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In this first part of our notes on derived categories we aim to give the definition and elementary
properties of derived categories as efficiently as possible. The high point is the proof that the
unbounded derived category of a grothendieck abelian category has enough hoinjectives.
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1 Introduction

These notes are meant to complement our notes on Triangulated Categories, but the reader will
always be warned at the beginning of each section exactly how much about triangulated categories
they are expected to know. Until Section 3 the reader is expected to know nothing.

All notation and conventions are from our notes on Derived Functors. In particular we assume
that every abelian category comes with canonical structures which allow us to define the cohomol-
ogy of cochain complexes in an unambiguous way. If we write complex we mean cochain complex,
and we write C(A) for the abelian category of all complexes in A. As usual we write A = 0 to
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indicate that A is a zero object (not necessarily the canonical one). We use the terms preadditive
category and additive category as defined in (AC,Section 2). See also the definition of an acyclic
complex in (DF,Definition 5), which disagrees with some references. We say a complex is exact if
all its cohomology objects are zero.

None of this material is new. The results on homotopy limits and colimits are from [BN93].
The original reference for hoinjective complexes is [Spa88], and all the major results leading to
the proof of the existence of hoinjective resolutions for a grothendieck abelian category are from
[ATJLSS00].

1.1 History and Motivation

Since they first appeared in Verdier’s thesis [Ver96], derived categories have experienced an ex-
plosion of applications in most fields of algebra and even mathematical physics. It is not difficult
to find articles describing the power of the technology. We assume here that the reader is ready
to learn the material in depth.

There are now several good places to learn about derived categories. The original reference is
[Ver96] and historically many people learnt the material from [Har68]. There is a short chapter in
Weibel’s book [Wei94] while the recent book of Gelfand & Manin [GM03] is more comprehensive.
An excellent careful presentation aimed at applications in algebraic geometry can be found in
Lipman’s widely read notes [Lip].

Due to technical limitations, early work in field focused on the bounded derived category.
The work of Neeman on Grothendieck duality [Nee96] showed that the natural setting for many
questions is actually the unbounded derived category. Even if one is only interested in bounded
complexes, it is often more convenient to allow unbounded complexes in one’s arguments. Then
one can deploy powerful tools borrowed from algebraic topology, such as the homotopy colimit.
We refer the reader to the introduction of [Nee06] for a survey of the uses of the infinite techniques.

The reader can find many good introductions to the bounded derived category. But despite the
great success of the method, it is much harder to find an introduction to the unbounded derived
category. This problem is confounded by the fact that in the recent literature it is common to
find references to [Nee96] in discussions of Grothendieck duality. In these notes we aim to give
a complete, careful treatment of the unbounded derived category. This continues in our notes
on Derived Categories of Sheaves (DCOS) and Derived Categories of Quasi-coherent Sheaves
(DCOQS), where we finally reach a proof of Neeman’s version of Grothendieck duality, with each
step hopefully accessible to the graduate student just starting in the area.

The derived category is a special case of the verdier quotient studied in our notes on Trian-
gulated Categories (TRC), which is to say, in Neeman’s excellent book on the subject [Nee01].
The main technical problem one encounters with unbounded complexes is in the construction of
resolutions: given a bounded below complex

· · · −→ 0 −→ 0 −→ X0 −→ X1 −→ · · ·

It is not difficult (see Proposition 75) to construct inductively an injective resolution, by which we
mean a quasi-isomorphism X −→ I with I a bounded below complex of injectives. This is much
harder if X is unbounded, but the necessary technology was introduced by Spaltenstein [Spa88]
and later independently by several other authors. Our approach to the question of “existence of
injective resolutions” follows a more recent paper [ATJLSS00] which gives a different proof. This
is the main technical difficulty of the theory and it occupies much of these notes.

2 Homotopy Categories

Definition 1. Let A be an abelian category. Then K(A) is the category whose objects are com-
plexes in A and whose morphisms are homotopy equivalence classes of morphisms of complexes.
That is, we begin with the abelian category C(A) and use the homotopy equivalence relation
(DF,Lemma 8) to divide the morphism sets up into equivalence classes.
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A complex X is said to be bounded below if there exists N ∈ Z such that Xn = 0 for all n ≤ N
and bounded above if there exists N ∈ Z such that Xn = 0 for all n ≥ N . A complex is bounded
if it is both bounded above and bounded below. We define three full subcategories of K(A):

K+(A) : bounded below complexes

K−(A) : bounded above complexes

Kb(A) : bounded complexes

There is an obvious functor C(A) −→ K(A) which is the identity on objects and sends morphisms
of complexes to their equivalence class.

Lemma 1. Let A be an abelian category. Then K(A) is an additive category and the functor
C(A) −→ K(A) is additive.

Proof. Let f, g : X −→ Y be morphisms of complexes and suppose that f ' 0 and g ' 0. It is
not hard to check that f +g ' 0. Since f ' 0 implies −f ' 0 the equivalence class of 0 : X −→ Y
under the relation ' is actually a subgroup of HomA(X,Y ). Therefore the set of equivalence
classes is actually a quotient of the group HomA(X,Y ), so it has a canonical additive structure
defined by choosing representatives and adding them. This addition is clearly bilinear, so K(A)
is a preadditive category. The functor C(A) −→ K(A) is clearly additive, and by a standard
argument (AC,Proposition 28) it follows that K(A) has binary coproducts and therefore all finite
products and coproducts.

Remark 1. Let A be an abelian category. The categories K+(A),K−(A) and Kb(A) all inherit
a natural structure as additive categories from K(A).

Definition 2. Let A be an abelian category, X a complex in A and n ∈ Z. We define another
complex in A by “shifting” n places to the left (writing cochain complexes with indices ascending
to the right)

X[n]p = Xp+n ∂pX[n] = (−1)n∂p+nX

If f : X −→ Y is a morphism of complexes then f [n]p = fp+n defines a morphism of complexes
f [n] : X[n] −→ Y [n]. This defines the additive functor (−)[n] : C(A) −→ C(A). It is clear
that (−)[0] is the identity functor, and if n,m ∈ Z then (−)[n] ◦ (−)[m] = (−)[n + m]. In
particular X[n][−n] = X for any complex X and for any n ∈ Z the functor (−)[n] is an additive
automorphism of C(A).

If f, g : X −→ Y are homotopic morphisms of complexes then so are f [n], g[n] so this con-
struction also defines an additive automorphism (−)[n] : K(A) −→ K(A).

Definition 3. Let A be an abelian category, u : X −→ Y a morphism of complexes. The mapping
cone Z of u is defined for n ∈ Z by Zn = Xn+1 ⊕ Y n with the differential

∂nZ : Xn+1 ⊕ Y n −→ Xn+2 ⊕ Y n+1

∂nZ =
(
−∂n+1

X 0
un+1 ∂nY

)
There are canonical morphisms of complexes v : Y −→ Z and w : Z −→ X[1] defined for n ∈ Z to
be the injection vn : Y n −→ Xn+1 ⊕ Y n and projection wn : Xn+1 ⊕ Y n −→ Xn+1 respectively.
So given a morphism of complexes u we have produced the morphisms in the following diagram

X
u // Y

v // Z
w // X[1] (1)

Shifting we also have a morphism of complexes k = w[−1] : Z[−1] −→ X. We will often write Cu
instead of Z to indicate the dependence on the morphism u. The next result gives some reason
why you should care about this construction.

Proposition 2. Let A be an abelian category, u : X −→ Y a morphism of complexes and
v : Y −→ Cu, k : Cu[−1] −→ X the canonical morphisms of complexes. Then
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(i) A morphism of complexes m : Y −→ Q factors through v if and only if mu ' 0.

Y
v //

m
  @

@@
@@

@@
@ Cu

��
Q

(ii) A morphism of complexes m : Q −→ X factors through k if and only if um ' 0.

Cu[−1] k // X

Q

OO

m

<<xxxxxxxxx

There are also canonical homotopies vu ' 0 and uk ' 0.

Proof. (i) Let Q be any complex. Let us study what it means to define a morphism of complexes
f : Cu −→ Q. A collection of morphisms fn : Xn+1⊕Y n −→ Qn for each n, say with components
Σn+1 : Xn+1 −→ Qn and gn : Y n −→ Qn, define a morphism of complexes Cu −→ Q if and only
if the following equations are satisfied for n ∈ Z

(gu)n = ∂n−1
Q Σn + Σn+1∂nX

gn+1∂nY = ∂nQg
n

So a morphism of complexes f : Cu −→ Q consists of a morphism of complexes g : Y −→ Q and a
homotopy 0 ' gu, and it is clear that g is the composite fv. It is now easy to check that a given
morphism of complexes m : Y −→ Q factors through v if and only if 0 ' mu, and in fact there is
a bijection between the factorisations Cu −→ Q and homotopies 0 ' mu.

(ii) Let Q be any complex. A collection of morphisms fn : Qn −→ Xn⊕Y n−1 with components
gn : Qn −→ Xn and Σn : Qn −→ Y n−1 defines a morphism of complexes f : Q −→ Cu[−1] if and
only if g : Q −→ X is a morphism of complexes and Σ is a homotopy ug ' 0, and moreover we
can recover g as the composite kf . It is now easy to check that a given morphism of complexes
m : Q −→ X factors through k if and only if um ' 0. In fact there is a bijection between the
factorisations Q −→ Cu[−1] and homotopies um ' 0.

For the last statement, observe that v : Y −→ Cu factors through itself via the identity, and
this factorisation corresponds to a canonical homotopy Σ : 0 −→ vu given by Σn =

(
1
0

)
. Similarly

the factorisation of k through itself corresponds to a canonical homotopy Θ : uk −→ 0 given by
Θn = (0 1).

Corollary 3. Let A be an abelian category and f, g : X −→ Y morphisms of complexes. Then
f ' g if and only if f −g factors through the mapping cone X −→ C1 of the identity 1 : X −→ X.

Remark 2. So in some sense v : Y −→ Cu is a homotopy cokernel and k : Cu[−1] −→ X a
homotopy kernel of u : X −→ Y . The remarkable thing is that unlike the actual cokernel and
cokernel (whose constructions are quite different) the homotopy kernel and cokernel arise from the
same object Cu, the mapping cone. In terms of homotopy theoretic information about the abelian
category C(A) the triangle (1) encodes all the important information about the morphism u.

Remark 3. Let A be an abelian category, α : A −→ B a morphism with cokernel p : B −→ C
and kernel u : K −→ A and epi-mono factorisation q : A −→ I followed by v : I −→ B, as in the
diagram

K
u // A

q
��?

??
??

??
?

α // B
p // C

I

v

??��������
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Then by the axioms of an abelian category, p is the cokernel of v and u is the kernel of q. It follows
that v is the kernel of p and q the cokernel of u. The morphism v : I −→ B is the image of α and
the morphism q : A −→ I is the coimage. To define a homotopy theoretic version of the image
and coimage, we need to take the homotopy cokernel of the homotopy kernel, and the homotopy
kernel of the homotopy cokernel.

Definition 4 (Homotopy Coimage). Let A be an abelian category, u : X −→ Y a morphism
of complexes with v : Y −→ Cu and k : Cu[−1] −→ X canonical. Then k is the homotopy kernel
of u and we call the complex C̃u = Ck the mapping cylinder of u. By definition of the mapping
cone there are canonical morphisms of complexes ũ : X −→ C̃u and ṽ : C̃u −→ Cu. We call ũ the
homotopy coimage of u. Let us examine the complex C̃u more closely. For n ∈ Z we have

C̃nu = Cnu ⊕Xn = Xn+1 ⊕ Y n ⊕Xn

The differential is defined by

∂n : Xn+1 ⊕ Y n ⊕Xn −→ Xn+2 ⊕ Y n+1 ⊕Xn+1

∂n =

−∂n+1
X 0 0

un+1 ∂nY 0
1 0 ∂nX


For n ∈ Z the morphism ũn : Xn −→ Xn+1⊕Y n⊕Xn is the injection and ṽn : Xn+1⊕Y n⊕Xn −→
Xn+1⊕Y n is the projection onto the first two coordinates. There is also a morphism of complexes
ϕ : C̃u −→ Y defined by

ϕn : Xn+1 ⊕ Y n ⊕Xn −→ Y n

ϕn =
(
0 −1 un

)
It is clear that the following diagram commutes

Cu[−1] k // X

eu ��?
??

??
??

?
u // Y

v // Cu

C̃u

ϕ

??��������

We know from Proposition 2 that ũk ' 0, but it is not in general true that vϕ ' 0. This
seems confusing only because in an abelian category, coimages and images coincide, but homotopy
coimages and images do not necessarily agree. Note that the following sequence is trivially exact

0 // X
eu // C̃u ev // Cu // 0 (2)

Definition 5 (Homotopy Image). Let A be an abelian category, u : X −→ Y a morphism
of complexes with v : Y −→ Cu and k : Cu[−1] −→ X canonical. Then v is the homotopy
cokernel and we consider the complex Ĉu = Cv[−1]. By definition there are canonical morphisms
of complexes û : Ĉu −→ Y and v̂ : Cu[−1] −→ Ĉu and we call û the homotopy image of u. Let us
examine the complex Ĉu more closely. For n ∈ Z we have

Ĉnu = Y n ⊕ Cn−1
u = Y n ⊕Xn ⊕ Y n−1

The differential is defined by

∂n : Y n ⊕Xn ⊕ Y n−1 −→ Y n+1 ⊕Xn+1 ⊕ Y n

∂n =

∂nY 0 0
0 ∂nX 0
−1 −un −∂n−1

Y
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For n ∈ Z the morphism ûn : Y n ⊕Xn ⊕ Y n−1 −→ Y n is the projection and v̂n : Xn ⊕ Y n−1 −→
Y n ⊕ Xn ⊕ Y n−1 is the injection into the second two coordinates. There is also a morphism of
complexes ψ : X −→ Ĉu defined by

ψn : Xn −→ Y n ⊕Xn ⊕ Y n−1

ψn =

un−1
0


It is clear that the following diagram commutes

Cu[−1] k // X

ψ ��?
??

??
??

?
u // Y

v // Cu

Ĉu

bu
??��������

We know that vû ' 0, but it is not in general true that ψk ' 0. We have the following trivial
short exact sequence

0 // Cu[−1] bv // Ĉu
bu // Y // 0 (3)

Lemma 4. Let A be an abelian category and u : X −→ Y a morphism of complexes. Then

(i) The morphism of complexes ϕ : C̃u −→ Y is a homotopy equivalence.

(ii) The morphism of complexes ψ : X −→ Ĉu is a homotopy equivalence.

Proof. (i) Define a morphism of complexes κ : Y −→ C̃u to be the additive inverse of the injection
into the middle factor κn : Y n −→ Xn+1 ⊕ Y n ⊕Xn. Then ϕκ = 1 and if we define a morphism
Σn : C̃nu −→ C̃n−1

u by the matrix

Σn =

0 0 1
0 0 0
0 0 0


It is not difficult to check that this is a homotopy of κϕ with 1. The statement (ii) is proved
similarly.

Remark 4. In other words, given a morphism of complexes u : X −→ Y the homotopy kernel,
cokernel, image and coimage fit into the following commutative diagram

Cu[−1] // X

&&MMMMMMMMMMMMM

��

// Y // Cu

C̃u

88qqqqqqqqqqqqq
Ĉu

OO

where the homotopy image and coimage are both homotopy equivalences (these are the diagonal
morphisms in the diagram).

Lemma 5. Let A be an abelian category and X a complex. Let CX denote the mapping cone of
the identity 1X : X −→ X. Then the identity morphism 1CX

: CX −→ CX is homotopic to the
zero morphism.

Proof. One checks that the morphisms Σn =
(

0 1
0 0

)
: CnX −→ Cn−1

X are a homotopy of the identity
with zero.
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Remark 5. LetA be an abelian category and suppose we have a short exact sequence of complexes

0 // X
u // Y

q // Q // 0

Let δn : Hn(Q) −→ Hn+1(X) be the canonical connecting morphism. The same sequence with
q replaced by −q is also a short exact sequence of complexes, with its own connecting morphism
ωn : Hn(Q) −→ Hn+1(X). It is straightforward to check that in fact ωn = −δn. The same
statement holds if we leave q fixed and replace u by −u.

Lemma 6. Let A be an abelian category, and suppose we have an exact sequence of complexes

0 // X
u // Y

q // Q // 0

Then there is a canonical commutative diagram with exact rows

0 // X

1

��

eu // C̃u
ϕ

��

−ev // Cu
f

��

// 0

0 // X u
// Y q

// Q // 0

(4)

And therefore a morphism of the long exact sequences of cohomology

· · · // Hn(X)

��

// Hn(C̃u)

��

// Hn(Cu)

��

ωn
// Hn+1(X)

��

// · · ·

· · · // Hn(X) // Hn(Y ) // Hn(Q) // Hn+1(X) // · · ·

(5)

Proof. Since qu = 0 the zero morphisms give a homotopy qu ' 0 and therefore by Proposition
2 there is an associated factorisation f : Cu −→ Q of q through v : Y −→ Cu. To be precise,
fn = (0 qn). All other morphisms are canonical, and it is not hard to check commutativity
and exactness of the first row. We know from Lemma 4 that ϕ is a homotopy equivalence, so
Hn(C̃u) −→ Hn(Y ) is an isomorphism for every n ∈ Z. The commutative diagram (4) induces
the morphism of long exact sequences (5) (DF,Proposition 30), and it follows from the 5-Lemma
that Hn(Cu) −→ Hn(Q) is an isomorphism for all n ∈ Z. Note that the connecting morphism in
the first row ωn : Hn(Cu) −→ Hn+1(X) is the additive inverse of the connecting morphism of (2)
(since we have used −ṽ).

Lemma 7. Let A be an abelian category, and suppose we have an exact sequence of complexes

0 // X
u // Y

q // Q // 0

Then there is a canonical commutative diagram with exact rows

0 // X

g

��

u // Y

ψ

��

q // Q

1

��

// 0

0 // Cq[−1]
−bv // Ĉq bq // Q // 0

And therefore a morphism of the long exact sequences of cohomology

· · · // Hn(X)

��

// Hn(Y )

��

// Hn(Q)

��

// Hn+1(X)

��

// · · ·

· · · // Hn(Cq[−1]) // Hn(Ĉq) // Hn(Q)
ωn
// Hn+1(Cq[−1]) // · · ·

(6)
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Proof. Since qu = 0 the zero morphisms give a homotopy qu ' 0 and therefore by Proposition
2 there is an associated factorisation g : X −→ Cq[−1] of u through the homotopy kernel of
q. To be precise, gn =

(
un

0

)
. As before, it follows from Lemma 4 and the 5-Lemma that

Hn(X) −→ Hn(Cq[−1]) is an isomorphism for all n ∈ Z and that we have the desired isomorphism
of long exact sequences. Note that the connecting morphism in the second row ωn is the additive
inverse of the connecting morphism of (3) (since we have used −v̂).

Remark 6. Intuitively, Lemma 6 and Lemma 7 say something very important about short exact
sequences of complexes. Let A be an abelian category and suppose we have an exact sequence of
complexes

0 // X
u // Y

q // Q // 0

Then qu = 0 means that there is a canonical homotopy qu ' 0, and this yields a factorisation
f : Cu −→ Q of q through the homotopy cokernel of u, and a factorisation g : X −→ Cq[−1] of u
through the homotopy kernel of q. From Lemma 6 and Lemma 7 we deduce that both morphisms
f, g are quasi-isomorphisms of complexes (that is, they induce an isomorphism on cohomology in
every degree).

