88. Let k be a field and X,Y complexes of k-modules with X cohomologically bounded
above. If X

=
⊗k Y ∼= k in D(k) there exists an integer i ∈ Z and isomorphisms X ∼= Σik, Y ∼= Σ−ik

in D(k).

Proof. By (DTC,Proposition 39) we may as well assume that the differentials in the complexes
X,Y are all zero and that X is actually bounded above. Every module over a field is free, therefore
flat, so X is hoflat and we have an isomorphism X ⊗k Y ∼= k in D(k). The differentials of X ⊗k Y
are all zero, so we deduce isomorphisms of k-modules

(X ⊗k Y )0 ∼= k

(X ⊗k Y )n = 0 n 6= 0

From which we deduce that there exists an integer i ∈ Z with Xi ⊗k Y
−i ∼= k as k-modules and

Xs ⊗k Y
t = 0 whenever s+ t 6= 0. It is then clear that Xi ∼= k, Y −i ∼= k as k-modules, and that

these are the only nonzero terms in the complexes X,Y . In other words, we have X ∼= Σ−ik and
Y ∼= Σik, as required.
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Let (A,m, k) be a local ring. We say that a morphism of A-modules u : M −→ N is minimal
if u ⊗ k : M ⊗ k −→ N ⊗ k is an isomorphism (MAT,Definition 26). If M is a finitely generated
A-module then there exists a minimal morphism u : F −→ M with F a free A-module of finite
rank rankAF = rankk(M ⊗ k) and u surjective (MAT,Lemma 140).

Lemma 89. Let (A,m, k) be a local ring and ϕ : M −→ N a morphism of free A-modules of finite
rank. Then

(i) If ϕ⊗ k : M ⊗ k −→ N ⊗ k is injective then so is ϕ. Moreover ϕ is a coretraction.

(ii) If ϕ⊗ k : M ⊗ k −→ N ⊗ k is an isomorphism then so is ϕ.

Proof. (i) Set m = rankA(M) and n = rankA(N) and fix bases of both modules. These map to a
basis of k-modules in M ⊗ k,N ⊗ k so we have m = rankk(M ⊗ k) and n = rankk(N ⊗ k). Hence
injectivity of ϕ ⊗ k is only possible if m ≤ n. The case m = 0 is trivial, so assume m > 0. We
begin with the case m = n, so that ϕ is represented by some square matrix A = (aij) and ϕ⊗ k
by the matrix A = (aij + m). The morphism ϕ⊗ k is injective if and only if it is an isomorphism,
which is if and only if detA 6= 0. But detA = det(A) so we must have det(A) /∈ m. Since A is a
local ring, this means that det(A) is a unit and ϕ is therefore also an isomorphism.

Now assume m < n. The idea is to patch M until the ranks are equal. Consider the morphism
ϕ⊗k : M⊗k −→ N⊗k as the inclusion of a submodule. Since k is a field this is a direct summand
whose complement is of rank n−m with basis x1, . . . , xn−m for some xi ∈ N (in the usual fashion
we confuse N ⊗ k and N/mN). Let T = A⊕(n−m) −→ N be determined by the xi. The induced
morphism T ⊕M −→ N maps under − ⊗ k to an isomorphism by construction, and so by the
first part of the proof T ⊕M −→ N is also an isomorphism. Its second component ϕ : M −→ N
is therefore a coretraction, as required. (ii) If ϕ ⊗ k is an isomorphism then certainly m = n so
the claim follows from the first part of (i).

Remark 25. Let (A,m, k) be a local ring and M −→ N,M ′ −→ N two morphisms of free A-
modules of finite rank. It follows from Lemma 89(ii) that this pair of morphisms is a coproduct
in AMod if and only if the image under −⊗ k is a coproduct in kMod.

The following consequence of Lemma 89 seems a little surprising at first glance, but it is
reasonable because over a local ring freeness is very cheap (MAT,Proposition 24).