LetA be an abelian category. So far we have defined homotopy kernels, cokernels and coimages.
The usual kernels, cokernels and coimages are natural with respect to commutative diagrams,
in the obvious sense. The homotopy versions are natural with respect to diagrams which are
commutative up to homotopy. Suppose we have a diagram of complexes

X
u //

g

��

Y

f

��
X ′

u′
// Y ′

(7)

together with a homotopy Σ : fu −→ u′g. Let v : Y −→ Cu, v
′ : Y ′ −→ Cu′ be the homotopy

cokernels and Θ : 0 −→ v′u′ the canonical homotopy Θn =
(
1
0

)
. Then together Σ,Θ give a

homotopy Λ : 0 −→ v′fu defined by Λn = Θngn − v′n−1Σn =
(
gn

−Σn

)
. By Proposition 2(i) this

homotopy corresponds to a morphism of complexes h : Cu −→ Cu′ making the right hand square
in the following diagram commute

X
u //

g

��

Y

f

��

v // Cu

h

��
X ′

u′
// Y ′

v′
// Cu′

(8)

hn =
(
gn+1 0
−Σn+1 fn

)
(9)

Now let k : Cu[−1] −→ X, k′ : Cu′ [−1] −→ X ′ be the homotopy kernels and Θ : uk −→ 0
the canonical homotopy Θn = (0 1). The homotopy Σ : fu −→ u′g remains fixed. Then
Λn = fn−1Θn − Σnkn = (−Σn, fn−1) is a homotopy Λ : u′gk −→ 0. By Proposition 2(ii) this
homotopy corresponds to a morphism of complexes j : Cu[−1] −→ Cu′ [−1] making the left hand
square in the following diagram commute

Cu[−1] k //

j

��

X
u //

g

��

Y

f

��
Cu′ [−1]

k′
// X ′

u′
// Y

(10)

jn =
(
gn 0
−Σn fn−1

)
(11)
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Observe that j = h[−1]. In particular we obtain the morphisms h : Cu −→ Cu′ and j : Cu[−1] −→
Cu′ [−1] if the square (7) actually commutes, in which case Σn = 0 defines a homotopy fu −→ u′g.
In particular we can apply the construction of the morphism on the homotopy cokernels to the left
hand square of (10) (which actually commutes) to obtain a morphism of complexes l : C̃u −→ C̃u′ .
In summary

Definition 6. Let A be an abelian category, and suppose we have a diagram of morphisms of
complexes (7) (not necessarily commutative) and a homotopy Σ : fu −→ u′g. Then there are
canonical morphisms of complexes

h : Cu −→ Cu′ hn =
(
gn+1 0
−Σn+1 fn

)
j : Cu[−1] −→ Cu′ [−1] jn =

(
gn 0
−Σn fn−1

)

l : C̃u −→ C̃u′ ln =

 gn+1 0 0
−Σn+1 fn 0

0 0 gn


and it is easy to check that the following diagram is commutative with exact rows

0 // X
eu //

g

��

C̃u
ev //

l

��

Cu

h

��

// 0

0 // X ′ eu′ // C̃u′ ev′ // Cu′ // 0

(12)

In terms of cohomology, in every sense that matters we have replaced the diagram (7), which only
commutes up to homotopy, with the left hand square in the above diagram which does commute.

Definition 7. Let A be an abelian category f, g : X → Y morphisms of complexes and Σ : f → g
a homotopy. If t : Q −→ X is another morphism of complexes then the morphisms Σntn : Qn −→
Y n−1 define a homotopy Σt : ft −→ gt. Similarly if t : Y −→ Q is a morphism of complexes the
morphisms tn−1Σn : Xn −→ Qn−1 define a homotopy tΣ : tf −→ tg.

Definition 8. Let A be an abelian category f, g : X −→ Y morphisms of complexes and Σ,Θ :
f −→ g homotopies. A homotopy of homotopies (or 2-homotopy) ϑ : Σ −→ Θ is a collection of
morphisms ϑn : Xn −→ Y n−2 with the property that for all n ∈ Z

Θn − Σn = ∂n−2
Y ϑn − ϑn+1∂nX

In this case we say that Σ,Θ are homotopic and write Σ ' Θ. Observe that if ϑ : Σ −→ Θ is
a homotopy then −ϑ is a homotopy Θ −→ Σ so there is no ambiguity in saying that Σ,Θ are
homotopic. We denote the set of all 2-homotopies Σ −→ Θ by Hom(Σ,Θ).

Lemma 8. The 2-homotopy relation ' is an equivalence relation.

Proof. That is, given an abelian category A and morphisms f, g : X −→ Y of complexes the
relation of 2-homotopy is an equivalence relation on the set Hom(f, g) of homotopies. It is clearly
reflexive and symmetric. For transitivity, suppose that we have 2-homotopies ϑ : Σ −→ Θ and
ρ : Θ −→ Λ. Then the morphisms ϑn + ρn define a 2-homotopy Σ −→ Λ, as required.

Theorem 9. Let A be an abelian category, and suppose we have a diagram of complexes with
exact rows (not necessarily commutative)

0 // X
u //

g

��

Y
q //

f

��

Q //

e

��

0

0 // X ′
u′
// Y ′

q′
// Q′ // 0

(13)
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Suppose that there exist homotopies Σ : fu −→ u′g and Θ : q′f −→ eq with the property that the
induced homotopies q′Σ,Θu : q′fu −→ 0 are homotopic. Then we have a commutative diagram

· · · // Hn(X) //

��

Hn(Y ) //

��

Hn(Q) δ //

��

Hn+1(X) //

��

· · ·

· · · // Hn(X ′) // Hn(Y ′) // Hn(Q′)
δ
// Hn+1(X ′) // · · ·

Proof. Since fu ' u′g and q′f ' eq the only square whose commutativity is not obvious is the one
involving the connecting morphisms. From the left hand square of complexes and the homotopy Σ
we obtain a commutative diagram with exact rows (12), which remains commutative if we replace
ṽ and ṽ′ with −ṽ,−ṽ′ respectively. We therefore obtain a morphism of the corresponding long
exact sequences of cohomology (for the modified short exact sequences). Applying Lemma 6 to
both rows of (13) we obtain a commutative diagram

Hn(X) // Hn(Y ) // Hn(Q) // Hn+1(X)

Hn(X) //

��

Hn(C̃u)

��

//

KS

Hn(Cu)

KS

//

��

Hn+1(X)

��
Hn(X ′) // Hn(C̃u′)

��

// Hn(Cu′)

��

// Hn+1(X ′)

Hn(X ′) // Hn(Y ′) // Hn(Q′) // Hn+1(X ′)

So to complete the proof it suffices to show that the following diagram of complexes commutes up
to homotopy

Cu

h

��

κ // Q

e

��
Cu′

κ′
// Q′

where κn = (0 qn), κ′n = (0 q′n) and h is as given in Definition 6. Let ϑ : Θu −→ q′Σ be a
homotopy of homotopies. For n ∈ Z we define a morphism Λn = (ϑn+1 Θn) : Cnu −→ Q′n−1. It is
not hard to check that for n ∈ Z we have

(eκ)n − (κ′h)n = ∂n−1
Q′ Λn + Λn+1∂nCu

Therefore Λ : κ′h −→ eκ is a homotopy and the proof is complete.

It may seem like the hypothesis of Theorem 9 are too restrictive to be of any use. In fact,
nothing could be further from the truth.

Proposition 10. Let A be an abelian category, C,D positive cochain complexes with C acyclic
and D injective. If ϕ,ψ : C −→ D are morphisms of cochain complexes and Σ,Θ : ψ −→ ϕ are
homotopies, there is a homotopy ϑ : Σ −→ Θ.

Proof. Let ϕ,ψ : C −→ D be morphisms of cochain complexes. These morphisms are homotopic
if and only if they induce the same morphism on cohomology H0(C) −→ H0(D) (DF,Theorem
19). We claim that (up to homotopy) there is really only one homotopy ψ −→ ϕ.

Let Σ,Θ : ψ −→ ϕ be homotopies. We have to construct morphisms ϑn : Xn −→ Y n−2 with
the following property for all i ∈ Z

Θi − Σi = ∂i−2
D ϑi − ϑi+1∂iC (14)

10
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If we set ϑn = 0 for all n < 2, this condition is trivially satisfied for i < 1. By assumption we have
the following equations for n ∈ Z

ϕn − ψn = ∂n−1
D Σn + Σn+1∂nC = ∂n−1

D Θn + Θn+1∂nC

In particular we have (Σ1 − Θ1)∂0
C = 0. Since C is acyclic, the morphism Σ1 − Θ1 : C1 −→ D0

factors through Im(∂1
C) and therefore by injectivity of D0 we can lift this factorisation to a

morphism ϑ2 : C2 −→ D0 with the property that ϑ2∂1
C = Σ1 − Θ1. So we have constructed

morphisms ϑn for n < 3 satisfying (14) for i < 2. We proceed by recursion: suppose for some
n > 2 we have constructed ϑ0, ϑ1, · · · , ϑn−1 satisfying (14) for i < n − 1. Consider the following
diagram

Cn−4 // Cn−3 //

����
��

��
��

��
��

��

||

Cn−2

ϑn−2

vv ����
��

��
��

��
��

��

||

// Cn−1

ϑn−1

vv ����
��

��
��

��
��

��

||

// Cn

����
��

��
��

��
��

��

}}
Dn−4 // Dn−3 // Dn−2 // Dn−1 // Dn

Set κ = ∂n−3
D ϑn−1 + Σn−1 −Θn−1 and observe that

κ∂n−2
C = ∂n−3

D ϑn−1∂n−2
C + Σn−1∂n−2

C −Θn−1∂n−2
C = ∂n−3

D ∂n−4
D ϑn−2 = 0

Therefore since C is acyclic κ factors through Im(∂n−1
C ) and by injectivity of D this can be lifted

to a morphism ϑn : Cn −→ Dn−2 satisfying (14) for i = n − 1. Proceeding recursively, we have
defined the required homotopy ϑ : Σ −→ Θ.

3 Derived Categories

The reader is expected to know the contents of our Triangulated Categories notes, up to and
including (TRC,Section 2). Throughout this section A is an abelian category, and all complexes
are objects of C(A). We let Σ denote the additive automorphism (−)[1] : K(A) −→ K(A) defined
above, and agree that all candidate triangles (TRC,Definition 2) are with respect to Σ. It follows
from Proposition 2 that for every morphism of complexes u : X −→ Y the image of the diagram
(1) in K(A) is a candidate triangle

X
u // Y

v // Cu
w // ΣX (15)

We say a candidate triangle in K(A) is distinguished if it is isomorphic (as a candidate triangle in
K(A)) to a candidate triangle (15) arising from a morphism of complexes u : X −→ Y in C(A).
It is sometimes technically convenient to replace the object Y in (15) by the mapping cylinder of
u, which is what we accomplish in the next result.

Lemma 11. For any morphism of complexes u : X −→ Y the following candidate triangle in
K(A) is distinguished

X
eu // C̃u −ev // Cu w // ΣX (16)

and every distinguished triangle in K(A) is isomorphic to a triangle of this form.

Proof. Here the morphisms ũ, ṽ are as given in Definition 4, and w : Cu −→ ΣX is the usual
morphism out of the mapping cone. Although trivially ṽũ = 0 it is not immediately clear that
wṽ = 0. In any case, consider the following diagram in K(A)

X

1

��

eu // C̃u
ϕ

��

−ev // Cu
1

��

w // ΣX

1

��
X u

// Y v
// Cu w

// ΣX

11
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where ϕn = (0 − 1 un), also discussed in Definition 4. We have ϕũ = u and the matrix
(

0 0 1
0 0 0

)
gives a homotopy vϕ ' −ṽ. Therefore this diagram commutes inK(A), where it is an isomorphism
of candidate triangles since by Lemma 4 the morphism ϕ is a homotopy equivalence. This shows
simultaneously that (16) is a distinguished triangle in K(A), and that every distinguished triangle
in K(A) is isomorphic to a triangle of this form.

Theorem 12. The additive category K(A) together with the additive automorphism Σ and the
class of distinguished triangles defined above is a triangulated category.

Proof. TR0. It is clear that any candidate triangle isomorphic to a distinguished triangle is
distinguished. If X is a complex, then we have to show that the following candidate triangle is
distinguished

X
1 // X // 0 // ΣX

By Lemma 5 the following diagram is an isomorphism of candidate triangles in K(A)

X
1 //

��

X

��

// 0

��

// ΣX

��
X

1
// X v

// C1 w
// ΣX

Since the bottom row is distinguished, so is the top row, which completes the proof of TR0.
TR1. Since any morphism in K(A) can be lifted to C(A), where it has a mapping cone, it is

clear that any morphism in K(A) can be extended to a distinguished triangle.
TR2. We have to show that the twists of a distinguished triangle are distinguished. By Lemma

11 it suffices to prove this for distinguished triangles in K(A) of the following form

X
eu // C̃u −ev // Cu w // ΣX

That is, we have to show that the following candidate triangles in K(A) are distinguished

C̃u
ev // Cu

−w // ΣX
−Σeu // ΣC̃u

Σ−1Cu
−Σ−1w // X

−eu // C̃u ev // Cu

By definition C̃u is the mapping cone of Σ−1w, so it is easy to check that the second candidate
triangle is distinguished. To show that the first candidate triangle is distinguished, we show that it
is isomorphic in K(A) to the canonical triangle induced by ṽ. That is, we will give a commutative
diagram with vertical isomorphisms in K(A)

C̃u

1

��

ev // Cu

1

��

−w // ΣX

−∆

��

−Σeu // ΣC̃u
1

��
C̃u ev // Cu x

// Cev y
// ΣC̃u

(17)

We define the morphism ∆ : ΣX −→ Cev as follows

∆n =


0
0
1
0
0

 : Xn+1 −→ Xn+2 ⊕ Y n+1 ⊕Xn+1 ⊕Xn+1 ⊕ Y n
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One checks that this is a morphism of complexes. Similarly we define a morphism of complexes
� : Cev −→ ΣX by �n =

(
0 0 1 1 0

)
. Trivially �∆ = 1 and if we define

Hn =


0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 : Cnev −→ Cn−1ev

then H is a homotopy ∆� ' 1. Therefore in K(A) the morphism ∆ is an isomorphism with
inverse �. It is not difficult to check that y∆ = Σũ and �x = w, which shows that (17) is an
isomorphism of candidate triangles in K(A), as claimed.

TR4’. Suppose we have a diagram in C(A)

X

f

��

u // Y

g

��
X ′

u′
// Y ′

which commutes up to some homotopy Φ : gu −→ u′f . Then by Definition 6 we have a canonical
morphism of complexes h : Cu −→ Cu′ making the following diagram commute

X

f

��

u // Y

g

��

v // Cu

h

��

w // ΣX

Σf

��
X ′

u′
// Y ′

v′
// Cu′

w′
// ΣX ′

hn =
(
fn+1 0
−Φn+1 gn

)
The axiom TR3 is an immediate consequence, so K(A) is a pretriangulated category. To show
that it is triangulated, it would be enough to show that the image of the following sequence in
K(A) is a distinguished triangle

Y ⊕X ′

0@−v 0
g u′

1A
// Cu ⊕ Y ′

0@−w 0
h v′

1A
// ΣX ⊕ Cu′

0@−Σu 0
Σf w′

1A
// Σ(Y ⊕X ′) (18)

The first thing we observe is that(
−w 0
h v′

)(
−v 0
g u′

)
=
(

0 0
0 v′u′

)
' 0 (19)

since v′u′ ' 0 by the canonical homotopy Θn =
(

1
0

)
. If we write α : Y ⊕X ′ −→ Cu ⊕ Y ′ for the

first morphism in (18) then the specific homotopy (19) induces by Proposition 2 a morphism of
complexes τ : Cα −→ ΣX ⊕ Cu′ making the middle square in the following diagram commute

Y ⊕X ′

1

��

α // Cu ⊕ Y ′

1

��

// Cα

τ

��

// Σ(Y ⊕X ′)

1

��
Y ⊕X ′ α

// Cu ⊕ Y ′ // ΣX ⊕ Cu′ // Σ(Y ⊕X ′)

τn =

0 0 −1 0 0
0 1 fn+1 0 0
0 0 −Φn+1 gn 1
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One also checks that the right hand square commutes, but only up to homotopy. Since the top row
of this diagram is a distinguished triangle in K(A), to show that (18) is distinguished in K(A) it
only remains to show that τ is a homotopy equivalence. We define the inverse σ : ΣX⊕Cu′ −→ Cα
on components:

(i) Consider the morphism
( u
−f
)

: X −→ Y ⊕X ′. We have a canonical homotopy

α

(
u
−f

)
=
(
−vu

gu− u′f

)
' 0

and therefore by Proposition 2 a canonical factorisation σ′1 : X −→ Σ−1Cα. Applying Σ
and alternating the sign gives our first component σ1 = −Σσ′1 : ΣX −→ Cα.

(ii) It is easy to see that the composite of u′ : X ′ −→ Y ′ with the injection Y ′ −→ Cα is
canonically homotopic to zero. The canonical factorisation gives our second component
σ2 : Cu′ −→ Cα.

Putting these morphisms together we have a morphism of complexes σ : ΣX⊕Cu′ −→ Cα defined
in terms of matrices by

σn =


−un+1 0 0
fn+1 1 0
−1 0 0
0 0 0

−Φn+1 0 1


One checks that τσ = 1, and the following matrix defines a homotopy 1 ' στ

Ψn =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 : Cnα −→ Cn−1
α

This finishes the proof that τ is a homotopy equivalence, which implies that (18) is a distinguished
triangle in K(A). Using these facts, it is now straightforward to check that TR4’ holds for K(A),
which is consequently a triangulated category.

Remark 7. Our convention is that triangulated subcategories must be replete (TRC,Definition
16). So in general the full additive subcategories K+(A),K−(A) and Kb(A) of K(A) are not
triangulated subcategories. Here is a counter-example: let X be any nonzero object of A, and
consider the following complexes in C(A)

· · · // 0

��

// 0

��

// X

1

��

// 0

��

// 0

��

// · · ·

· · ·
0
// X

VV

1
// X

VV

0
// X

1

VV

0
// X

VV

1
// X

VV

0
// · · ·

Here the top row is concentrated in degree zero. In the bottom row all the objects are X, and
away from degree zero the differentials alternative between the identity and zero. We have two
canonical morphisms of complexes f : T −→ B, g : B −→ T , where T denotes the top row and
B the bottom. Clearly gf = 1 and Σn = 1 defines a homotopy fg ' 1. Therefore in K(A) we
have an isomorphism T ∼= B, where T is bounded and B is not. For the definition of the bounded
derived categories, see Section 3.3.

Definition 9. For any n ∈ Z the additive cohomology functor Hn : C(A) −→ A induces an
additive functor K(A) −→ A which we also denote by Hn. If we set H = H0 then it is easy to
check that Hn = H ◦ Σn for any n ∈ Z.