Lemma 90. Let (A,m, k) be a local ring and ϕ : M −→ N a morphism of finitely generated
A-modules with N free. If ϕ⊗ k : M ⊗ k −→ N ⊗ k is injective then M is free and ϕ is injective.

Proof. Let v : F −→ M be a surjective morphism of A-modules with F free of finite rank, such
that v ⊗ k is an isomorphism (MAT,Lemma 140). The composite uv : F −→ N is a morphism
of free A-modules of finite rank with uv ⊗ k injective, so from Lemma 89(i) we deduce that uv is
injective. Hence v is an isomorphism, from which we deduce the desired conclusion. Observe that
if ϕ were a coretraction (one easy way to know that ϕ⊗k is injective) then it follows immediately
from (MAT,Proposition 24) that M is free.

We can now prove a version of Nakayama’s lemma for complexes.

Lemma 91. Let (A,m, k) be a local ring and M a bounded complex of free A-modules of finite
rank. If M ⊗ k is exact, then M is also exact.

Proof. The proof is by induction on the number n ≥ 0 of nonzero terms in the complex M . The
case n = 0 is trivial, and if n = 1 then M is a single free A-module of finite rank in some degree,
and exactness of M ⊗k means that M/mM = 0. By Nakayama’s lemma we conclude that M = 0,
as required. If n = 2 then either the terms are separated, in which case the claim follows again
by Nakayama’s lemma, or they are adjacent in which case the claim is Lemma 89(ii).

Now assume that n > 2. To simplify our notation we may as well assume that M i = 0 for
i < 0 and that M0 6= 0. Note that the truncation M≥1 of (DTC,Definition 15) works by replacing
M1 by a cokernel, and −⊗ k preserves cokernels, so we have (M ⊗ k)≥1

∼= M≥1 ⊗ k as complexes
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of k-modules. If M ⊗ k is exact then the same is true of (M ⊗ k)≥1 (since they have the same
cohomology except at zero) and therefore also of M≥1 ⊗ k. The complex M≥1 begins with

0 −→ Coker∂0
M −→M2 −→ · · ·

The cokernel is finitely generated, and we know that Coker∂0
M ⊗ k −→M2 ⊗ k is injective, so it

follows from Lemma 90 that Coker∂0
M is a free A-module of finite rank. Then M≥1 is a bounded

complex of free A-modules of finite rank with M≥1⊗ k exact, so by the inductive hypothesis M≥1

is exact. In other words, Hn(M) = 0 for n > 0. To show that M is exact we need only show that
M0 −→ M1 is injective. But we know that M0 ⊗ k −→ M1 ⊗ k is injective, so this follows from
Lemma 89(i).

Remark 26. In this generalisation of Nakayama’s lemma it really is necessary that the modules
be free (at least, the statement is not true if the modules are only finitely generated). The obvious
counterexample is the complex of A-modules consisting of the morphism A −→ A/m. Tensored
with k this is an isomorphism (hence an exact complex) but the original complex is not exact.

We can abstract one of the key points of the proof of Lemma 91 as follows.

Lemma 92. Let (A,m, k) be a local ring and ϕ : M −→ N a morphism of free A-modules of finite
rank. If ϕ⊗ k is injective then Coker(ϕ) is a free A-module of finite rank.

Proof. If ϕ⊗ k is injective then by Lemma 89 the morphism ϕ is a coretraction, and if we choose
a splitting ρ : N −→ M then we have canonically N = M ⊕ Coker(ϕ). As the retract of a free
A-module of finite rank, Coker(ϕ) has the necessary properties (MAT,Proposition 24).

Proposition 93. Let (A,m, k) be a local ring and M a bounded complex of free A-modules of
finite rank. If M ⊗ k ∼= Σik in D(k) for some i ∈ Z then M ∼= ΣiA in D(A).