14

file:"TriangulatedCategories.pdf"


Proposition 13. For any n ∈ Z the additive functor Hn : K(A) −→ A is homological. For any
distinguished triangle in K(A)

X
u // Y

v // Z
w // ΣX

we have a long exact sequence in A

· · · // Hn−1(Z)
Hn−1(w) // Hn(X) // Hn(Y ) // Hn(Z) // · · · (20)

Proof. Since Hn = H ◦ Σn it follows from (TRC,Remark 7) that we need only show that H is
homological. By Lemma 11 we may assume our triangle is of the form

X
eu // C̃u −ev // Cu w // ΣX

for some morphism of complexes u : X −→ Y . But then we have an exact sequence of complexes

0 // X
eu // C̃u ev // Cu // 0

and the corresponding long exact cohomology sequence includes H(X) −→ H(C̃u) −→ H(Cu),
which is therefore exact. This shows that H is a homological functor.

Definition 10. A morphism of complexes u : X −→ Y is a quasi-isomorphism if the morphism
Hn(u) : Hn(X) −→ Hn(Y ) is an isomorphism in A for every n ∈ Z. Since this property is
stable under homotopy equivalence, it makes sense to say that a morphism in K(A) is a quasi-
isomorphism. If X is an exact complex, then the zero morphisms 0 −→ X,X −→ 0 are clearly
quasi-isomorphisms.

Corollary 14. A morphism of complexes u : X −→ Y is a quasi-isomorphism if and only if the
mapping cone Cu is exact.

Proof. By definition the following sequence is a triangle in K(A)

X
u // Y

v // Cu
w // ΣX

so by Proposition 13 we have a long exact cohomology sequence

· · · −→ Hn−1(Cu) −→ Hn(X) −→ Hn(Y ) −→ Hn(Cu) −→ Hn+1(X) −→ · · ·

It follows that Hn(Cu) = 0 for every n ∈ Z if and only if Hn(u) is an isomorphism for every
n ∈ Z, which is what we wanted to show.

Corollary 15. The exact complexes form a thick triangulated subcategory Z of K(A). The
corresponding class of morphisms MorZ is the class of all quasi-isomorphisms in K(A).

Proof. Let Z be the full subcategory of K(A) consisting of the exact complexes. This class of
objects is closed under isomorphisms and finite coproducts in K(A), so it is a replete additive
category. It is also closed under the functor Σ and its inverse. If we have a distinguished triangle
in K(A)

X −→ Y −→ Z −→ ΣX

with X,Y ∈ Z, then we deduce from the long exact cohomology sequence (20) that Hn(Z) = 0
for every n ∈ Z. That is, Z is exact. This shows that Z is a triangulated subcategory of K(A),
and thickness is straightforward to check. The second claim follows from Corollary 14.

Remark 8. In a moment we will be forced to pay attention to some annoying set-theoretic details,
in the guise of “portly categories”. The careful reader will want to consult (TRC,Remark 37) and
(FCT,Section 4) for the relevant background. In our Triangulated Categories notes we are very
careful to write “portly subcategory” and “portly triangulated subcategory” throughout, but here
we work under the convention that whenever we write “subcategory” we really mean “portly
subcategory”. Of course if the ambient portly category is actually a category, “subcategory” and
“portly subcategory” are the same thing.

15
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Definition 11. Let A be an abelian category. The derived category of A is the verdier quotient
K(A)/Z, which is a portly triangulated category. We use the notation D(A) for this portly
triangulated category. There is a canonical triangulated functor F : K(A) −→ D(A).

Lemma 16. For any complex X we have F (X) = 0 if and only if X is exact. If u : X −→ Y is
a morphism of complexes then F (u) is an isomorphism if and only if u is a quasi-isomorphism.

Proof. By (TRC,Theorem 68) the kernel of F is precisely the thick closure of Z, which we have
already shown is Z itself. The second claim follows from (TRC,Proposition 64) and thickness of
Z.

Proposition 17. Let A be an abelian category with derived category D(A). If G : K(A) −→ S
is a triangulated functor into a portly triangulated category which sends quasi-isomorphisms to
isomorphisms, there is a unique triangulated functor H : D(A) −→ S making the following
diagram commute

K(A)

G
$$H

HHH
HHH

HHH
F // D(A)

H

��
S

Proof. Let G : K(A) −→ S be such a triangulated functor. If X is an exact complex then 0 −→ X
is a quasi-isomorphism in K(A), which is sent to an isomorphism in S. Therefore Z ⊆ Ker(G).
By (TRC,Theorem 68) there is a unique triangulated functor H : D(A) −→ S making the above
diagram commute, so the proof is complete.

Definition 12. For each n ∈ Z the homological functor Hn : K(A) −→ A sends quasi-
isomorphisms to isomorphisms, and therefore by (TRC,Proposition 54), (TRC,Remark 43) there
is a unique functor Hn : D(A) −→ A making the following diagram commute

K(A) F //

Hn

$$H
HHHHHHHH
D(A)

Hn

��
A

The functor Hn : D(A) −→ A is easily checked to be homological.

Lemma 18. A morphism γ : X −→ Y in D(A) is an isomorphism if and only if Hn(γ) is an
isomorphism in A for every n ∈ Z.

Proof. The condition is clearly necessary. Now suppose that Hn(γ) is an isomorphism for every
n ∈ Z. By (TRC,Remark 41) we can write γ = F (g)F (f)−1 for some morphisms of complexes
fitting into a diagram of the form

W
f

yyssssss g

%%KKKKKK

X Y

Since Hn(γ) = Hn(g)Hn(f)−1 we infer that Hn(g) is an isomorphism for every n ∈ Z. That is, g
is a quasi-isomorphism. By Lemma 16 the image F (g) of g in D(A) is an isomorphism, and hence
so is γ = F (g)F (f)−1.

Lemma 19. Let f, g : X −→ Y be morphisms of complexes. Then the following statements are
equivalent

(i) F (f) = F (g).

(ii) There exists a quasi-isomorphism α : W −→ X such that fα, gα are homotopic.

16
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(iii) In K(A) the morphism f − g factors through an exact complex.

In particular F (f) = 0 if and only if fα ' 0 for some quasi-isomorphism α.

Proof. This is a special case of (TRC,Lemma 55).

Remark 9. In fact for two morphisms f, g : X −→ Y of complexes the following implications are
all strict (see the example on p.39 of RD)

f = g ⇒ f ' g ⇒ F (f) = F (g)⇒ Hn(f) = Hn(g) for all n ∈ Z

For actually proving statements about the derived category, triangles involving the mapping
cone and cylinder of a morphism are very convenient. But intuitively the more natural triangles
are those arising from short exact sequences of complexes. We are very familiar with the fact that
such a short exact sequence gives rise to “connecting morphisms” on cohomology (DF,Theorem
29). The formalism of the derived category allows us to lift these connecting morphisms on
cohomology to an actual morphism in the derived category.

Proposition 20. Suppose we are given a short exact sequence of complexes

0 // X
u // Y

q // Q // 0

Then there is a canonical morphism z : Q −→ ΣX in D(A), called the connecting morphism,
making the following diagram into a triangle

X
u // Y

q // Q
−z // ΣX (21)

Proof. Combining Lemma 11 and Lemma 6 we have a commutative diagram in D(A) with the
first row a triangle

X

1

��

eu // C̃u
ϕ

��

−ev // Cu
f

��

w // ΣX

X u
// Y q

// Q

Let F : K(A) −→ D(A) be the quotient and define z to be the morphism −F (w)F (f)−1 : Q −→
ΣX of D(A) then it is clear that (21) is a triangle in D(A) (in the notation of (TRC,Section 2)
we have z = −[f, w]). The reason for the sign will become apparent in a moment.

Lemma 21. The connecting morphism is natural in the exact sequence. That is, suppose we are
given a commutative diagram of complexes with exact rows

0 // X

α

��

u // Y
q //

β

��

Q

γ

��

// 0

0 // X ′
u′
// Y ′

q′
// Q′ // 0

(22)

Then the following diagram commutes in D(A)

X

α

��

u // Y

β

��

q // Q

γ

��

−z // ΣX

Σα

��
X ′

u′
// Y ′

q′
// Q′

−z′
// ΣX ′

where z, z′ are the canonical connecting morphisms.
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Proof. Let f : Cu −→ Q and f ′ : Cu′ −→ Q′ be the morphisms involved in the definition of
the connecting morphisms. That is, fn = (0 qn) and (f ′)n = (0 (q′)n). Let w : Cu −→ ΣX and
w′ : Cu′ −→ ΣX ′ be the canonical morphisms out of the mapping cone, so that z = −F (w)F (f)−1

and z′ = −F (w′)F (f ′)−1. The left hand commutative square in (22) induces a morphism of
complexes h : Cu −→ Cu′ as defined in (9) above. This makes the following diagram of complexes
commute

Q

γ

��

Cu
foo

h

��

w // ΣX

Σα

��
Q′ Cu′

f ′
oo

w′
// ΣX ′

from which we deduce that Σα ◦ (−z) = (−z′) ◦ γ in D(A). The commutativity of the rest of the
diagram is trivial, so this completes the proof.

Lemma 22. Suppose we are given a short exact sequence of complexes

0 // X
u // Y

q // Q // 0 (23)

Let z : Q −→ ΣX be the canonical connecting morphism in D(A) of Proposition 20 and let δn :
Hn(Q) −→ Hn+1(X) be the canonical connecting morphism of (23) in the sense of (DF,Theorem
29). Then Hn(z) = δn.

Proof. By definition z = −[f, w] and so from commutativity of the diagram (5) of Lemma 6 we
deduce that it is enough to show that for the exact sequence of complexes

0 // X
eu // C̃u ev // Cu // 0

the canonical connecting morphism Hn(Cu) −→ Hn+1(X) of (DF,Theorem 29) is equal to Hn(w)
where w : Cu −→ ΣX is the morphism of complexes given as part of the definition of the mapping
cone. The connecting morphism Hn(Cu) −→ Hn+1(X) is defined by diagram chasing using the
following diagram of (DF,Theorem 26)

Hn(X)

��

// Hn(C̃u)

��

// Hn(Cu)

��
Coker∂n−1

��

// Coker∂n−1

��

// Coker∂n−1 //

��

0

0 // Ker∂n+1 //

��

Ker∂n+1

��

// Ker∂n+1

��
Hn+1(X) // Hn+1(C̃u) // Hn+1(Cu)

(24)

The uniqueness part of (DCAC,Theorem 13) and the proof of (DCAC,Lemma 14) mean that
to show Hn(w) is equal to the connecting morphism, we have to show that for some small,
full, abelian subcategory C of A containing (24) and some exact embedding T : C −→ Ab the
morphism of abelian groups THn(w) is the canonical connecting morphism of the image under
T of the diagram (24). Since we know explicitly the objects and differentials of the complexes
C̃u, Cu this is technical but not difficult to check.

Remark 10. The connecting morphism in D(A) reduces to the usual connecting morphisms
when you apply cohomology, but amazingly enough the connecting morphism in the derived
category contains even more information. For example, given X ∈ A let c(X) denote the complex
concentrated in degree zero with c(X)0 = X. Suppose we have a short exact sequence in A

0 −→ A −→ B −→ C −→ 0

18
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and therefore also a short exact sequence 0 −→ c(A) −→ c(B) −→ c(C) −→ 0. By the above
there is a canonical connecting morphism z : c(C) −→ Σc(A) in D(A). It is clear that Hn(z) = 0
for every n ∈ Z so one might expect that z = 0. But in fact the morphism z is very useful. See
for example (DTC2,Remark 5).

Remark 11. Let k be a commutative ring and A a k-linear abelian category (AC,Definition 35).
The abelian category C(A) is also k-linear, with action (r · ψ)i = r · ψi. With the same action
K(A) is a k-linear triangulated category in the sense of (TRC,Definition 32). Therefore the verdier
quotient D(A) = K(A)/Z is canonically k-linear and the functor K(A) −→ D(A) is k-linear. For
any n ∈ Z the cohomology functors Hn(−) : K(A) −→ A and Hn(−) : D(A) −→ A are k-linear.

3.1 Extending Functors

Let F : A −→ B be an additive functor between abelian categories. This induces a canonical
additive functor C(F ) : C(A) −→ C(B) (which we sometimes also denote by F ) with the property
that if ϕ,ψ : C −→ D are homotopic morphisms of complexes, then so are C(F )(ϕ),C(F )(ψ)
(DF,Lemma 7). That is, there is a unique additive functor K(F ) making the following diagram
commute

C(A)

��

C(F ) // C(B)

��
K(A)

K(F )
// K(B)

There is an equality of functors ΣK(F ) = K(F )Σ and it is easy to see that given a morphism
u : X −→ Y of complexes in A there is a canonical isomorphism of complexes CF (u) −→ F (Cu)
in B making the following diagram commute

F (X)

1

��

F (u) // F (Y )

1

��

// CF (u)

��

// ΣF (X)

1

��
F (X)

F (u)
// F (Y ) // F (Cu) // F (ΣX)

Therefore K(F ) is a triangulated functor K(A) −→ K(B). It is clear that K(1) = 1 and K(GF ) =
K(G)K(F ) for another additive functor G : B −→ C between abelian categories. In particular
isomorphic abelian categories have isomorphic homotopy categories.

Lemma 23. Let F : A −→ B be an exact functor between abelian categories. There is a unique
triangulated functor D(F ) : D(A) −→ D(B) making the following diagram commute

K(A)

��

K(F ) // K(B)

��
D(A)

D(F )
// D(B)

Proof. We need only observe that the composite K(A) −→ K(B) −→ D(B) sends exact complexes
to zero, which is trivial.

Remark 12. It is clear that if F : A −→ B, G : B −→ C are exact functors between abelian
categories then D(GF ) = D(G)D(F ). Clearly D(1) = 1. It follows that isomorphic abelian
categories have isomorphic derived categories.
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Remark 13. Let F,G : A −→ B be additive functors between abelian categories, and let θ :
F −→ G be a natural transformation. Then there are corresponding natural transformations

C(θ) : C(F ) −→ C(G) C(θ)iX = θXi

K(θ) : K(F ) −→ K(G) K(θ)X = [C(θ)X ]

where K(θ) is actually a trinatural transformation. If F,G are exact and Q : K(B) −→ D(B)
canonical, then we have a trinatural transformation

D(θ) : D(F ) −→ D(G) D(θ)X = Q(K(θ)X)

In particular if F,G are naturally equivalent then C(F ),C(G) are naturally equivalent and
K(F ),K(G) are trinaturally equivalent. If F,G are in addition exact, then D(F ),D(G) are
trinaturally equivalent. An immediate consequence of this is that if F : A −→ B is an equivalence
of abelian categories, then C(F ) is an equivalence and K(F ),D(F ) are triequivalences.

Lemma 24. Let A,B be abelian categories and suppose we have additive functors F : A −→ B
and G : B −→ A with G left adjoint to F . Then C(G) is left adjoint to C(F ).

Proof. Let G be left adjoint to F with unit η : 1 −→ FG and counit ε : GF −→ 1. The natural
transformations C(η) : 1 −→ C(F )C(G) and C(ε) : C(G)C(F ) −→ 1 are easily checked to be the
unit and counit of an adjunction C(G) �C(F ), which completes the proof.

Lemma 25. Let A,B be abelian categories and suppose we have additive functors F : A −→ B
and G : B −→ A with G left adjoint to F . Then K(G) is left triadjoint to K(F ).

Proof. See (TRC,Section 2.1) for the definition of triadjoints. Let G be left adjoint to F with
unit η : 1 −→ FG and counit ε : GF −→ 1 and suppose we have two morphisms of complexes
u, v : X −→ FY and a homotopy Σ : v −→ u. For each n ∈ Z the morphism Σn : Xn −→ FY n−1

corresponds via the adjunction to a morphism Λn : GXn −→ Y n−1. If we let û, v̂ : GX −→ Y
denote the morphisms of complexes associated to u, v by the adjunction, then one checks that
Λ : v̂ −→ û is a homotopy. Conversely if û ' v̂ then u ' v, so the bijection

HomC(B)(X,FY ) ∼= HomC(A)(GX,Y )

defined by the adjunction C(G) �C(F ) induces a bijection

HomK(B)(X,FY ) ∼= HomK(A)(GX,Y )

which is clearly natural in both variables. This gives an adjunction K(G) �
K(F ) whose unit is

the trinatural transformation K(η) : 1 −→ K(F )K(G) and whose unit is K(ε) : K(G)K(F ) −→ 1.
It is therefore a triadjunction, so the proof is complete.

3.2 Truncations and Hearts

In this section we take a preliminary look at ways of embedding the abelian category A into its
derived category. Throughout this section A is an abelian category.

Definition 13. A complex X is concentrated in degree n for some n ∈ Z if we have Xi = 0 for
i 6= n (note that we do not require Xn 6= 0). We say X has cohomology concentrated in degree
n if Hi(X) = 0 for i 6= n. We say X is cohomologically bounded above if there exists n ∈ Z such
that Hi(X) = 0 for i > n and similarly define cohomologically bounded below and cohomologically
bounded.

Definition 14 (Truncation from above). Let W be a complex and n ∈ Z. We define W≤n to
be the complex with W i

≤n = W i for i < n, Wn
≤n = Ker∂nW and W i

≤n = 0 for i > n. Graphically,

· · · // Wn−2
∂n−2

W // Wn−1 // Ker∂nW // 0 // 0 // · · ·
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There is an obvious monomorphism v : W≤n −→ W and Hi(v) is an isomorphism for i ≤ n. As
subobjects of W it is clear that W≤n ≤ W≤(n+1) and in fact the inclusions {W≤n −→ W}n≥0

are a direct limit in C(A). That is, W = lim−→n≥0
W≤n. It is also clear that the complex W≤n is

functorial in W , and that v is natural. The morphism v has a universal property: for any complex
X with Xi = 0 for i > n composition with v defines isomorphisms

HomC(A)(X,W≤n) −→ HomC(A)(X,W )
HomK(A)(X,W≤n) −→ HomK(A)(X,W )

In other words, a morphism from X to W factors uniquely through W≤n in both C(A) and K(A).

Definition 15 (Truncation from below). Let W be a complex and n ∈ Z. We define W≥n
to be the complex with W i

≥n = W i for i > n, Wn
≥n = Coker∂n−1

W and W i
≥n = 0 for i < n.

Graphically

· · · // 0 // 0 // Coker∂n−1
W

// Wn+1
∂n+1

W // Wn+2 // · · ·

There is an obvious epimorphism q : W −→ W≥n and Hi(q) is an isomorphism for i ≥ n. There
is a canonical epimorphism W≥n −→W≥(n+1) and in fact the quotients {W −→W≥n}n≤0 are an
inverse limit in C(A). That is, W = lim←−n≤0

W≥n. It is clear that the complex W≥n is functorial
in W , and that q is natural. The morphism q has a universal property: for any complex X with
Xi = 0 for i < n composition with q defines isomorphisms

HomC(A)(W≥n, X) −→ HomC(A)(W,X)
HomK(A)(W≥n, X) −→ HomK(A)(W,X)

In other words, a morphism from W to X factors uniquely through W≥n in both C(A) and K(A).

This allows us to write any complex as a direct limit of bounded above complexes, or alter-
natively as an inverse limit of bounded below complexes. Although the truncations given above
behave well on cohomology, they have the disadvantage that not all of their objects occur in the
original complex. Next we introduce the brutal truncations which ruin the cohomology, but are
made up of objects from the original complex.