Proof. Once again the proof is by induction on the number n ≥ 0 of nonzero terms in the complex
M . If n = 0 this is trivial. If n = 1 then M is a single free A-module in some degree, of rank
rankA(M) = rankk(M ⊗ k). The isomorphism M ⊗ k ∼= k means that rankk(M ⊗ k) = 1, so we
deduce an isomorphism M ∼= A as required.

Now assume that n > 1. We may as well assume that M j = 0 for j < 0 and that M0 6= 0. Let
i ∈ Z be such that M ⊗ k ∼= Σ−ik. It is clear that i ≥ 0 and M i 6= 0. We divide into two cases:

Case i > 0. In this case M0 ⊗ k −→ M1 ⊗ k is injective, and therefore by Lemma 89(i) so is
M0 −→M1. It follows that M ∼= M≥1 in D(A) and M ⊗ k ∼= (M ⊗ k)≥1

∼= M≥1 ⊗ k in D(k), so
we can pass to M≥1. By Lemma 92 this is a bounded complex of free A-modules of finite rank,
so the claim is true for M≥1 by the inductive hypothesis.

Case i = 0. In this case M ⊗ k ∼= k in D(k). We treat the case n = 2 separately for clarity,
and to motivate the general argument. If the terms of M are separated then we quickly come to
a contradiction, so M is of the form · · · −→ 0 −→ M0 −→ M1 −→ 0 −→ · · · and M ⊗ k ∼= k in
D(k) means that we have an exact sequence

0 −→ k −→M0 ⊗ k −→M1 ⊗ k −→ 0

Settingm0 = rankA(M0) andm1 = rankA(M1) the first thing we deduce from this exact sequence
is m0 = m1 + 1. Consider k −→ M0 ⊗ k as a submodule and choose a basis x1, . . . , xm1 for the
complement, where xj ∈ M0 and let T = A⊕n −→ M0 be determined by the xj . Let A −→ M0

lift k −→ M0 ⊗ k. The morphisms T −→ M0 and A −→ M0 map to a coproduct under − ⊗ k
and are therefore a coproduct of A-modules by Remark 25. Clearly T ⊗k −→M0⊗k −→M1⊗k
is an isomorphism, so from Lemma 89 we infer that T −→ M1 is an isomorphism. In particular
M0 −→M1 must be an epimorphism, and the exact sequence

0 −→ Ker(∂0) −→M0 −→M1 −→ 0

is split exact. The image under − ⊗ k is still split exact, so we have Ker(∂0) ⊗ k ∼= k and
therefore Ker(∂0) ∼= A (as a retract of a free module of finite rank Ker(∂0) is finitely generated
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and projective, and therefore free since we are working over a local ring). It is now clear that
M ∼= A in D(A).

In the general case n > 2 one defines T in the same way by choosing a basis for the complement
of k −→ M0 ⊗ k and lifting (the basis no longer necessarily contains rankA(M1) elements). We
do not exclude the possibility of T being zero. We then use the Nakayama lemma for complexes
(Lemma 91) to lift exactness of the complex

0 −→ T ⊗ k −→M1 ⊗ k −→M2 ⊗ k −→ · · ·M t ⊗ k −→ 0

to exactness of
0 −→ T −→M1 −→M2 −→ · · · −→M t −→ 0

Since M t−1 −→ M t is an epimorphism of free A-modules it is a retraction and we have a split
exact sequence

0 −→ Ker(∂t−1) −→M t−1 −→M t −→ 0

and therefore Ker(∂t−1)⊗ k = Ker(∂t−1 ⊗ k). It follows that M≤(t−1) ⊗ k ∼= (M ⊗ k)≤(t−1) and
as before Ker(∂t−1) is free of finite rank, so we have reduced to the shorter complex M≤(t−1) and
can invoke the inductive hypothesis to see that M≤(t−1)

∼= A in D(A). Since M ∼= M≤(t−1) in
D(A), the proof is complete.