Definition 16 (Brutal truncation from above). Let W be a complex and n ∈ Z. We define
bW≤n to be the complex with bW

i
≤n = W i for i ≤ n and bW

i
≤n = 0 for i > n with the obvious

differentials. Graphically,

· · · // Wn−1
∂n−1

W // Wn // 0 // 0 // · · ·

There is an obvious epimorphism of complexes W −→ bW≤n and bW≤(n+1) −→ bW≤n and in fact
the quotients {W −→ bW≤n}n≤0 are an inverse limit in C(A). That is, W = lim←−n≥0 b

W≥n.

Definition 17 (Brutal truncation from below). Let W be a complex and n ∈ Z. We define
bW≥n to be the complex with bW

i
≥n = W i for i ≥ n and bW

i
≥n = 0 for i < n with the obvious

differentials. Graphically,

· · · // 0 // 0 // Wn
∂n

W // Wn+1 // · · ·

There is an obvious monomorphism of complexes bW≥n −→ W . As subobjects of W it is clear
that bW≥n ≤ bW≥(n−1) and in fact the inclusions {bW≥n −→ W}n≤0 are a direct limit in C(A).
That is, W = lim−→n≤0 b

W≥n.

Together these four truncations allow us to write any complex as a direct or inverse limit of
bounded above complexes, and also as a direct or inverse limit of bounded below complexes. If
we truncate brutally below and normally above, we can write any complex as a direct limit of
bounded complexes.
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Definition 18 (Double truncation). Let W be a complex and m,n ∈ Z with n < m. We
define W[n,m] to be the following complex

· · · // 0 // Wn
∂n

W // Wn+1 // · · · // Wm−1 // Ker∂mW // 0 // · · ·

There are obvious monomorphisms z : W[n,m] −→ W and W[n,m] −→ W[n′,m′] for any “larger”
interval, that is, n′ ≤ n and m′ ≥ m. In particular we have a direct system

W[0,1] −→W[−1,2] −→W[−2,3] −→ · · · −→W[−n,n+1] −→ · · ·

and the canonical morphisms W[−n,n+1] −→ W are a direct limit in C(A). That is, we have
W = lim−→n≥0

W[−n,n+1].

The morphisms relating the original complex to its truncations have certain universal proper-
ties. We give one example.

Remark 14. Let W be a complex and X a complex with Xi = 0 for i < n. Then any morphism
of complexes X −→W factors uniquely through the canonical morphism bW≥(n−1) −→W . That
is, there is an isomorphism HomC(A)(X, bW≥(n−1)) −→ HomC(A)(X,W ). This identifies null-
homotopic morphisms, so we deduce an isomorphism of abelian groups

HomK(A)(X, bW≥(n−1)) −→ HomK(A)(X,W )

Note that we truncate at n − 1 rather than n so that the null-homotopic morphisms agree. The
reader will observe that everything we have said remains true when we replace bW≥(n−1) by
bW≥(n−k) for any integer k ≥ 1.

Definition 19. For each n ∈ Z there is a canonical full additive embedding A −→ C(A) sending
A to the complex whose only nonzero object is A in degree n. One checks that composing with the
functor C(A) −→ K(A) gives another full additive embedding. Finally, composing this functor
with K(A) −→ D(A) gives an additive functor cn : A −→ D(A) which is distinct on objects.
Given an object A ∈ A, we will sometimes denote the complex cn(A) by A[−n] (the sign is needed
since the functor (−)[n] on C(A) shifts n places to the left). Often we will not distinguish between
the object A and complex c0(A).

There are several ways we can recover the cohomology objects of a complex from its truncations.
We can either truncate twice at the same position and be left with a single object (which happens
to the cohomology at that position of the complex), or we can take the homotopy cokernel (resp.
kernel) of the morphism X≤(n−1) −→ X≤n (resp. X≥n −→ X≥(n+1)).

Lemma 26. Let W be a complex and n ∈ Z. Then there is a canonical isomorphism of complexes
cn(Hn(W )) −→ (W≥n)≤n natural in W .

Proof. The complex (W≥n)≤n is concentrated in degree n, where it is the kernel of the induced
morphism Coker∂n−1

W −→Wn+1. By (DF,Lemma 25) this is canonically naturally isomorphic to
Hn(W ). So one we embed Hn(W ) in degree n, we have the desired isomorphism.

Lemma 27. Let X be a complex and n ∈ Z. There are canonical triangles in D(A) natural in X

X≤(n−1) −→ X≤n −→ cnH
n(X) −→ ΣX≤(n−1)

cnH
n(X) −→ X≥n −→ X≥(n+1) −→ ΣcnHn(X)

Proof. We begin with the first triangle. Let X≤n −→ C be the canonical cokernel of the monomor-
phism X≤(n−1) −→ X≤n. We have a canonical morphism of complexes C −→ cnH

n(X) depicted
in the following diagram

· · · // 0 //

��

Xn−1/Ker∂n−1
X

//

��

Ker∂nX //

��

0

��

// · · ·

· · · // 0 // 0 // Hn(X) // 0 // · · ·
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which is clearly a quasi-isomorphism. From the short exact sequence

0 −→ X≤(n−1) −→ X≤n −→ C −→ 0

we deduce a canonical triangle in D(A)

X≤(n−1) −→ X≤n −→ C −→ ΣX≤(n−1)

the quasi-isomorphism C −→ cnH
n(X) becomes an isomorphism in D(A), so we obtain the desired

triangle by replacing C by cnH
n(X). Naturality with respect to morphisms of complexes in X

is easily checked. For the second triangle we deduce a canonical quasi-isomorphism of complexes
cnH

n(X) −→ K

· · · // 0

��

// Hn(X)

��

// 0

��

// 0 // · · ·

· · · // 0 // Coker∂n−1
X

// Im∂n // 0 // · · ·

where the complex K in the bottom row is a kernel of X≥n −→ X≥(n+1). So we can define the
second triangle in the same way as the first, and once again naturality is easily checked.

Proposition 28. For every n ∈ Z the additive functor cn : A −→ D(A) is a full embedding.

Proof. We claim thatHncn = 1, whereHn : D(A) −→ A is the additive functor given in Definition
12. It suffices to observe that the embedding A −→ C(A) followed by Hn : C(A) −→ A is the
identity, by our agreed conventions on the choices of canonical kernels and cokernels. In particular
cn is faithful and distinct on objects, so it only remains to show that cn is full.

Let A,B ∈ A be given, and suppose we have a morphism γ : cn(A) −→ cn(B) in D(A), which
we can write as γ = F (g)F (f)−1 for some morphisms of complexes f : W −→ cn(A), g : W −→
cn(B) with f a quasi-isomorphism. In particular we must have Hi(W ) = 0 for i 6= n.

LetW≤n be the truncated complex, as defined above. By composing the projectionKer∂nW −→
Hn(W ) with the respective morphisms Hn(f),Hn(g) we obtain morphisms of complexes W≤n −→
cn(A),W≤n −→ cn(B). This first morphism is clearly a quasi-isomorphism, and the following
diagram commutes

W
f

zzuuuuuuuuu
g

$$I
IIIIIIII

cn(A) W≤n

OO

oo

��

// cn(B)

cn(A)
1

ccHHHHHHHHH cnH
n(γ)

;;vvvvvvvvv

so by definition of the category D(A) = K(A)/Z, the morphism γ is equal to the image under F
of the embedding of Hn(γ) : A −→ B in K(A). That is, γ = cnH

n(γ). This shows that cn is full,
and completes the proof.

Remark 15. If F : A −→ B is an additive functor between abelian categories then we have a
triangulated functor K(F ) : K(A) −→ D(B) and there is an equality of functors F = H0K(F )c0.

Lemma 29. Let W be a complex with cohomology concentrated in degree n for some n ∈ Z. Then
there is a canonical isomorphism W ∼= cnH

n(W ) in D(A).

Proof. If W has cohomology concentrated in degree n, then the inclusion of the truncation v :
W≤n −→W is a quasi-isomorphism, and therefore an isomorphism in D(A). On the other hand,
since the cohomology of W≤n also vanishes for i < n the canonical morphism W≤n −→ cnH

n(W )
is a quasi-isomorphism as well. The desired isomorphism in D(A) is the composite W ∼= W≤n ∼=
cnH

n(W ).
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Lemma 30. The essential image of the functor cn : A −→ D(A) is the class of all complexes
whose cohomology is concentrated in degree n.

Proof. By the essential image of the functor cn we mean the class of objects of D(A) which are
isomorphic to cn(A) for some A ∈ A. It is clear that every cn(A) has cohomology only in degree
n, and consequently the same is true for any object in the image of cn. Conversely, suppose X
has cohomology concentrated in degree n. Then in D(A) there is an isomorphism X ∼= cnH

n(X),
which completes the proof.

Lemma 31. Given an object A ∈ A and a complex X in A there is a canonical isomorphism of
abelian groups natural in both variables

HomC(A)(ci(A), X) −→ HomA(A,Ker∂iX)

which identifies null-homotopic morphisms ci(A) −→ X with morphisms A −→ Ker∂iX factoring
through the canonical morphism Xi−1 −→ Ker∂iX . Dually we have a canonical isomorphism of
abelian groups natural in both variables

HomC(A)(X, ci(A)) −→ HomA(Coker∂i−1
X , A)

which identifies null-homotopic morphisms X −→ ci(A) with the morphisms Coker∂i−1
X −→ A

factoring through the canonical morphism Coker∂i−1
X −→ Xi+1.

Proof. A morphism of complexes ci(A) −→ X is a commutative diagram

· · · // 0

��

// A

��

// 0 //

��

· · ·

· · · // Xi−1 // Xi // Xi+1 // · · ·

which is determined by the morphism A −→ Xi, which must clearly factor through Ker∂iX .
Sending the morphism of complexes to this factorisation defines our isomorphism of abelian groups
Hom(ci(A), X) −→ Hom(A,Ker∂iX), which clearly identifies null-homotopic morphisms with
those factoring through Xi−1.

The second claim is proved in the same way. Any morphism of complexes X −→ ci(A) is
just a morphism Xi −→ A which must factor through Coker∂i−1

X . Sending the morphism to this
factorisation defines the desired isomorphism.

Definition 20. Given n ∈ Z let D(A)≥n (resp. D(A)≤n) denote the full subcategory of D(A)
consisting of complexes X with Hi(X) = 0 for i < n (resp. Hi(X) = 0 for i > n). These are both
replete additive subcategories of D(A). The intersection D(A)≥n∩D(A)≤n is the full subcategory
of all complexes whose cohomology is concentrated in degree n, so it follows from Lemma 30 that
this is a portly abelian category equivalent to A.

Clearly a complex W belongs to D(A)≥n if and only if the morphism of complexes W −→W≥n
is an isomorphism in D(A), and belongs to D(A)≤n if and only if W≤n −→W is an isomorphism
in D(A).

Lemma 32. Given m,n ∈ Z with m < n and complexes W ∈ D(A)≤m, Q ∈ D(A)≥n we have
HomD(A)(W,Q) = 0.

Proof. We may as well assume that W i = 0 for i > m and Qi = 0 for i < n. A morphism W −→ Q
in D(A) can be represented by a diagram of morphisms of complexes

T

zztttttt

$$I
IIIII

W Q

where T −→ W is a quasi-isomorphism, so Hi(T ) = 0 for i > m. The canonical morphism
of complexes T≤m −→ T is therefore a quasi-isomorphism. Since it is clear that the composite
T≤m −→ T −→ Q is zero, we deuce that T −→ Q is zero in D(A) and therefore so is W −→ Q.
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Proposition 33. Let X be a complex and n ∈ Z. Then there is a canonical triangle in D(A)
natural in X

X≤n
v // X

q // X≥(n+1) // ΣX≤n

Proof. We have canonical morphisms of complexes v : X≤n −→ X and q : X −→ X≥(n+1) and we
claim there exists a morphism t : X≥(n+1) −→ ΣX≤n of D(A) fitting these into a triangle. If such
a morphism exists it must be unique by Lemma 32 and (TRC,Remark 16). Form the following
exact sequence of complexes

0 // X≤n
v // X

t // Q // 0

and then using Proposition 20 a triangle in D(A)

X≤n
v // X

t // Q // ΣX≤n

There is an induced morphism of complexes a : Q −→ W≥(n+1) unique such that at = q. One
checks that a is a quasi-isomorphism, so that we can replace Q by W≥(n+1) in the above triangle
and obtain the desired result.

There are many questions suggested by these results. Are there abelian categories embedded in
D(A) which are not equivalent to A? In fact an important recent discovery in homological algebra
is that two different abelian categories can have equivalent derived categories. This leads to the
notions of t-structures and hearts which are developed in our notes on Hearts of Triangulated
Categories (HRT).

3.3 Bounded Derived Categories

Proposition 34. Let C be a full, replete, additive subcategory of C(A) which is closed under
translation and mapping cones. Then the full subcategory of K(A) whose objects are the complexes
in C is a fragile triangulated subcategory KC(A) −→ K(A).

Proof. See (TRC,Definition 20) for the definition of a fragile triangulated subcategory. Let C be
a category with the stated properties. When we say C is closed under translation, we mean that
whenever a complex X is in C, so is the translation X[n] for any n ∈ Z (as given in Definition 2).
Let KC(A) denote the full subcategory of K(A) formed by the objects of C. This is certainly an
additive category (although it is not necessarily replete in K(A), by Remark 7), and the additive
automorphism Σ of K(A) restricts to an additive automorphism Σ : KC(A) −→ KC(A). Given
any morphism u : X −→ Y of complexes in C, we have the following candidate triangle in KC(A)

X
u // Y

v // Cu
w // ΣX (25)

We say a candidate triangle in KC(A) is distinguished if it is isomorphic (as a candidate triangle
in KC(A)) to a candidate triangle (25) arising from a morphism u : X −→ Y in C. If a candidate
triangle in KC(A) is distinguished, then it is certainly distinguished as a candidate triangle in
K(A). We must now show that the additive category KC(A), together with the additive auto-
morphism Σ and class of distinguished triangles just defined, is a triangulated category. One does
this by carefully copying the proof of Theorem 12 (observe that since C is closed under mapping
cones and translation it is also closed under mapping cylinders, so we can still use Lemma 11).
The inclusion KC(A) −→ K(A) is now obviously a fragile triangulated subcategory. In particular
we deduce that the distinguished triangles of KC(A) are just the triangles of K(A) whose objects
happen to lie in C.

Corollary 35. The additive categories K+(A),K−(A) and Kb(A) become triangulated categories
in a canonical way, and they are all fragile triangulated subcategories of K(A). Moreover Kb(A)
is a fragile triangulated subcategory of both K+(A) and K−(A).
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Proof. The full subcategories C+, C−, Cb of C(A) formed by the bounded above, bounded below
and bounded complexes respectively are all clearly full, replete, additive subcategories closed under
translation and mapping cones. It follows from Proposition 34 that K+(A),K−(A) and Kb(A)
are all triangulated categories, in which the translation functors are the restriction of Σ on K(A),
and the distinguished triangles are those arising from mapping cones in C(A).

Throughout the remainder of this section whenever we write K∗(A) or D∗(A) we mean that
the given statement holds with ∗ replaced by +,− or b.

Lemma 36. The exact complexes in K∗(A) form a thick triangulated subcategory Z∗, and the
corresponding class of morphisms MorZ∗ is the class of all quasi-isomorphisms in K∗(A).

Proof. As in Corollary 15 one checks that Z∗ is a thick triangulated subcategory of K∗(A), and
the second claim is also easily checked.

Definition 21. Let A be an abelian category. Then we define the portly triangulated categories
D+(A),D−(A) and Db(A) as the verdier quotients K∗(A)/Z∗. We call Db(A) the bounded derived
category of A. There are canonical triangulated functors F : K∗(A) −→ D∗(A).

Lemma 37. There is a canonical commutative diagram of triangulated functors, in which each
functor is a full embedding

D+(A)

$$H
HHHHHHHH

Db(A)

::uuuuuuuuu
//

$$I
IIIIIIII

D(A)

D−(A)

::vvvvvvvvv

All these functors are defined on morphisms by [f, g] 7→ [f, g], and in each case the embedding is
the unique triangulated functor making the following diagram commute

K∗(A) //

��

K(A)

��
D∗(A) // D(A)

Proof. The triangulated category K∗(A) is a fragile triangulated subcategory of K(A) and Z∗ =
Z ∩K∗(A) is a thick triangulated subcategory of K∗(A). To show that the induced triangulated
functor K∗(A)/Z∗ −→ K(A)/Z is a full embedding, it suffices by (TRC,Proposition 70) to check
one of the conditions (a), (b) given there. We treat each case separately:

Case ∗ = + Suppose we are given a quasi-isomorphism of complexes t : Y −→ X with Y bounded
below. Say Y i = 0 for i ≤ N . Then if q : X −→ X≥N is canonical, it is easy to check that
qt is a quasi-isomorphism, so the condition (b) of (TRC,Proposition 70) is satisfied.

Case ∗ = − Suppose we are given a quasi-isomorphism of complexes s : X −→ Y with Y bounded
above. Say Y i = 0 for i ≥ N . Then if v : X≤N −→ X is the inclusion, it is again easy
to check that sv is a quasi-isomorphism, so the condition (a) of (TRC,Proposition 70) is
satisfied.

This shows that there are canonical full embeddings of triangulated categories D+(A) −→ D(A)
and D−(A) −→ D(A). Of courseKb(A) is a fragile triangulated subcategory of bothK+(A),K−(A)
and one checks using the same arguments that there are canonical full embeddings of triangulated
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categories Db(A) −→ D+(A) and Db(A) −→ D−(A) which are the unique triangulated functors
making the following diagrams commute

Kb(A)

��

// K+(A)

��
Db(A) // D+(A)

Kb(A)

��

// K−(A)

��
Db(A) // D−(A)

Composing we have two full triangulated embeddings Db(A) −→ D±(A) −→ D(A). But by the
universal property of the derived category these must agree, and the proof is complete.

Lemma 38. Let A be an abelian category and B a full replete subcategory which is abelian. Then

(i) C(B) is a full, replete subcategory of C(A), which is closed under translation and mapping
cones. If B is an abelian subcategory of A then C(B) is an abelian subcategory of C(A).

(ii) K(B) is a fragile triangulated subcategory of K(A).

(iii) If B is an abelian subcategory of A then there is a canonical triangulated functor D(B) −→
D(A).

Proof. (i), (ii) are easily checked. Observe that as subcategories of K(A) we actually have K(B) =
KB(A) in the notation of Proposition 34, and the induced triangulated structure on KB(A)
agrees with the canonical structure on K(B). (iii) If we denote by ZA,ZB the categories of
exact complexes in K(A),K(B) respectively then it is clear that ZA ∩ K(B) = ZB. So the
triangulated functor K(B) −→ K(A) −→ D(A) certainly sends objects of ZB to zero, and we
obtain a triangulated functor D(B) −→ D(A). In special cases, where we can verify one of the
conditions (a), (b) of (TRC,Proposition 70), this functor is a full embedding. Observe that this
functor is just the one induced by the exact functor B −→ A as in Lemma 23.

Let F : A −→ B be an additive functor between abelian categories. There is a unique
triangulated functor K∗(F ) making the following diagram commute

K(A)
K(F ) // K(B)

K∗(A)

OO

K∗(F )
// K∗(B)

OO

It is clear that K∗(1) = 1 and K∗(GF ) = K∗(G)K∗(F ) for another additive functor G : B −→ C
between abelian categories. If F is exact then there is a unique triangulated functor D∗(F ) :
D∗(A) −→ D∗(B) making the following diagram commute

K∗(A)

��

K∗(F ) // K∗(B)

��
D∗(A)

D∗(F )
// D∗(B)

Clearly D∗(1) = 1 and if G : B −→ C is another exact functor between abelian categories then
D∗(GF ) = D∗(G)D∗(F ).
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3.4 Plump Subcategories

Definition 22. Let A be an abelian category. A full replete subcategory C ⊆ A is called a plump
subcategory if it contains all the zero objects of A and if for any exact sequence in A

X1 −→ X2 −→ X −→ X3 −→ X4

with X1, X2, X3, X4 ∈ C, we have X ∈ C as well. It is clear that C is an abelian subcategory of A.
We denote by KC(A) and DC(A) the full subcategories of K(A),D(A) respectively consisting of
complexes whose cohomology objects all belong to C. These are both triangulated subcategories.
If A has exact coproducts and if C is closed under coproducts in A, then both subcategories are
localising. If X is a complex in A whose cohomology objects all belong to C, then the same is true
for X≤n, X≥n for any n ∈ Z.

3.5 Remarks on Duality

Throughout this section let A be an abelian category. We show that D(A)op = D(Aop), which
allows us to prove statements about derived categories using duality arguments. We define a
covariant isomorphism of categories

F : C(A)op −→ C(Aop)

F (X)j = X−j , ∂jF (X) = −∂−j−1
X

F (ψ)j = ψ−j

There is also an equality of complexes F (Σ−1X) = ΣF (X). Observe that for a complex X and
i ∈ Z there is a canonical isomorphism Hi(X) ∼= H−i(F (X)) in Aop. Let ψ : X −→ Y be a
morphism of complexes in A (that is, a morphism of the category C(A)). There is a canonical
isomorphism in the category C(Aop)

Φ : CF (ψ) −→ ΣF (Cψ)

Φj =
(

0 1
1 0

)
: Y −j−1 ⊕X−j −→ X−j ⊕ Y −j−1

Let v : Y −→ Cψ and k : Σ−1Cψ −→ X be the homotopy cokernel and kernel respectively. We
also have the corresponding morphisms for F (ψ), which we denote V : F (X) −→ CF (ψ) and
K : Σ−1CF (ψ) −→ F (Y ). The following diagram commutes in C(Aop)

F (Cψ)
F (v) // F (Y )

F (ψ) // F (X) V //

F (k) &&MMMMMMMMMMM
CF (ψ)

Φ

��
Σ−1CF (ψ)

Σ−1Φ

KS

K

88ppppppppppp
ΣF (Cψ)

(26)

The isomorphism F extends to an isomorphism of categories K(A)op −→ K(Aop) making the
following diagram commute

C(A)op

��

F // C(Aop)

��
K(A)op

F
// K(Aop)

Let φ : FΣ−1 −→ ΣF be the natural equivalence defined by φX = −1. Using (26) one checks that
the pair (F, φ) is a triangulated functor, and therefore an isomorphism of triangulated categories.
It preserves exact complexes, so it induces a unique triangulated functor making the following
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diagram commute

K(A)op

��

F // K(Aop)

��
D(A)op

F
// D(Aop)

It is clear that F is an isomorphism of triangulated categories, so we have our canonical isomor-
phism of triangulated categories D(A)op ∼= D(Aop).

3.6 Derived Categories of Rings

The philosophy of the derived category is that by taking cohomology one throws away information.
One should deal throughout with the original complexes. However, in this section we will see how
in some cases objects in the derived category are completely determined by their cohomology.
The reader should see (DIM,Definition 3) for the definition of the global dimension of an abelian
category with enough injectives.

Definition 23. Let A be an abelian category with enough injectives. We say that A is semisimple
if gl.dim.A ≤ 0, or equivalently if Ext1(−,−) is zero. We say that A is hereditary if gl.dim.A ≤ 1,
or equivalently if Ext2(−,−) is zero.

Example 1. The global dimension of any field is zero, so any field is semisimple. The global
dimension of any commutative principal ideal domain which is not a field is one, so gl.dim(Z) = 1.
In particular the category of abelian groups is hereditary.

Proposition 39. Let A be a semisimple abelian category. Given a complex X in A let H•(X)
denote the following complex

· · · 0 // Hn−1(X) 0 // Hn(X) 0 // Hn+1(X) 0 // · · ·

There is a canonical isomorphism H•(X) −→ X in D(A) natural in X. If A has exact products
and exact coproducts then the functor X 7→ (Hi(X))i∈Z defines an equivalence D(A) −→

∏
ZA.

Proof. Consider the short exact sequence

0 −→ Im(∂n−1) −→ Ker(∂n) −→ Hn(X) −→ 0

Since A is semisimple this must split. Let gn : Hn(X) −→ Ker(∂n) be such a splitting for each
n ∈ Z. Then we have the following morphism of complexes

· · · 0 // Hn−1(X) 0 //

gn−1

��

Hn(X)

gn

��

0 // Hn+1(X) 0 //

gn+1

��

· · ·

· · · 0 // Ker(∂n−1) 0 //

��

Ker(∂n) 0 //

��

Ker(∂n+1)

��

0 // · · ·

· · · // Xn−1 // Xn // Xn+1 // · · ·

which is clearly a quasi-isomorphism. We claim that this morphism of complexes H•(X) −→ X
is independent (up to homotopy) of the choice of splittings gn. Let hn be another choice of
splittings, so that gn−hn vanishes when composed with Ker(∂n) −→ Hn(X). It therefore factors
through Im(∂n−1) −→ Ker(∂n), and composing this factorisation with an arbitrary splitting of
the epimorphism Xn−1 −→ Im(∂n−1) we have for each n ∈ Z a morphism Σn : Hn(X) −→ Xn−1.
This is clearly a homotopy, as required. One checks that this isomorphism H•(X) −→ X in D(A)
is natural in X, with respect to morphisms of D(A)
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Now suppose that A has exact products and coproducts, so that products and coproducts in
D(A) exist and can be calculated on the level of complexes by Proposition 44 and Remark 18.
Then H•(X) is both a product

∏
i∈Z ciH

i(X) and a coproduct
⊕

i∈Z ciH
i(X) in D(A), so there

is a bijection between morphisms H•(X) −→ H•(Y ) and the abelian group∏
i,j∈Z

Extj−iA (Hi(X),Hj(Y ))

Since A is semisimple this reduces to
∏
n∈Z HomA(Hn(X),Hn(Y )), which proves the last state-

ment.

More generally we have

Proposition 40. Let A be a hereditary abelian category with exact coproducts. For any complex
X in A there is an isomorphism H•(X) −→ X in D(A).

Proof. For each n ∈ Z we have a short exact sequence

0 −→ Ker(∂n−1) −→ Xn−1 −→ Im(∂n−1) −→ 0

whose long exact Ext sequence for Hn(X) in the first variable contains

· · · −→ Ext1A(Hn(X), Xn−1) −→ Ext1A(Hn(X), Im(∂n−1)) −→ Ext2A(Hn(X),Ker(∂n−1)) −→ · · ·

Since Ext2A(−,−) = 0 the map Ext1A(Hn(X), Xn−1) −→ Ext1A(Hn(X), Im(∂n−1)) is surjective.
Using the Yoneda characterisation of Ext groups, we deduce a commutative diagram with exact
rows

0 // Xn−1

��

// En

��

// Hn(X) //

1

��

0

0 // Im(∂n−1) // Ker(∂n) // Hn(X) // 0

where En ∈ A and the left hand square is a pushout. We have a commutative diagram

· · · // 0 // 0 // Hn(X) // 0 // · · ·

· · · // 0 //

OO

��

Xn−1

OO

1

��

// En

��

OO

// 0

��

OO

// · · ·

· · · // Xn−2 // Xn−1 // Xn // Xn+1 // · · ·

in which the vertical morphisms induce an isomorphism on cohomology in degree n. Let Y be
the complex obtained by taking the coproduct of the middle row above over all n ∈ Z. Since
A has exact coproducts the induced morphisms Y −→ X and Y −→ H•(X) are both quasi-
isomorphisms. In D(A) this yields an isomorphism H•(X) −→ X.

Remark 16. Observe that Ab is hereditary with exact coproducts, so in D(Ab) every complex
X is isomorphic to the complex · · · −→ Hn(X) −→ Hn+1(X) −→ · · · with zero differentials.

4 Homotopy Resolutions

The reader is expected to know the contents of our notes on Triangulated Categories (TRC) notes,
up to and including (TRC,Section 4). Throughout this section A denotes an abelian category.

In classical homological algebra the most fundamental concept is that of a resolution of an
object. In the theory of derived categories an analogous role is played by resolutions of complexes.
Resolutions of bounded complexes can be handled in much the same way as resolutions of objects
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(morally this is because of Remark 32), but the situation for unbounded complexes is different.
We proceed by generalising a defining property of injective and projective resolutions to define
hoinjective and hoprojective complexes, first introduced in [Spa88]. It then remains to show that
resolutions by these special complexes exist. In the current section we achieve this goal for several
important special cases, which will allow us to study the general case in Section 7.

Proposition 41. If A is a grothendieck abelian category then so is C(A).

Proof. We already know that C(A) is cocomplete abelian (DF,Lemma 65). Using the fact that
colimits in C(A) can be computed pointwise, one checks easily that direct limits in C(A) are
exact. So it only remains to show that C(A) has a generating family.

Let U be a generator for A, and for i ∈ Z let di(U) denote the following complex

· · · // 0 // U
1 // U // 0 // · · · (27)

where the first U occurs in position i. Given a nonzero morphism of complexes ψ : S −→ T there
is some i ∈ Z with ψi 6= 0. Since U is a generator there is a morphism x : U −→ Si with ψix 6= 0.
Define a morphism of complexes φ : di(U) −→ S by φi = x and φi+1 = ∂iSx. Then ψφ 6= 0, so the
complexes {di(U)}i∈Z form a generating family for C(A).

Remark 17. In fact the proof of Proposition 41 is a little more general than the statement. If A
is an abelian category with generator U then the complexes {di(U)}i∈Z form a generating family
for C(A). If moreover U is projective, then each di(U) is projective, so this is a generating family
of projectives. In particular if A is cocomplete with a projective generator, then C(A) also has a
projective generator.

Lemma 42. If A is cocomplete, then K(A) is a triangulated category with coproducts.

Proof. If A is cocomplete, so is the abelian category C(A) (DF,Lemma 65). One checks that the
canonical functor C(A) −→ K(A) preserves coproducts, which completes the proof.

Lemma 43. If A is complete, then K(A) is a triangulated category with products.

Proof. If A is complete, so is the abelian category C(A) (DF,Lemma 65). One checks that the
canonical functor C(A) −→ K(A) preserves products, which completes the proof.

Proposition 44. If A has exact coproducts, then D(A) is a portly triangulated category with
coproducts, and the functor K(A) −→ D(A) preserves coproducts.

Proof. See (AC,Definition 45) for the definition of an abelian category with exact coproducts. In
particular we require that A be cocomplete, so K(A) is a triangulated category with coproducts.
The triangulated subcategory Z of exact complexes is localising, since an arbitrary coproduct in
C(A) of exact complexes is exact (DF,Lemma 66). The result now follows from (TRC,Lemma
91).

Example 2. In particular if A is a grothendieck abelian category, then A has exact coproducts
(AC,Lemma 57) and consequently D(A) has coproducts. We have also shown that the exact
complexes Z form a thick localising subcategory of K(A).

Remark 18. Using the duality of Section 3.5 we infer from Proposition 44 that if A has exact
products, then D(A) has products and the functor K(A) −→ D(A) preserves products.

Lemma 45. Let F : A −→ B be an additive functor between cocomplete abelian categories. If F
preserves coproducts then so does the induced functor K(F ) : K(A) −→ K(B).

Proof. The induced functor on complexes C(A) −→ C(B) preserves coproducts (DF,Lemma 65),
so this follows immediately from Lemma 42 and its proof.

Lemma 46. Let F : A −→ B be an exact functor between grothendieck abelian categories. If F
preserves coproducts then so does the induced functor D(F ) : D(A) −→ D(B).
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Proof. The induced functor on complexes C(A) −→ C(B) preserves coproducts (DF,Lemma 65)
and by Proposition 44 coproducts in the derived category can be calculated on the level of com-
plexes, so it is clear that D(F ) preserves all coproducts.

The exact complexes Z give a triangulated subcategory of K(A) so we can define the thick
colocalising subcategory Z⊥ of Z-local objects of K(A) and dually the thick localising subcategory
⊥Z of Z-colocal objects (TRC,Definition 37) (TRC,Lemma 90). These classes of objects are so
important that we give them a special name.

Definition 24. The Z-local objects of K(A) are called homotopy injective (or hoinjective) com-
plexes and the Z-colocal objects are called homotopy projective (or hoprojective) complexes. The
hoinjective complexes form a thick colocalising subcategory of K(A) which we denote by K(I),
and the hoprojective complexes form a thick localising subcategory which we denote by K(P ).
That is, arbitrary products of hoinjectives in K(A) are hoinjective, and arbitrary coproducts of
hoprojectives in K(A) are hoprojective.

Remark 19. Just to be perfectly clear, a complex I is hoinjective if and only if every morphism of
complexes X −→ I from an exact complex is null-homotopic. Dually a complex P is hoprojective
if and only if every morphism of complexes P −→ X into an exact complex is null-homotopic.

Remark 20. In the literature there are many different names for the complexes which we call here
hoinjective. In [BN93] they are called “special complexes of injectives” which we find exhausting
to write too often, and in [Spa88] [ATJLSS00] they are called “K-injective”, which is better but
in the author’s opinon looks ugly when he wants to write “with I K-injective”. It appears that
“K-injective” has become the standard notation in the literature.

Proposition 47. Any bounded below complex of injectives in A is hoinjective.

Proof. When we say that I is injective, we mean that In is injective for every n ∈ Z. Suppose
that Ii = 0 for i < N and let f : X −→ I be a morphism of complexes with X exact. We have
to show that f is null-homotopic. To construct a homotopy Σ : 0 −→ f , we begin at the obvious
place

· · · // XN−2

��

// XN−1

��

// XN

fN

��

// XN+1

fN+1

��

// · · ·

· · · // 0 // 0 // IN // IN+1 // · · ·

Since fN∂N−1
X = 0 we can factor fN through Im∂NX and then lift using injectivity of IN to a

morphism ΣN+1 : XN+1 −→ IN with ΣN+1∂NX = fN . One constructs the morphisms Σi for
i > N + 1 in the usual way, defining the necessary homotopy f ' 0.

Proposition 48. Any bounded above complex of projectives in A is hoprojective.

Lemma 49. An object A ∈ A is injective in A (resp. projective) if and only if it is hoinjective
(resp. hoprojective) considered as a complex concentrated in degree zero.

Corollary 50. Suppose we are given complexes X,Y in A with either X a hoprojective complex
or Y a hoinjective complex. Then the canonical morphism of abelian groups

HomK(A)(X,Y ) −→ HomD(A)(X,Y )

is an isomorphism.

Proof. This is a special case of (TRC,Proposition 92).

In fact this property characterises the hoinjective and hoprojective complexes. The next result
also proves that our hoinjective complexes agree with the K-injective complexes of [Spa88] (also
called q-injective in [Lip]).

Proposition 51. Given a complex I the following conditions are equivalent
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(i) I is hoinjective.

(ii) For any complex X the map HomK(A)(X, I) −→ HomD(A)(X, I) is an isomorphism.

(iii) For any diagram of morphisms of complexes

W
s

yyssssss f

%%JJJJJJ

X I

with s a quasi-isomorphism, there is a morphism of complexes g : X −→ I such that gs ' f .

(iv) Every quasi-isomorphism of complexes I −→ Y is a coretraction in K(A).

Proof. The implication (i) ⇒ (ii) is Corollary 50 and (ii) ⇒ (iii), (iii) ⇒ (iv) are trivial. See
(TRC,Proposition 12) for a list of conditions on a morphism in K(A) which are equivalent to being
a coretraction. Suppose that (iv) is satisfied and let f : C −→ I be a morphism of complexes with
C exact. We can extend this to a triangle in K(A)

C −→ I −→ Z −→ ΣC

The morphism I −→ Z is therefore a quasi-isomorphism, which by (iv) is a coretraction and so
by (TRC,Proposition 12) we can conclude that C −→ I is zero, as required.

Lemma 52. A morphism of hoinjective complexes ϕ : I −→ J is a homotopy equivalence if and
only if it is a quasi-isomorphism.

Proposition 53. Given a complex P the following conditions are equivalent

(i) P is hoprojective.

(ii) For any complex X the map HomK(A)(P,X) −→ HomD(A)(P,X) is an isomorphism.

(iii) For any diagram of morphisms of complexes

W

P

f 99ssssss
X

s
eeKKKKKK

with s a quasi-isomorphism, there is a morphism of complexes g : P −→ X such that sg ' f .

(iv) Every quasi-isomorphism of complexes Y −→ P is a retraction in K(A).

Lemma 54. A morphism of hoprojective complexes ϕ : P −→ Q is a homotopy equivalence if and
only if it is a quasi-isomorphism.

Let T be a triangulated category, S ⊆ T a nonempty class of objects. We define 〈S〉 to be
the smallest localising subcategory of T containing the objects of S. That is, it is intersection
of every such subcategory. Given a family of objects {Eλ}λ∈Λ we denote 〈{Eλ}λ〉 by 〈Eλ〉λ∈Λ.
Categories of this form are discussed in our Triangulated Categories Part II (TRC2) notes, but
we do not require any of these results. Similarly one defines the smallest colocalising subcategory
of T containing S.

Lemma 55. Let T be a triangulated category and S a nonempty class of objects of T . An object
B is 〈S〉-local if and only if HomT (ΣjY,B) = 0 for every Y ∈ S and j ∈ Z.

Proof. The condition is clearly necessary. Suppose now thatHom(ΣjY,B) = 0 for every j ∈ Z and
Y ∈ S. Denote by S the full subcategory of T whose objects X are such that Hom(ΣjX,B) = 0
for every j ∈ Z. Clearly S is closed under Σ−1 and an argument involving long exact sequences
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shows that it is also closed under mapping cones. It is therefore a triangulated subcategory of T .
If we are given a nonempty family of objects {Xi}i∈I of S and a coproduct

⊕
i∈I Xi in T then

Hom

(
Σj
⊕
i∈I

Xi, B

)
∼=
∏
i∈I

Hom(ΣjXi, B) = 0

so S is localising. Since it contains S we must have 〈S〉 ⊆ S which completes the proof.

Lemma 56. Let T be a triangulated category and S a nonempty class of objects of T . Let L
be the smallest colocalising subcategory of T containing the objects of S. Then an object B is
L-colocal if and only if HomT (B,ΣjY ) = 0 for every Y ∈ S and j ∈ Z.