Proposition 94. Let (A,m, k) be a local ring and X,Y bounded complexes of free A-modules of
finite rank. If X

=
⊗A Y ∼= A in D(A) there is an integer i ∈ Z and isomorphisms X ∼= ΣiA and

Y ∼= Σ−iA in D(A).

Proof. Since X,Y are hoflat we have an isomorphism in D(A)

X ⊗A Y ∼= X
=
⊗A Y ∼= A

and since X ⊗A Y is itself a bounded complex of free A-modules (hence hoprojective) we deduce
an isomorphism X ⊗A Y ∼= A in K(A). Tensoring both sides of this isomorphism with − ⊗A k :
K(A) −→ K(k) we have an isomorphism in K(k)

X/mX ⊗k Y/mY ∼= k

The complexes X/mX,Y/mY are bounded, therefore hoflat, so we have X/mX
=
⊗k Y/mY ∼= k

in D(k). By Lemma 88 this yields isomorphisms X/mX ∼= Σik and Y/mY ∼= Σ−ik in D(k) for
some i ∈ Z. From Proposition 93 we deduce isomorphisms X ∼= ΣiA and Y ∼= Σ−iA in D(A), as
required.

Remark 27. Let X be a scheme and E a perfect complex of sheaves of modules. Given x ∈ X
it is clear that Ex is isomorphic in D(OX,x) to a bounded complex of free OX,x-modules of finite
rank.

Definition 19. Let X be a scheme. We say that a complex E of sheaves of modules is invertible
if for every x ∈ X there exists an open neighborhood x ∈ U and an isomorphism E |U ∼= ΣiOX |U
in D(U) for some i ∈ Z. Clearly an invertible complex is perfect. This property is stable under
isomorphism and suspension. If E is invertible it is clear that E ∨ is also invertible, and if E ,F
are invertible then so is E

=
⊗F .

Lemma 95. Let X be a scheme and E an invertible complex of sheaves of modules. The canonical
morphism E ∨

=
⊗ E −→ OX is an isomorphism in D(X).

Proof. The canonical morphism ε : E ∨
=
⊗ E −→ OX is the counit of (DCOS,Section 5.1). This

morphism is local and trinatural, so we may assume E = OX in which case the compatibility
diagram of (DCOS,Section 5.1) means that we need only check that the canonical morphism of
complexes Hom•(OX ,OX) ⊗ OX −→ OX is an isomorphism. This is trivial, so the proof is
complete.
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Lemma 96. Let f : X −→ Y be a morphism of schemes and E an invertible complex on Y . Then
Lf∗(E ) is invertible on X.

Proof. The question is local and trinatural in E so we can assume that E = OY in which case
Lf∗(E ) ∼= OX is certainly invertible.

Definition 20 (Derived Picard Group). Let X be a scheme. The derived Picard group of X,
denoted DPic(X), is the abelian group of isomorphism classes of invertible complexes in D(X)
under the derived tensor product. The underlying conglomerate of this group may not be a set or
even a class.

Lemma 97. Let X be a scheme and E an invertible complex of sheaves of modules. There are
induced equivalences of triangulated categories

−
=
⊗ E : D(X) −→ D(X)

−
=
⊗ E : Dper(X) −→ Dper(X)

Proof. Let E be an arbitrary invertible complex. Such a complex is perfect, and the triangulated
functor −

=
⊗ E : D(X) −→ D(X) preserves perfection by Lemma 70, so we have an induced

triangulated functor
S(−) = −

=
⊗ E : Dper(X) −→ Dper(X)

Similarly we have a triangulated functor T (−) = −
=
⊗ E ∨ : Dper(X) −→ Dper(X) and it is clear

that there are canonical trinatural equivalences ST ∼= 1, TS ∼= 1 by virtue of Lemma 95.

Remark 28. Let X be a scheme and E an invertible complex of sheaves of modules. Given a
point x ∈ X there is a unique integer i ∈ Z such that Hi(E )x 6= 0, and there is an isomorphism
of OX,x-modules Hi(E )x

∼= OX,x.

Lemma 98. If X is an irreducible scheme a complex E of sheaves of modules is invertible if and
only if it is isomorphic in D(X) to ΣiL for some invertible sheaf L of modules and i ∈ Z.

Proof. If E is invertible then we can associate to a point x ∈ X the unique integer i(x) ∈ Z with
Hi(x)(E )x 6= 0, and moreover about every point x ∈ X is an open neighborhood U with i(x) = i(y)
for y ∈ U . If X is irreducible then these open neighborhoods must all overlap, and there is a fixed
integer i ∈ Z with Hj(E ) = 0 for j 6= i. Up to isomorphism in D(X) we can therefore replace E
by a sheaf L in degree i, and it is then clear that L is an invertible sheaf.

Proposition 99. Let X be a scheme and E ,F perfect complexes of sheaves of modules with
E

=
⊗F ∼= OX in D(X). Then E ,F are invertible.

Proof. Given x ∈ X we have after taking stalks an isomorphism in D(OX,x) (DCOS,Lemma 57)

Ex =
⊗Fx

∼= (E
=
⊗F )x

∼= OX,x

Since Ex,Fx are isomorphic in D(OX,x) to bounded complexes of free OX,x-modules of finite
rank, we can by Proposition 94 find i ∈ Z and isomorphisms Ex

∼= ΣiOX,x and Fx
∼= Σ−iOX,x

in D(OX,x). Using Corollary 82 we can find an open neighborhood x ∈ U and isomorphisms
E |U ∼= ΣiOX |U and F |U ∼= Σ−iOX |U in D(U). In particular both E ,F are invertible.

Proposition 100. Let X be a quasi-compact semi-separated scheme with an ample family of
invertible sheaves and E ,F ∈ Dqc(X) complexes with E

=
⊗F ∼= OX in D(X). Then E ,F are

invertible.

Proof. By Lemma 18 we need not be specific about whether we are calculating the derived tensor
product in D(X) or Dqcoh(X), and we can by Theorem 42 assume that E ,F ∈ Dqcoh(X) and
E

=
⊗F ∼= OX in Dqcoh(X). It is enough by Proposition 99 to show that E ,F are perfect. But

E
=
⊗− : Dqcoh(X) −→ Dqcoh(X) is by hypothesis a triequivalence, and therefore sends compact

objects to compact objects. By Theorem 63 the compacts are precisely the perfect complexes, so
in particular E ∼= E

=
⊗OX is perfect. By symmetry F is also perfect, and the proof is complete.
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Corollary 101. Let X be an irreducible quasi-compact semi-separated scheme with an ample
family of invertible sheaves. If E ,F ∈ Dqc(X) are complexes with E

=
⊗F ∼= OX in D(X) then

there exists an integer i ∈ Z, an invertible sheaf of modules L , and isomorphisms in D(X)

E ∼= ΣiL , F ∼= Σ−iL ∨

Proof. By Proposition 100 both complexes are invertible, therefore perfect, and by Lemma 98
there exist integers s, t ∈ Z and invertible sheaves L ,T on X such that E ∼= ΣsL and F ∼= ΣtT
in D(X). As in the proof of Lemma 99 if we are given x ∈ X we can find an open neighborhood
x ∈ U and i ∈ Z such that

E |U ∼= ΣiOX |U , F |U ∼= Σ−iOX |U

in D(U), from which we deduce that t = −s. The sheaves L ,T are flat, so we have an isomorphism
in D(X) of the form (ΣsL )⊗(Σ−sT ) ∼= E

=
⊗F ∼= OX which determines an isomorphism of sheaves

of modules L ⊗OX
T ∼= OX . It is therefore clear that T ∼= L ∨ as sheaves of modules, completing

the proof.