Proposition 57. Let A be an abelian category. For any object A ∈ A and complex X in A there
is a canonical morphism of abelian groups natural in both variables

ζ : HomK(A)(ci(A), X) −→ HomA(A,Hi(X))

which is an isomorphism if A is projective. Dually there is a canonical morphism of abelian groups
natural in both variables

ω : HomK(A)(X, ci(A)) −→ HomA(Hi(X), A)

which is an isomorphism if A is injective.

Proof. We have an exact sequence of abelian groups

0 // HomA(A, Im∂i−1
X ) // HomA(A,Ker∂iX) α // HomA(A,Hi(X)) (28)

Therefore the isomorphism of Lemma 31 sends null-homotopic morphisms into the kernel of α.
We deduce a unique morphism of abelian groups ζ making the following diagram commute

HomC(A)(ci(A), X)

��

+3 HomA(A,Ker∂iX)

α

��
HomK(A)(ci(A), X)

ζ
// HomA(A,Hi(X))

(29)

which is clearly natural in A and X. If A is projective then the last morphism of (28) is an
epimorphism, and moreover the image of the first morphism is precisely the set of morphisms A −→
Ker∂iX factoring through the morphism Xi−1 −→ Ker∂iX . It follows that ζ is an isomorphism,
as required.

For the second statement, consider the following commutative diagram containing the second
isomorphism of Lemma 31

HomC(A)(X, ci(A))

��

+3 HomA(Coker∂i−1
X , A)

��
HomK(A)(X, ci(A))

ω
// HomA(Hi(X), A)

(30)

where we have an induced morphism ω because the right hand morphism sends the image of
null-homotopic morphisms to zero. This morphism is clearly natural in A and X. If A is injective
then we have an exact sequence

HomA(Ker∂i+1
X , A) −→ HomA(Coker∂i−1

X , A) −→ HomA(Hi(X), A) −→ 0

and an epimorphism HomA(Xi+1, A) −→ HomA(Ker∂i+1
X , A), so the right hand morphism in

(30) is an epimorphism whose kernel is the image of the top morphism. We deduce that ω is an
isomorphism, as claimed.

34



Remark 21. If P is projective then ci(P ) is hoprojective, so we deduce a canonical isomorphism
of abelian groups natural in both variables HomD(A)(ci(P ), X) −→ HomA(P,Hi(X)). Dually if I
injective then we have a canonical natural isomorphism HomD(A)(X, ci(I)) −→ HomA(Hi(X), I).

Example 3. Let R be a ring (not necessarily commutative) and set A = ModR. It follows from
Proposition 57 that for every i ∈ Z and complex X of R-modules there is a canonical isomorphism
of abelian groups HomD(R)(ci(R), X) −→ Hi(X) natural in X.

Lemma 58. Let A be an abelian category with exact coproducts. If an object A is compact in A,
then it is also compact in K(A).

Proof. If a complex is compact in C(A) then it is also compact inK(A) (providedA is cocomplete),
so it suffices to show that A is compact in C(A). Then by Lemma 31 for any family of complexes
{Xi}i∈I we have

HomC(A)(A,⊕iXi) ∼= HomA(A,⊕iKer∂0
i )

∼=
⊕
i

HomA(A,Ker∂0
i )

∼=
⊕
i

HomC(A)(A,Xi)

since by hypothesis coproducts preserve kernels. This shows that A is compact as a complex, as
claimed.

Lemma 59. Let A be an abelian category with generating family {Uλ}λ∈Λ and let L = 〈Uλ〉λ∈Λ

be the smallest localising subcategory of K(A) containing these generators. Then L⊥ ⊆ Z, with
equality if all the Uλ are projective.

Proof. We consider each Uλ as a complex in degree zero in the usual way. Let F be a complex
in A that belongs to L⊥. By Lemma 31 for any i ∈ Z every morphism Uλ −→ Ker∂iF factors
through F i−1. That is, F is exact and therefore belongs to Z. Now assume that all the Uλ are
projective and let X be an exact complex. It is easy to see that every morphism Uλ −→ Ker∂iX
must factor through Xi−1, so HomK(A)(ci(Uλ), X) = 0. Since ci(Uλ) = Σ−iUλ it follows from
Lemma 55 that X ∈ L⊥, as required.

Lemma 60. Let A be an abelian category with cogenerating family {Vλ}λ∈Λ and let L be the
smallest colocalising subcategory of K(A) containing these cogenerators. Then ⊥L ⊆ Z, with
equality if all the Vλ are injective.

Definition 25. Let A be an abelian category and X a complex in A. A homotopy projective
(or hoprojective) resolution of X is morphism of complexes ϑ : P −→ X with P a hoprojective
complex, which fits into a triangle in K(A)

P −→ X −→ Z −→ ΣP

with Z exact. Equivalently, ϑ is a quasi-isomorphism. A homotopy injective (or hoinjective)
resolution of X is a morphism of complexes ρ : X −→ I with I a hoinjective complex, which fits
into a triangle in K(A)

Z −→ X −→ I −→ ΣZ

with Z exact. Equivalently, ρ is a quasi-isomorphism.

Definition 26. Let A be an abelian category. If every complex in A has a hoprojective resolution
then we say that A has enough hoprojectives. If every complex in A has a hoinjective resolution
then we say that A has enough hoinjectives.

Remark 22. Let A be an abelian category and X a complex in A. It follows from Corollary 50
that a hoprojective resolution exists for X if and only if X is isomorphic in D(A) to an object of
K(P ). Similarly a hoinjective resolution exists for X if and only if X is isomorphic in D(A) to an
object of K(I).
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Example 4. The concept of a hoprojective resolution of a complex is an elegant generalisation
of the usual projective resolution of an object. Let X be an object of our abelian category A and
suppose we have a projective resolution

· · · −→ P−2 −→ P−1 −→ P0 −→ X −→ 0

which to be precise consists of an acyclic (that is, exact at i < 0) projective complex P with
P i = 0 for i > 0, and a morphism j : P0 −→ X making the above sequence exact in A. Another
way of encapsulating this condition is to say that j defines a quasi-isomorphism from P to the
complex X concentrated in degree zero.

Lemma 61. Let A be an abelian category with enough hoinjectives or hoprojectives. Then the
portly triangulated category D(A) has small morphism conglomerates.

Proof. For definiteness assume that A has enough hoinjectives. Given complexes X,Y in A, let
ν : Y −→ I be a hoinjective resolution of Y . Then we have by Corollary 50 a bijection

HomD(A)(X,Y ) ∼= HomD(A)(X, I) ∼= HomK(A)(X, I)

and this latter conglomerate is certainly small, completing the proof.

It is standard that a functor between abelian categories which has an exact left adjoint preserves
injectives. In the same way, we show that such a functor also preserves hoinjectives.

Lemma 62. Let F : A −→ B be an additive functor between abelian categories that has an exact
left adjoint. Then K(F ) : K(A) −→ K(B) preserves hoinjectives.

Proof. Let G be an exact left adjoint of F . By 25 the functor K(G) is left adjoint to K(F ), so for
an exact complex Z in B and hoinjective complex I in A we have

HomK(B)(Z,FI) ∼= HomK(A)(GZ, I) = 0

since G is exact. This proves that FI is hoinjective, as required.

4.1 Homotopy Limits and Colimits

It is common in homological algebra to prove a statement by giving a proof for finite subobjects,
and then passing to the direct limit. The same idea is useful in the derived category, where we
give a proof for bounded complexes and then pass to various direct limits to prove the result for
unbounded complexes. Realising this intuitive idea on the level of direct limits of complexes leads
to unnecessary technical complications [Spa88], and it became clear from the work of Bökstedt
and Neeman [BN93] that the correct tool is the homotopy colimit. This is analogous to how the
homotopy kernel and cokernel replace the ordinary kernel and cokernel. However, there is still
something to be learnt from the interplay between the homotopy colimit and ordinary direct limit.

To motivate the definition of the homotopy colimit, we give a construction of the usual direct
limit as a cokernel. Then by replacing the cokernel by a homotopy cokernel, we will obtain the
homotopy colimit.

Remark 23. The set N = {0, 1, 2, . . .} is a directed set in the canonical way (with minimum 0).
Let A be a cocomplete abelian category and suppose we are given a direct system {Gn, µnm}n∈N
over this directed set. This is just a sequence of objects and morphisms in A (writing µn for
µn(n+1))

G0
µ0 // G1

µ1 // G2
µ2 // G3

// · · · (31)

Let ν :
⊕

n∈N Gn −→
⊕

n∈N Gn be the morphism induced out of the first coproduct by the
morphisms µn : Gn −→ Gn+1. That is, νun = un+1µn where un is the injection of Gn into the
coproduct. Given a cokernel

⊕
n∈N Gn −→ C of the morphism 1−ν it is clear that the composites

Gn −→
⊕

n∈N Gn −→ C are a colimit for direct system {Gn, µnm}n∈N.
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Lemma 63. Let A be a cocomplete abelian category and suppose we have a sequence (31). Then

(i) If A is grothendieck abelian then 1− ν is a monomorphism.

(ii) If every µn is a coretraction then 1− ν is a coretraction.

(iii) If (31) is eventually constant, then 1− ν is a coretraction.

Proof. (i) In any grothendieck abelian category the canonical morphism
⊕

i∈I Xi −→
∏
i∈I Xi

is a monomorphism (see Mitchell III Corollary 1.3). Suppose we are given the direct system
{Gn, µnm}n∈N and a morphism α : Y −→

⊕
n∈N Gn with (1 − ν)α = 0. Denote by un, pn the

injections and projections for the coproduct
⊕

n∈N Gn. It suffices to show that the morphism
αn = pnα is zero for every n ≥ 0. But from α = να we deduce that αn = pnνα for every n ≥ 0.
Since

pnνα =

{
µn−1αn−1 n > 0
0 n = 0

we have α0 = 0 and αn = µn−1αn−1 for n > 0. This implies αn = 0 for n > 0, as required. (ii) is
straightforward to check. (iii) When we say that (31) is eventually constant, we mean that there
exists N ≥ 0 such that µj is an isomorphism for all j ≥ N . We need to construct a morphism κ
with components κn : Gn −→ ⊕n∈NGn satisfying the equations

κn − κn+1µn = un n ≥ 0

First set κN = uN and define the morphisms κN−1, κN−2, . . . , κ0 by κj = uj +κj+1µj . For j > N
we define recursively κj = (κj−1 − uj−1)µ−1

j−1. It is now clear that κ(1− ν) = 1 as required.
More generally if (31) is an arbitrary coproduct of sequences for which individually the mor-

phism 1 − ν is a coretraction, the morphism 1 − ν for the coproduct sequence is also a coretrac-
tion.

Now we upgrade these statements to complexes. First we introduce some notation.

Definition 27. Let A be an abelian category and f : X −→ Y a morphism of complexes. We say
that f is a fibration or a retraction in each degree if f i : Xi −→ Y i is a retraction in A for every
i ∈ Z. Dually we say that f is a cofibration or a coretraction in each degree if f i : Xi −→ Y i

is a coretraction for every i ∈ Z. Clearly a fibration is an epimorphism and a cofibration is a
monomorphism.

Definition 28. Let A be a cocomplete abelian category, and suppose we have a sequence of
morphisms of complexes in A

G0
µ0 // G1

µ1 // G2
µ2 // G3

// · · · (32)

Then C(A) is a cocomplete abelian category, so as in Remark 23 we can define a morphism ν :⊕
n∈N Gn −→

⊕
n∈N Gn. The homotopy colimit of (32) is the mapping cone

⊕
n∈N Gn −→ C1−ν ,

and we denote the object C1−ν by holim−−−→Gn. It follows that we have a triangle in K(A)

⊕
n∈N Gn

1−ν //
⊕

n∈N Gn // holim−−−→Gn // Σ
⊕

n∈N Gn

so that holim−−−→Gn is a homotopy colimit in the more general sense of (TRC,Definition 34). Given
a morphism of direct systems of complexes

G0

ψ0

��

// G1
//

ψ1

��

// G2

ψ2

��

// G3
//

ψ3

��

· · ·

H0
// H1

// H2
// H3

// · · ·
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We have a commutative diagram of complexes⊕
n∈N Gn

⊕ψn

��

1−ν //
⊕

n∈N Gn

⊕ψn

��

// holim−−−→Gn

holim−−−→ψn

��⊕
n∈N Hn

1−ν
//
⊕

n∈N Hn v
// holim−−−→Hn

Since the composite v◦⊕ψn◦(1−ν) is canonically homotopic to zero, there is a canonical morphism
holim−−−→ψn making the diagram commute.

Remark 24. Suppose we are in the situation of Definition 28. The canonical morphism of
complexes

⊕
n∈N Gn −→ lim−→Gn composes with 1 − ν to give zero, so from the basic property of

the homotopy cokernel we deduce a canonical morphism of complexes f : holim−−−→Gn −→ lim−→Gn
making the following diagram commute⊕

n∈N Gn //

&&LLLLLLLLLL
holim−−−→Gn

f

��
lim−→Gn

As we will show in a moment, 1−ν is often a monomorphism. In this case it follows from Remark
6 that f is a quasi-isomorphism.

Remark 25. We have now defined the canonical hocolimit of a sequence of complexes. One defines
hocolimits in an arbitrary triangulated category analogously (TRC,Section 3) and our canonical
hocolimit is a hocolimit inK(A) in this broader sense. In many applications an arbitrary hocolimit
will do, but sometimes (for example in Remark 24) the canonical one is necessary. Hocolimits
only agree in K(A) up to noncanonical isomorphism, so occasionally this distinction is significant.

Lemma 64. Let A be a cocomplete abelian category and suppose we have a sequence of complexes
of the form (32). Then

(i) If A is grothendieck abelian then 1− ν is a monomorphism.

(ii) If every µn is a cofibration then 1−ν is a cofibration, and in particular it is a monomorphism.

(iii) If (32) is eventually constant in each degree, then 1− ν is a cofibration.

Proof. (i) If A is grothendieck abelian then so is C(A) by Proposition 41, so this follows from
Lemma 63 with C(A) in the place of A. (ii) Applying Lemma 63 in each degree we deduce that
1 − ν :

⊕
n∈N Gn −→

⊕
n∈N Gn is a coretraction in each degree. (iii) When we say that (32) is

eventually constant in each degree, we mean that for each i ∈ Z there is an integer Ni ≥ 0 (that
can vary with i) such that µij is an isomorphism for all j ≥ Ni. In that case it follows from Lemma
63(iii) that 1− ν is a coretraction.

Proposition 65. Let A be a cocomplete abelian category, {Gn, µnm}n∈N a direct system in C(A)
and suppose any of the conditions of Lemma 64 are satisfied. Then there is a canonical triangle
in D(A) ⊕

n∈N Gn
1−ν //

⊕
n∈N Gn // lim−→n∈N Gn

// Σ(
⊕

n∈N Gn)

It follows that if L is a localising subcategory of D(A) with Gn ∈ L for every n ≥ 0, then we have
lim−→n∈N Gn ∈ L.

Proof. As before we consider N as a directed set in the obvious way. By hypothesis we have a
short exact sequence in C(A)

0 //
⊕

n∈N Gn
1−ν //

⊕
n∈N Gn // lim−→n∈N Gn

// 0
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By Proposition 20 this leads to a triangle in D(A) of the required form. For what we mean
by a localising subcategory of D(A) (which is after all only a portly triangulated category) see
(TRC,Section 7). By Proposition 44 the functor C(A) −→ D(A) preserves coproducts, so we can
use the above triangle and the fact that L is localising to conclude that lim−→n∈N Gn ∈ L.

Next we study the dual notion of a homotopy limit. As before, we motivate it by giving an
alternative construction of the usual inverse limit and replacing kernels by homotopy kernels.

Remark 26. The set Nop = {0, 1, 2, . . .} is an inverse directed set in the canonical way (with
maximum 0). Let A be a complete abelian category and suppose we are given an inverse system
{Pn, µnm}n∈Nop over this inverse directed set. This is just a sequence of objects and morphisms
in A (writing µn for µn(n−1))

· · · // P3
µ3 // P2

µ2 // P1
µ1 // P0 (33)

Let ν :
∏
n∈N Pn −→

∏
n∈N Pn be the morphism induced into the second product by the morphisms

µn+1 : Pn+1 −→ Pn. That is, pnν = µn+1pn+1 where pn is the projection onto Pn out of the
product. Given a kernel K −→

∏
n∈N Pn of the morphism 1 − ν it is clear that the composites

K −→
∏
n∈N Pn −→ Pn are a limit for the inverse system {Pn, µnm}n∈N.

Lemma 66. Let A be a complete abelian category and suppose we have a sequence (33). Then

(i) If A has a family of projective generators and µn is an epimorphism for all sufficiently large
n, then 1− ν is an epimorphism.

(ii) If every µn is a retraction then 1− ν is a retraction.

Proof. (i) It suffices to show that every morphism x : U −→
∏
n∈N Pn factors through 1 − ν, for

every object U of the family of projective generators. Let such a morphism x be given, and write
xn for pnx. We have to solve recursively the following equations for the unknowns ai : U −→ Pi

a0 − µ1a1 = x0

a1 − µ2a2 = x1

a2 − µ3a3 = x2

...

Suppose for the moment that every µn is an epimorphism. We begin by setting a0 = 0 and
choosing a morphism a1 : U −→ P1 with µ1a1 = −x0. Then choose a morphism a2 : U −→ P2

with µ2a2 = a1 − x1 and so on. Using a simple Zorn’s Lemma argument, it is clear that we can
construct the morphisms ai satisfying all of these equations. Together these induce a morphism
a : U −→

∏
n∈N Pn with (1− ν)a = x, as required.

Now we proceed to the general case. Let N ≥ 1 be such that µn is an epimorphism for all
n ≥ N . Writing a morphism x : U −→

∏
n∈N Pn as a matrix of its components, it is clear that

(1− ν)



µ1µ2 · · ·µkxk
µ2 · · ·µkxk

...
µkxk
xk
0
...


=



0
0
...
0
xk
0
...


so any matrices with single nonzero entries are in the image of 1−ν. We can therefore individually
kill off a finite number of initial terms of any given matrix, and reduce to showing that the high
order terms are in the image: this is possible because for large n, the µn are epimorphisms, so we
can use the recursive construction above.

(ii) The argument is much the same if each µn is a retraction.
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Now we upgrade these statements to complexes.

Definition 29. Let A be a complete abelian category, and suppose we have a sequence of mor-
phisms of complexes in A

· · · // P3
µ3 // P2

µ2 // P1
µ1 // P0 (34)

Then C(A) is a complete abelian category, so as in Remark 26 we can define a morphism ν :∏
n∈N Pn −→

∏
n∈N Pn. The homotopy limit of (34) is the homotopy kernel of 1 − ν, which we

denote by holim←−−−Pn. We have a triangle in K(A)

holim←−−−Pn //
∏
n∈N Pn

1−ν //
∏
n∈N Pn // Σholim←−−−Pn

Given a morphism of inverse systems of complexes

· · · // P3

ψ3

��

// P2

ψ2

��

// P1

ψ1

��

// P0

ψ0

��
· · · // Q3

// Q2
// Q1

// Q0

We have a commutative diagram of complexes

holim←−−−Pn

holim←−−−ψn

��

k //
∏
n∈N PnQ
ψn

��

1−ν //
∏
n∈N PnQ

ψn

��
holim←−−−Qn //

∏
n∈N Qn 1−ν

//
∏
n∈N Qn

Since the composite (1 − ν) ◦
∏
ψn ◦ k is canonically homotopic to zero, there is a canonical

morphism holim←−−−ψn making the diagram commute.

Remark 27. Suppose we are in the situation of Definition 29. The canonical morphism lim←−Pn −→∏
n∈N Pn composes with 1− ν to give zero, so from the basic property of the homotopy kernel we

deduce a canonical morphism of complexes f : lim←−Pn −→ holim←−−−Pn making the following diagram
commute

holim←−−−Pn //
∏
n∈N Pn

lim←−Pn

f

OO 99rrrrrrrrrr

The morphism 1 − ν is sometimes an epimorphism, in which case it follows from Remark 6 that
f is a quasi-isomorphism.

Remark 28. We have now defined the canonical holimit of a sequence of complexes. One defines
holimits in an arbitrary triangulated category analogously (TRC,Definition 36) and our canonical
holimit is a hocolimit in K(A) in this broader sense.

Lemma 67. Let A be a complete abelian category and suppose we have a sequence of complexes
of the form (34). Then

(i) If A has a projective generator and every µn is an epimorphism, then 1−ν is an epimorphism.

(ii) If every µn is a fibration then 1− ν is a fibration, and in particular it is an epimorphism.

Proof. (i) If A has a projective generator then C(A) has a generating family of projectives, so
this follows from Lemma 66. (ii) Applying Lemma 66 in each degree we deduce that 1 − ν :∏
n∈N Pn −→

∏
n∈N Pn is also a retraction in each degree.
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4.2 Existence of Hoprojective Resolutions

In this section we show that given a class of objects P of an abelian category A with every object
of A a quotient of an element of P, you can construct a resolution of any bounded above complex
by objects of P. Taking hocolimits you obtain a resolution of any complex by a complex belonging
to the smallest localising subcategory of K(A) containing the objects of P.

The most obvious application is with P equal to the projectives, in which case the category of
hoprojectives is localising and contains P, so we will have constructed hoprojective resolutions for
any complex in an abelian category with enough projectives. It will be convenient later to have
developed the material in slightly more generality.

Definition 30. Let A be an abelian category. A class P ⊆ A is said to be smothering if it satisfies
the following conditions:

(i) P is closed under isomorphism and contains all the zero objects.

(ii) Every object X in A admits an epimorphism P −→ X for some P ∈ P.

(iii) If P,Q ∈ P then P ⊕Q ∈ P.

Obviously if A has enough projectives then the class of projective objects is smothering. A class
I ⊆ A is said to be cosmothering if it satisfies (i), (iii) and the condition (ii′) Every object X in
A admits a monomorphism X −→ I for some I ∈ I. If A has enough injectives then the class of
injective objects is cosmothering.

Let A be an abelian category. Given a class of objects T ⊆ A we say that a complex X ∈ C(A)
is a complex in T if Xi ∈ T for all i ∈ Z.

Remark 29. If P is a smothering class then condition (iii) of smothering means that given a
morphism of complexes f : X −→ Y in P the mapping cone Cf is also a complex in P.

Throughout this section A denotes an abelian category. The next technical lemma is useful in
showing that various morphisms we will construct are quasi-isomorphisms.

Lemma 68. Suppose we are given a pullback diagram in A

A′
ϕ′ //

��

B′

��
A ϕ

// B

and an epimorphism ψ : P −→ A′. If K −→ P and Q −→ A are kernels of ϕ′ψ and ϕ respectively,
then the induced morphism K −→ Q is an epimorphism.

Proof. By the embedding theorem (DCAC,Theorem 1) (DCAC,Lemma 2) we can reduce to the
case where A = Ab and A′ the canonical pullback, defined to be the set of all pairs (b, a) ∈ B′×A
mapping to the same element of B. We can also assume K,Q are the canonical kernels. Suppose
we are given a ∈ A with ϕ(a) = 0. Then the pair (0, a) ∈ B′ × A belongs to A′, so we can lift it
to an element b ∈ P with ψ(b) = (0, a). By construction ϕ′ψ(b) = 0 so b ∈ Q. It is clear that the
morphism K −→ Q maps b to a, so the proof is complete.

Next we show that a smothering class yields resolutions, and moreover these resolutions can
be chosen in a functorial way.

Proposition 69. Let P be a smothering class for A. Then

(a) Every bounded above complex X admits a quasi-isomorphism P −→ X with P a bounded
above complex in P.
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(b) If f : X −→ Y is a morphism of bounded above complexes, u : P −→ X a quasi-isomorphism
with P a bounded above complex in P, then there exists a commutative diagram of complexes

P
m //

u

��

Q

v

��
X

f
// Y

(35)

with v : Q −→ Y a quasi-isomorphism and Q a bounded above complex in P.

Proof. (a) Let X be a bounded above complex in A, say Xi = 0 for all i > N . For i > N we
define P i = 0. Choose any epimorphism PN −→ XN with PN ∈ P. Suppose that for some k < N
we have constructed an object P i ∈ P and morphisms si : P i −→ P i+1, P i −→ Xi for every i > k
(we have just done this trivially for k = N − 1). Form the following pullback

T k

��

// Ker(sk+1)

��
Xk // Xk+1

(36)

and choose an epimorphism P k −→ T k with P k ∈ P. Let sk : P k −→ P k+1 be the composition
P k −→ T k −→ Ker(sk+1) −→ P k+1 and define P k −→ Xk in the obvious way. The first few
steps of this construction are outlined in the following diagram

// PN−2

��

sN−2

$$I
IIIIIIII

TN−1

��

// PN−1

��

sN−1

##G
GG

GG
GG

GG

TN //

��

PN

��

sN

  A
AA

AA
AA

A

// XN−2 // XN−1 // XN // 0 // · · ·

We have recursively constructed a bounded above complex P in P together with a morphism of
complexes P −→ X (of course, as with any recursive construction involving non-canonical choices,
we need a small Zorn’s Lemma argument that the reader can easily provide). It remains to show
that P −→ X is a quasi-isomorphism. For k < N the pullback (36) gives rise to a pullback

Im(sk) //

��

Ker(sk+1)

��
Im∂kX

// Ker∂k+1
X

where the horizontal morphisms are monomorphisms. It follows from Lemma 68 that the vertical
morphism on the right is an epimorphism, so by (AC,Lemma 35) the induced morphism on the
cokernels Hk+1(P ) −→ Hk+1(X) must be an isomorphism.

(b) Take the homotopy kernel Cfu[−1] of the composite fu : P −→ X and find a bounded
above complex T in P together with a quasi-isomorphism T −→ Cfu[−1]. Let g be the composite
g : T −→ Cfu[−1] −→ P and m : P −→ Q = Cg the homotopy cokernel of g. We have the

42

file:"AbelianCategories.pdf"


following diagram in K(A) in which the rows are triangles

T

��

g // P

1

��

m // Q

v

��

// ΣT

��
Σ−1Cfu // P

fu
// Y −

// Cfu

which induces a morphism v making the diagram commute. The first two vertical morphisms are
quasi-isomorphisms so we deduce from (TRC,Lemma 71) that v is a quasi-isomorphism as well.
Since it is clear that Q is a bounded above complex in P, the proof is complete. Observe that m
is a coretraction in each degree, and in particular is a monomorphism.

Corollary 70. If A has enough projectives then every bounded above complex in A admits a
quasi-isomorphism from a bounded above complex of projectives. In particular every bounded
above complex has a hoprojective resolution.

We are now ready to prove the existence of hoprojective resolutions for arbitrary complexes.
Given a complex M , the idea is to take hoprojective resolutions for the bounded complexes
M≤n and then take the homotopy colimit to obtain a hoprojective resolution for the complex
M = lim−→n≥0

M≤n.

Proposition 71. Let A be a grothendieck abelian category, P a smothering class for A and 〈P〉
the smallest localising subcategory of K(X) containing every bounded above complex in P. Then
every complex X in A admits a quasi-isomorphism P −→ X with P ∈ 〈P〉.

Proof. By Proposition 69 every bounded above complex admits a quasi-isomorphism from a
bounded above complex in P. Let M be any complex in A and for n ≥ 0 let M≤n denote
the truncated complex of Definition 14. Since this complex is bounded above, we can find a
bounded above complex Pn in P and a quasi-isomorphism ϑn : Pn −→ M≤n. In fact proceeding
inductively and using Proposition 69(b) at each stage we can choose these resolutions in such a
way that we have a commutative diagram of complexes

P0

��

// P1

��

// P2

��

// · · · // Pn

��

// · · ·

M≤0
// M≤1

// M≤2
// · · · // M≤n // · · ·

There is an induced morphism of the homotopy colimits holim−−−→Pn −→ holim−−−→M≤n fitting into a
morphism of triangles in K(A)⊕

n≥0 PnL
n ϑn

��

1−ν //
⊕

n≥0 PnL
n ϑn

��

// holim−−−→Pn //

holim−−−→ϑn

��

Σ
⊕

n≥0 Pn

��⊕
n≥0M≤n 1−ν

//
⊕

n≥0M≤n // holim−−−→M≤n // Σ
⊕

n≥0Mn

(37)

Looking at the long exact cohomology sequence we deduce that holim−−−→ϑn is a quasi-isomorphism.
Since A is grothendieck abelian the canonical morphism of complexes holim−−−→M≤n −→ lim−→M≤n =
M is a quasi-isomorphism. Composing with holim−−−→ϑn yields a quasi-isomorphism of complexes
P = holim−−−→Pn −→M . It is clear that P ∈ 〈P〉, so the proof is complete.

Corollary 72. If A is grothendieck abelian and has enough projectives then every complex in A
has a hoprojective resolution.

Example 5. If we take A to be a category of abelian groups Ab or of modules RMod,ModR
over a ring R then A is grothendieck abelian with enough projectives, so complexes of abelian
groups and modules have hoprojective resolutions.
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4.3 Existence of Hoinjective Resolutions

In Proposition 71 we showed that a grothendieck abelian category admits hoprojective resolutions
for its complexes provided it has enough projectives. The existence of hoinjective resolutions is
a more subtle question, and in this section we only manage to prove it under a rather strong
hypothesis. Throughout this section A denotes an abelian category. As in the previous section,
we develop the preliminary material in the generality of a cosmothering class.

Proposition 73. Let I be a cosmothering class for A. Then

(a) Every bounded below complex X admits a quasi-isomorphism X −→ I with I a bounded
below complex in I.

(b) If f : Y −→ X is a morphism of bounded below complexes, u : X −→ I a quasi-isomorphism
with I a bounded below complex in I, then there exists a commutative diagram of complexes

Y
f //

v

��

X

u

��
J m

// I

with v : Y −→ J a quasi-isomorphism and J a bounded below complex in I.

Proof. (a) The argument is dual to the argument of Proposition 69(a). Let X be a bounded below
complex in A, say Xi = 0 for all i < N . For i < N we define Ii = 0. Choose any monomorphism
XN −→ IN with IN ∈ I. Suppose that for some k > N we have construced an object Ii ∈ I
and morphisms si−1 : Ii−1 −→ Ii, Xi −→ Ii for every i < k (we have just done this trivially for
k = N + 1). Form the following pushout

Xk−1 //

��

Xk

��
Coker(sk−2) // Sk

(38)

and choose a monomorphism Sk −→ Ik with Ik ∈ I. Let sk−1 : Ik−1 −→ Ik be the composition
Ik−1 −→ Coker(sk−2) −→ Sk −→ Ik and define Xk −→ Ik in the obvious way. We have
recursively constructed a bounded below complex I in I together with a morphism of complexes
X −→ I. It remains to show that X −→ I is a quasi-isomorphism. For k > N the pushout (38)
gives rise to a pushout

Coker(∂k−2
X )

��

// Im(∂k−1
X )

��
Coker(sk−2) // Im(sk−1)

where the horizontal morphisms are epimorphisms. The dual of Lemma 68 implies that the
vertical morphism on the left is a monomorphism. By (DF,Lemma 25) the induced morphism on
the kernels is Hk−1(X) −→ Hk−1(I). The dual of (AC,Lemma 35) implies that this morphism is
an isomorphism.

(b) Take the homotopy cokernel Cuf of the composite Y −→ I and find a quasi-isomorphism
Cuf −→ Q with Q a bounded below in I. Denote the composite I −→ Q by g, and take the
homotopy kernel m : J = Cg[−1] −→ I of g. We have the following diagram in K(A) in which
the rows are triangles

Y

v

��

uf // I

1

��

// Cuf

��

// ΣY

Σv

��
Cg[−1]

m
// I g

// Q
−
// Cg
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which induces a morphism v making the diagram commute. From (TRC,Lemma 71) we deduce
that v is a quasi-isomorphism, and it is clear that J is a bounded below complex in I, so the
proof is complete. Observe that the morphism m is actually a retraction in each degree, and is in
particular an epimorphism.

Remark 30. With the notation of Proposition 73(b) suppose that there exists N ∈ Z with
Xi = 0, Ii = 0 for i < N and Y i = 0 for i < N − 1. This is often the case in applications. Going
through the proof we observe that J can be found such that J i = 0 for i < N − 1.

Corollary 74. If A has enough injectives then every bounded below complex in A admits a quasi-
isomorphism into a bounded below complex of injectives. In particular every bounded below complex
has a hoinjective resolution.

We are now ready to prove our first result about the existence of hoinjective resolutions for
arbitrary complexes. We work under unnecessarily restrictive hypothesis (essentially, modules
over a ring) because this is all we need to bootstrap ourselves up in Section 7 to the full generality
of an arbitrary grothendieck abelian category. See [BN93] for a more complete treatment of these
intermediate results.

Given a complex M , the idea is to take hoinjective resolutions for the bounded complexes
M≥n and then take the homotopy limit to obtain a hoinjective resolution for the complex M =
lim←−n≤0

M≥n.

Proposition 75. Let A be an abelian category with exact products and a projective generator, I a
cosmothering class for A and 〈I〉co the smallest colocalising subcategory of K(X) containing every
bounded below complex in I. Then every complex X in A admits a quasi-isomorphism X −→ I
with I ∈ 〈I〉co.

Proof. See (AC,Definition 46) for what we mean by has exact products. By Proposition 73 every
bounded below complex admits a quasi-isomorphism into a bounded below complex in I. Let
M be any complex in A and for n ≤ 0 let M≥n denote the truncated complex of Definition
15. Since this complex is bounded below, we can find a bounded below complex In in I and a
quasi-isomorphism ρn : M≥n −→ In. In fact proceeding inductively and using Proposition 73(b)
at each stage we can choose these resolutions in such a way that we have a commutative diagram
of complexes

· · · // M≥n

��

// · · · // M≥−2

��

// M≥−1

��

// M≥0

��
· · · // In // · · · // I−2

// I−1
// I0

There is an induced morphism of the homotopy limits holim←−−−M≥n −→ holim←−−−In fitting into a
morphism of triangles in K(A)

holim←−−−M≥n

holim←−−−ρn

��

//
∏
n≤0M≥nQ

n ρn

��

1−ν //
∏
n≤0M≥nQ

n ρn

��

// Σholim←−−−M≥n

��
holim←−−−In //

∏
n≤0 In 1−ν

//
∏
n≤0 In // Σholim←−−−In

Looking at the long exact cohomology sequence we deduce that holim←−−−ρn is a quasi-isomorphism
(here we use the fact thatA has exact products to see that arbitrary products of quasi-isomorphisms
are quasi-isomorphisms). By Lemma 67(i) the canonical morphism of complexesM = lim←−M≥n −→
holim←−−−M≥n is a quasi-isomorphism. Composing with holim←−−−ρn yields a quasi-isomorphism of com-
plexes M −→ holim←−−−In. It is clear that holim←−−−In ∈ 〈I〉

co, so the proof is complete.

Corollary 76. If A is an abelian category with exact products, a projective generator and enough
injectives then every complex in A has a hoinjective resolution.
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Remark 31. The reason why the going is harder for hoinjective resolutions (compare the hypoth-
esis on Proposition 71 and Proposition 75) is that hoinjectives are not closed under coproducts in
K(A). If they were, we could replace M≥n by the brutal truncation bM≥n and then replace the
inverse limits by direct limits. See Proposition 92 for more details.

4.4 Remark on Homotopy Limits

In this short section we prove a useful technical lemma from [BN93]. It will not be used until
our notes on Derived Categories of Sheaves (DCOS), so can be safely skipped on a first reading.
Throughout this section let A be an abelian category with a family of projective generators and
exact products. In this case the portly triangulated category D(A) has products by Remark 18.
Suppose we have a sequence of morphisms in D(A)

· · · // X3
µ3 // X2

µ2 // X1
µ1 // X0 (39)

together with a complex X and morphisms X −→ Xi in D(A) compatible with the morphisms of
the sequence. A homotopy limit of this sequence is by definition an object holim←−−−Xi fitting into a
triangle in D(A)

holim←−−−Xi
β //

∏
i∈N Xi

1−ν //
∏
i∈N Xi // Σholim←−−−Xi (40)

where ν is defined by pnν = µn+1pn+1. The morphisms X −→ Xi determine a morphism α :
X −→

∏
i∈N Xi which gives zero when composed with 1 − ν, so we deduce a (noncanonical)

morphism γ : X −→ holim←−−−Xi with βγ = α.

Lemma 77. Suppose that for each n ∈ Z the morphism Hn(X) −→ Hn(Xi) is an isomorphism
for all sufficiently large i ≥ 0. Then γ : X −→ holim←−−−Xi is an isomorphism in D(A).

Proof. We claim that the following sequence is exact for n ∈ Z

0 // Hn(X)
Hn(α) // Hn(

∏
i∈N Xi)

Hn(1−ν) // Hn(
∏
i∈N Xi) // 0 (41)

By assumption A has exact products, so cohomology commutes with products and Hn(α) is a
morphism into the product

∏
i∈N H

n(Xi) with components Hn(X) −→ Hn(Xi). Only finitely
many of these are not isomorphisms, so it is clear that Hn(α) is a monomorphism. To see that
the rest of the sequence is exact, consider the following inverse system in A

· · · −→ Hn(X3) −→ Hn(X2) −→ Hn(X1) −→ Hn(X0) (42)

By assumption this eventually stabilises to Hn(X), so it is clear that the morphisms Hn(X) −→
Hn(Xi) are an inverse limit of this system inA, and therefore thatHn(α) is the kernel ofHn(1−ν).
Since the morphisms of the system (42) are eventually epimorphisms, it follows from Lemma 66
thatHn(1−ν) is an epimorphism (here we use the fact thatA has projective generators). Therefore
(41) is exact as claimed.

From the long exact cohomology sequence of (40), together with the fact that Hn(1− ν) is an
epimorphism, we deduce another short exact sequence

0 // Hn(holim←−−−Xi)
Hn(β) // Hn(

∏
i∈N Xi)

Hn(1−ν) // Hn(
∏
i∈N Xi) // 0

so it is clear that Hn(γ) : Hn(X) −→ Hn(holim←−−−Xi) is an isomorphism for every n ∈ Z. Thus γ
is an isomorphism in D(A), as claimed.