Theorem 102. Let X be an irreducible quasi-compact semi-separated scheme with an ample
family of invertible sheaves. Given a complex E ∈ Dqc(X) the following are equivalent:

(a) E is invertible.

(b) There exists an invertible sheaf L such that E ∼= ΣiL in D(X) for some i ∈ Z.

(c) E is perfect and the canonical morphism E ∨
=
⊗ E −→ OX is an isomorphism in D(X).

(d) There exists F ∈ Dqc(X) with E
=
⊗F ∼= OX in D(X).

Proof. (a)⇔ (b) is Lemma 98. (a)⇒ (c) is Lemma 95. (c)⇒ (d) If E is perfect then by Lemma
69 so is E ∨, which therefore has quasi-coherent cohomology. (d)⇒ (a) is Proposition 100.

Corollary 103. Let X be an irreducible quasi-compact semi-separated scheme. There is a canon-
ical isomorphism of abelian groups

Pic(X)⊕ Z −→ DPic(X)

(L , i) 7→ Σ−iL

9 Appendix

Proposition 104. Let X be a scheme and F a complex of sheaves of modules with quasi-coherent
cohomology. Suppose we have a commutative diagram of complexes

· · · // F≥n
//

��

· · · // F≥−2

��

// F≥−1

��

// F≥0

��
· · · // In

// · · · // I−2
// I−1

// I0

(38)

satisfying the following conditions

(i) Every vertical morphism is a quasi-isomorphism.

(ii) The In are complexes of injectives and I i
n = 0 for i < n.

(iii) Every morphism of complexes in the bottom row is a retraction in each degree.

Then the induced morphism ϑ : F −→ lim←−n≤0
In is a hoinjective resolution.
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Proof. Set I = lim←−n≤0
In and let An denote the kernel of F≥n −→ F≥(n+1) and Cn the kernel

of In −→ In+1. There is an induced morphism An −→ Cn which one checks easily is a quasi-
isomorphism. But by (DTC,Lemma 27) there is a canonical quasi-isomorphism cnH

n(F ) −→ An,
so putting these together we have a quasi-isomorphism cnH

n(F ) −→ Cn. Our assumption (ii)
means that C i

n = 0 for i < n and from (iii) we infer that every sheaf C i
n is injective, so ΣnCn is

an injective resolution of Hn(F ) for every n ≤ −1. Therefore for any affine open subset U ⊆ X
and m > n

Hm(Γ(U,Cn)) ∼= Hm−n(U,Hn(F )) = 0

since by assumption Hn(F ) is quasi-coherent, and therefore has vanishing higher cohomology on
U by (COS,Theorem 14). This means that the sequence

Γ(U,C n
n ) −→ Γ(U,C n+1

n ) −→ Γ(U,C n+2
n ) −→ Γ(U,C n+3

n ) −→ · · ·

is exact. For each i ∈ Z we deduce morphisms of four inverse systems as in (DTC2,Lemma 30),
with the induced kernel sequences being exact in every row if i ≥ 0 and exact above row i otherwise
(indexing the rows 0,−1, . . . as they go up the page, and above meaning higher on the page)

...

��

...

��

...

��

...

��
Γ(U,I i−1

−1 )

��

// Γ(U,I i
−1)

��

// Γ(U,I i+1
−1 )

��

// Γ(U,I i+2
−1 )

��
Γ(U,I i−1

0 ) // Γ(U,I i
0 ) // Γ(U,I i+1

0 ) // Γ(U,I i+2
0 )

From (DTC2,Lemma 30) we infer that for any j ≤ 0 and i ≥ j the canonical morphism

Hi(Γ(U,I )) −→ Hi(Γ(U,Ij)) (39)

is an isomorphism. Sheafifying and using (DCOS,Lemma 3) we see that Hi(I ) −→ Hi(Ij) is
also an isomorphism. But we have commutative diagrams

F
ϑ //

q

��

I

��
F≥j

// Ij

Hi(F )
Hi(ϑ) //

Hi(q)

��

Hi(I )

��
Hi(F≥j) // Hi(Ij)

(40)

where in the right hand diagram everything except the top morphism is an isomorphism, since
by assumption F≥n −→ In is a quasi-isomorphism. It follows that Hi(ϑ) is an isomorphism for
i ≥ j. But j is arbitrary, so ϑ must be a quasi-isomorphism. It follows from (DTC2,Proposition
32) that I is hoinjective, so the proof is complete.

Remark 29. Let X be a scheme and F a complex of sheaves of modules. Then a diagram (38)
satisfying the properties (i), (ii), (iii) of Proposition 104 exists, by the inductive construction given
in the proof of (DTC,Proposition 75). So provided F has quasi-coherent cohomology, the induced
morphism F −→ lim←−In will be a hoinjective resolution. Still assuming that F has quasi-coherent
cohomology, observe that for n ≤ 0 there is a unique morphism of complexes I≥n −→ In making
the following diagram commute

I

xxrrrrrr
%%KKKKKK

I≥n
// In
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We showed in the proof of Proposition 104 that Hi(I ) −→ Hi(In) is an isomorphism for i ≥ n,
so it is clear that I≥n −→ In is a quasi-isomorphism. So we have a hoinjective resolution I
of F whose truncations I≥n are (quasi-isomorphic to) hoinjective resolutions of the truncations
F≥n.

Corollary 105. With the notation of Proposition 104 any holimit holim←−−−n≤0In is a hoinjective
resolution of F .

Proof. By Proposition 104 the induced morphism F −→ I = lim←−In is a hoinjective resolution.
Suppose we have a triangle in K(X) defining a holimit

holim←−−−In //
∏

n≤0 In
1−ν //

∏
n≤0 In // Σholim←−−−In

Note that we do not assume that this is the canonical holimit defined in (DTC,Definition 29). The
canonical morphism lim←−In −→

∏
In composes with 1− ν to give zero, so there is a factorisation

f : I −→ holim←−−−In in K(X). The homotopy limit is certainly hoinjective, so to complete the
proof we need only show that f is a quasi-isomorphism. It is therefore enough to show that Γ(U, f)
is a quasi-isomorphism of complexes of abelian groups for every affine open U ⊆ X (DCOS,Lemma
5).

If we took the canonical holimit, and the canonical factorisation f of (DTC,Remark 27) then
it would follow from the fact that all the morphisms In+1 −→ In are fibrations that 1 − ν is
a fibration, and therefore f is a quasi-isomorphism (DTC,Remark 27) (DTC,Lemma 67). But it
can be useful to know the result for an arbitrary holimit and arbitrary factorisation f in K(X).

The inclusion of sheaves in presheaves means that K(X) is a fragile triangulated subcategory of
K(Mod(X)) (DTC,Lemma 38), and the inclusion preserves products so our homotopy limit is still
valid on the level of presheaves. The functor Γ(U,−) is exact on presheaves, so RΓ(U,−) = Γ(U,−)
and we have a triangle in D(Ab)

Γ(U, holim←−−−In) −→
∏
n≤0

Γ(U,In) −→
∏
n≤0

Γ(U,In) −→ ΣΓ(U, holim←−−−In)

In other words, this means
Γ(U, holim←−−−In) = holim←−−−Γ(U,In)

We have already observed in (39) that the presheaf cohomology of the In stabilises (at least over
open affines). That is, for open affine U ⊆ X and fixed i ∈ Z the morphism

Hi(Γ(U,I )) −→ Hi(Γ(U,In))

is an isomorphism for all sufficiently large negative n ≤ 0. We are now in the situation of
(DTC,Lemma 77), from which we deduce that Γ(U,I ) −→ Γ(U, holim←−−−In) is a quasi-isomorphism.
This is enough to show that f : I −→ holim←−−−In is a quasi-isomorphism, and complete the
proof.

References
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