If you take the inverse limit of a sequence which eventually stabilises, then the inverse limit
must be this stable value. There is a similar general statement for homotopy limits and colimits
which follows from the results of [Nee01] §1.7. Using the simple argument of Lemma 77 we can
get something finer: if the cohomology in a certain degree stabilises, then the stable value is the
cohomology of the holimit in that degree.
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Lemma 78. Suppose that for every m ∈ Z the sequence

· · · −→ Hm(X3) −→ Hm(X2) −→ Hm(X1) −→ Hm(X0)

eventually consists entirely of isomorphisms. Then for every m ∈ Z the morphism

Hm(holim←−−−Xi) −→ Hm(Xi)

is an isomorphism for all sufficiently large i ≥ 0.

Proof. Actually we prove something a little more specific. Fix some m ∈ Z and suppose that the
following two sequences stabilise

· · · −→ Hm(X3) −→ Hm(X2) −→ Hm(X1) −→ Hm(X0)

· · · −→ Hm−1(X3) −→ Hm−1(X2) −→ Hm−1(X1) −→ Hm−1(X0)

To be precise, suppose that N ≥ 0 is such that Hm(Xk+1) −→ Hm(Xk) is an isomorphism for
k ≥ N . Then we show Hm(holim←−−−Xi) −→ Hm(Xk) is an isomorphism for k ≥ N . In other words,
we only need the cohomology sequence to stabilise in two degrees in order to deduce something.

In the situation described above, the argument given in the proof of Lemma 77 shows that
Hm−1(1− ν) and Hm(1− ν) are epimorphisms. From the long exact cohomology sequence of the
triangle defining holim←−−−Xi, we infer a short exact sequence

0 // Hm(holim←−−−Xi) //
∏
i∈N H

m(Xi) //
∏
i∈N H

m(Xi) // 0

and therefore a canonical isomorphismHm(holim←−−−Xi) = lim←−H
m(Xi) by Remark 26. But lim←−H

m(Xi)
must be the stable value of the cohomology objects Hm(Xi) for large i ≥ 0, so we deduce that
Hm(holim←−−−Xi) −→ Hm(Xk) is an isomorphism for k ≥ N , as required.

4.5 Building Bounded Complexes

In the previous sections we have begun to describe how to use homotopy colimits and direct limits
to reduce problems to the case of bounded complexes. In this short section we explain how one
can reduce from bounded complexes to single objects.

Remark 32. Let A be an abelian category and let X be a bounded complex of the form

· · · −→ 0 −→ X0 −→ X1 −→ · · · −→ Xn −→ 0 −→ · · ·

where n ≥ 0. Let c1(X0) denote X0 considered as a complex in degree 1, and let S be the complex
obtained from X by replacing X0 by zero. Then the differential ∂0 : c1(X0) −→ S is a morphism
of complexes, as described by the following diagram

· · · // 0

��

// X0

∂0

��

// 0

��

// · · · // 0

��

// 0

��

// · · ·

· · · // 0 // X1

∂1
// X2

∂2
// · · ·

∂n−1
// Xn // 0 // · · ·

It is easy to check that the mapping cone of this morphism is canonically isomorphic to X. That
is, we have a triangle in K(A)

c1(X0) −→ S −→ X −→ c0(X0)

This triangle is very useful, as it expresses X in terms of two strictly smaller bounded complexes.

Lemma 79. Let A be an abelian category, P ⊆ A a class of objects which contains the zero objects
and S a triangulated subcategory of K(A) (or D(A)) containing c(P ) for every P ∈ P. Then S
contains any bounded complex in A whose objects all belong to P.
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Lemma 80. Let A be a grothendieck abelian category and S, T : D(A) −→ Q coproduct preserving
triangulated functors. If ψ : S −→ T is a trinatural transformation with ψA : S(A) −→ T (A) an
isomorphism for every A ∈ A, then ψ is a natural equivalence.

Proof. Let T be the full subcategory of D(A) consisting of the complexes X such that ψX is
an isomorphism. This is a localising subcategory of D(A) (TRC,Remark 30). By assumption it
contains all the objects of A and therefore by Lemma 79 it contains any bounded complex. Any
complex X in A can be writen as a direct limit of bounded complexes by Definition 18, all of
which must belong to T , so it follows from Proposition 65 that X ∈ T as required.

Although Remark 32 is useful, there is another way of decomposing a bounded complex that
is more in keeping with the spirit of the derived category.

Remark 33. Let A be an abelian category and X a complex belonging to D(A)≥n. Then from
Lemma 27 we have a triangle in D(A)

cnH
n(X) −→ X −→ X≥(n+1) −→ ΣcnHn(X)

If X is bounded above, then so is X≥(n+1) and we have once again placed X into a triangle with
two strictly smaller bounded complexes.

We can now prove a “soft” version of the result following Remark 32.

Lemma 81. Let A be an abelian category, P ⊆ A a class of objects containing the zero objects
and closed under isomorphism, and S a triangulated subcategory of D(A) containing c(P ) for
every P ∈ P. Then S contains cohomologically bounded complex in A whose cohomology objects
all belong to P.

Proof. See Definition 13 for what we mean by cohomologically bounded. Observe that any co-
homologically bounded complex is isomorphic in D(A) to a bounded complex. The proof is by
induction on the number n(X) of nonzero cohomology objects of the complex. If n(X) = 1 then
X ∼= ckH

k(X) for some k ∈ Z by Lemma 29, and therefore X ∈ S. Suppose that n(X) > 1 and
that k is such that Hk(X) 6= 0 and Hi(X) = 0 for all i < k. Then we have a triangle

ckH
k(X) −→ X −→ X≥(k+1) −→ ΣckHk(X)

where it is clear that ckHk(X) and X≥(k+1) belong to S by assumption and the inductive hypoth-
esis. Therefore X ∈ S and the proof is complete.

5 Homotopy Direct Limits

In Section 4 we defined the homotopy limit and colimit and gave their basic properties. In this
section we study some more advanced properties needed in applications. We have already observed
the following result

• A localising subcategory L ⊆ D(A) is closed under direct limits indexed by N.

In this section we expand on this in two directions:

(a) In Section 5.1 we prove that a localising subcategory L ⊆ K(A) is closed under a certain
special kind of direct limit indexed by N. It will follow that if L contains a collection of
objects from the abelian category, it contains any bounded above complex formed from these
objects, generalising Lemma 79.

(b) In Section 5.2 we prove following [ATJLSS00] that a localising subcategory L ⊆ D(A) is
closed under arbitrary direct limits, not just those indexed by N. This is the key step in the
proof of existence of hoinjective resolutions given in [ATJLSS00] for a grothendieck abelian
category, which is also the major theorem of these notes.

Although (b) is crucial for the rest of these notes and for our notes on derived functors, the proof
of (a) can be safely skipped on a first reading.
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5.1 Split Direct Limits

We already know that in general there is a morphism of complexes connecting the homotopy colimit
to the usual colimit. Under certain natural conditions this morphism is a quasi-isomorphism, which
tells us that in the derived category the two constructions agree. The main technical result of this
section shows that for a certain common type of direct system the two constructions agree already
in the homotopy category. See Definition 27 for the definition of a fibration and cofibration of
complexes.

The next two results should be compared with Proposition 20 and Lemma 21. The meaning
of this analogy will be clarified in our notes on Stable Derived Categories (SDTC).

Proposition 82. Let A be an abelian category and suppose we have a short exact sequence of
complexes

0 // X
f // Y

g // Z // 0

If this sequence is split exact in each degree there is a canonical morphism z : Z −→ ΣX in K(A)
making the following diagram into a triangle in K(A)

X
f // Y

g // Z
−z // ΣX

Proof. For each n ∈ Z the following sequence is split exact

0 // Xn
fn

// Y n
gn

// Zn // 0

and we can choose splittings an : Y n −→ Xn, bn : Zn −→ Y n in such a way that the tuple
(an, fn, gn, bn) makes Y n into a biproductXn⊕Zn inA. One checks that the morphisms Zn−1 −→
Xn defined by hn = an∂n−1bn−1 together define a morphism of complexes h : Σ−1Z −→ X. With
respect to the above biproduct structure the differential ∂n : Y n −→ Y n+1 has the matrix

∂n =
(
−∂n+1

Σ−1Z 0
hn+1 ∂nX

)
That is, Y is canonically isomorphic as a complex to the mapping cone Ch and there is a triangle
in K(A)

Σ−1Z
h // X

f // Y
g // Z

Shifting we have a triangle in K(A) of the desired form with z = Σh : Z −→ ΣX. It remains to
show that z is canonical, by which we mean that it does not depend on the choice of splittings
(up to homotopy). By a “choice of splittings” we mean a choice of morphism an : Y n −→ Xn

with anfn = 1 for each n ∈ Z. The morphism bn is then uniquely determined by the requirements
gnbn = 1 and fnan + bngn = 1.

Suppose that a′n, b′n is an alternative choice of splittings for each n ∈ Z and define h′n =
a′n∂n−1b′n−1. This is a morphism of complexes h′ : Σ−1Z −→ X and it suffices to show that h, h′

are homotopic. If we define Σn : Zn−1 −→ Xn−1 by Σn = −an−1b′n−1 then

fn(Σn+1∂nΣ−1Z + ∂n−1
X Σn) = ∂n−1

X (bn−1 − b′n−1) + (b′n − bn)∂n−1
Z

where we use the trick of writing fnan = 1 − bngn. Applying this trick several times one checks
that fn(hn − h′n) is equal to the same expression. Since fn is a monomorphism we deduce

hn − h′n = Σn+1∂nΣ−1Z + ∂n−1
X Σn

which is what we needed to show.
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Lemma 83. Let A be an abelian category and suppose we are given a commutative diagram of
complexes with exact rows

0 // X

α

��

f // Y

β

��

g // Z

γ

��

// 0

0 // X ′
f ′
// Y ′

g′
// Z ′ // 0

in which the rows are split exact in each degree. The following diagram commutes in K(A)

X

α

��

f // Y

β

��

g // Z

γ

��

−z // ΣX

Σα

��
X ′

f ′
// Y ′

g′
// Z ′

−z′
// ΣX ′

where z, z′ are the canonical morphisms of Proposition 82.

Proof. Choose splittings an : Y n −→ Xn, bn : Zn −→ Y n and a′n : Y ′n −→ X ′n, b′n : Z ′n −→ Y ′n

and define h, h′ as in the proof of Proposition 82 so that z = Σh, z′ = Σh′. It suffices to show that
the diagram

Σ−1Z

Σ−1γ

��

h // X

α

��
Σ−1Z ′

h′
// X ′

commutes up to homotopy. Define Σn : (Σ−1Z)n −→ X ′n−1 by Σn = −a′n−1βn−1bn−1. One
checks that f ′n(Σn+1∂nΣ−1Z + ∂n−1

X′ Σn) = f ′n(h′nγn−1 − αnhn). Since f ′n is a monomorphism we
deduce that Σ is a homotopy of αh with h′Σ−1γ, as claimed.

The proof of Proposition 82 is independent of the one given in Proposition 20, but there is
something to be gained by understanding it in the context of the original statement for D(A).
This also makes it clear that the two “canonical” morphisms z : Z −→ ΣX agree in D(A).

Remark 34. Let A be an abelian category and suppose we are given a short exact sequence of
complexes

0 // X
u // Y

g // Z // 0 (43)

As in the proof of Proposition 20 we have a canonical quasi-isomorphism of complexes f : Cu −→
Z. We claim that if (43) is split exact in each degree then f is actually already an isomorphism in
K(A) and moreover the canonical morphism z : Z −→ ΣX of Proposition 82 is just the composite

Z
f−1

// Cu
−w // ΣX

in K(A), where w is the canonical morphism of complexes. In particular this shows that if we
map the connecting morphism Z −→ ΣX of Proposition 82 into the derived category, it agrees
there with the connecting morphism of Proposition 20.

Proof. Suppose that (43) is split exact in each degree and choose a specific splitting, with the
notation an, bn, hn as in Proposition 82. Define a morphism

Hn =
(
−hn+1

bn

)
: Zn −→ Cnu = Xn+1 ⊕ Y n

It is straightforward to check that H is a morphism of complexes Z −→ Cu with fH = 1. If we
define morphisms

Σn =
(

0 an

0 0

)
: Xn+1 ⊕ Y n −→ Xn ⊕ Y n−1
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then one checks that 1−Hnfn = ∂n−1Σn+Σn+1∂n. This shows that f is a homotopy equivalence
with inverse H in K(A), as required.

Now we are ready to show that for sequences of cofibrations, the direct limit is also a homotopy
colimit in the homotopy category.

Proposition 84. Let A be a cocomplete abelian category and

X1
µ1 // X2

µ2 // X3
µ3 // · · ·

a sequence of morphisms in C(A) with each µi a cofibration. In K(A) there is an isomorphism
holim−−−→Xi −→ lim−→Xi.

Proof. By definition an arbitrary homotopy colimit holim−−−→Xi in K(A) fits into a triangle with the
following morphism of complexes⊕

i≥1Xi
1−ν //

⊕
i≥1Xi (1− ν)qi = qi − qi+1µi

By Lemma 64 this is a cofibration and we have an exact sequence of complexes split exact in each
degree

0 //
⊕

i≥1Xi
1−ν //

⊕
i≥1Xi // lim−→Xi // 0

From Proposition 65 we can deduce an isomorphism holim−−−→Xi
∼= lim−→Xi in D(A), and we want to

show that such an isomorphism already exists in K(A). This is now an immediate consequence
of Proposition 82.

Proposition 85. Let A be a complete abelian category and

· · · µ3 // X3
µ2 // X2

µ1 // X1

a sequence of morphisms in C(A) with each µi a fibration. In K(A) there is an isomorphism
holim←−−−Xi −→ lim←−Xi.

Proof. By definition an arbitrary homotopy limit holim←−−−Xi in K(A) fits into a triangle with the
following morphism of complexes∏

i≥1Xi
1−ν //

∏
i≥1Xi pn(1− ν) = pn − µnpn+1

By Lemma 67 this is a fibration and we have an exact sequence of complexes split exact in each
degree

0 // lim←−Xi //
∏
i≥1Xi

1−ν //
∏
i≥1Xi // 0

The claim now follows from Proposition 82.

Definition 31. Let A be an abelian category. An inverse system of complexes in A

· · · // X4
µ3 // X3

µ2 // X2
µ1 // X1 (44)

is a split inverse system if every µn is a fibration (in particular an epimorphism). An inverse limit
of this system is called a split inverse limit. Dually, a direct system of complexes

X1
µ1 // X2

µ2 // X3
µ3 // · · · (45)

is a split direct system if every µn is a cofibration (in particular a monomorphism). A direct limit
of this system is called a split direct limit.

If I is a nonempty class of complexes in A closed under isomorphism, then we say that I is
closed under split inverse limits if the limit of every split inverse system whose objects belong to
I, also belongs to I. Dually we define a class closed under split direct limits.
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Remark 35. In this notation, Proposition 84 says that any split direct limit is also a homotopy
colimit, and its dual says that any split inverse limit is a homotopy limit.

Proposition 86. Let A be a cocomplete abelian category and S a localising subcategory of K(A)
or D(A). Then S is closed under split direct limits.

Proof. In both cases we only need S to be closed under countable coproducts. For D(A) the
result is Proposition 65, so let L ⊆ K(A) be a triangulated subcategory closed under countable
coproducts. Suppose we have a split direct system of complexes (45) with every Xi in S. The
homotopy colimit fits into a triangle in K(A)⊕

i≥1Xi //
⊕

i≥1Xi // holim−−−→Xi // Σ
⊕

i≥1Xi

so holim−−−→Xi certainly belongs to S. But by Proposition 84 the usual direct limit lim−→Xi in C(A)
is isomorphic in K(A) to holim−−−→Xi, so it must also belong to S.

Dually, we have

Proposition 87. Let A be a complete abelian category and S a colocalising subcategory of K(A).
Then S is closed under split inverse limits.

Example 6. Let A be an abelian category. Here are some easy consequences of the above results

(a) If A has exact coproducts the exact complexes form a localising subcategory Z of K(A).
Therefore any split direct limit of exact complexes is exact. If on the other hand A has exact
products, Z is a colocalising subcategory and any split inverse limit of exact complexes is
exact. In particular both statements apply when A = Ab is the category of abelian groups.

(b) If A is complete then any split inverse limit of hoinjective complexes is hoinjective.

(c) If A is cocomplete then any split direct limit of hoprojective complexes is hoprojective.

Remark 36. Let A be an abelian category and W a complex in A. Then for arbitrary n ∈ Z we
can write W as the inverse limit of the following split inverse system of the brutal truncations of
Definition 16

· · · −→ bW≤(n+2) −→ bW≤(n+1) −→ bW≤n

which is graphically

...

��

...

��

...

��

...

��

...

��
· · · // Wn−1

1

��

// Wn

1

��

// Wn+1

1

��

// Wn+2

��

// 0 //

��

· · ·

· · · // Wn−1 //

1

��

Wn //

1

��

Wn+1 //

��

0 //

��

0 //

��

· · ·

· · · // Wn−1 // Wn // 0 // 0 // 0 // · · ·

Thus any complex is the split inverse limit of bounded above complexes, whose objects all come
from the original complex. Dually we can write W as the direct limit of the following split direct
system of brutal truncations of Definition 17

bW≥n −→ bW≥(n−1) −→ bW≥(n−2) −→ · · ·
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which is graphically

· · · // 0 //

��

0 //

��

0

��

// Wn

1

��

// Wn+1

1

��

// · · ·

· · · // 0 //

��

0 //

��

Wn−1

1

��

// Wn

1

��

// Wn+1

1

��

// · · ·

· · · // 0 //

��

Wn−2

��

// Wn−1

��

// Wn

��

// Wn+1

��

// · · ·

...
...

...
...

...

Thus any complex is the split direct limit of bounded below complexes, whose objects all come
from the original complex.

We already know that any bounded below complex of injectives is hoinjective, and any bounded
above complex of projectives is hoprojective. These statements now become special cases of much
more general results.

Proposition 88. Let A be a cocomplete abelian category, P ⊆ A a class of objects containing the
zero objects, and S a localising subcategory of K(A) or D(A) containing the objects of P. Then
S contains any bounded above complex in P.

Proof. It is enough to assume S closed under countable coproducts in K(A) or D(A) respectively.
From Lemma 79 we know that S contains any bounded complex in P. Given a bounded above
complex W in P, we can by Remark 36 write W as the split direct limit of bounded complexes in
P. Each such complex belongs to S, which is closed under split direct limits by Proposition 86.
We conclude that W ∈ S, as required.

Proposition 89. Let A be a complete abelian category, I ⊆ A a class of objects containing the
zero objects, and S a colocalising subcategory of K(A) or D(A) containing the objects of I. Then
S contains any bounded below complex in I.
Proof. As above, it is actually enough for S to be closed under countable products in K(A). The
result now follows by duality from Proposition 88.

Combining these two results we have

Corollary 90. Let A be a complete, cocomplete abelian category, H ⊆ A a class of objects
containing the zero objects, and S a localising, colocalising subcategory of K(A) containing the
objects of H. Then S contains any complex in H.

As we observed in Remark 31, the problem with the construction of hoinjective resolutions in
Proposition 75 is that inverse limits and products don’t behave well with cohomology. The way
to fix this is to use brutal truncations to replace inverse limits by direct limits, and Proposition
84 is the technical tool needed to make this transition work.

The last time we tried to construct resolutions on the right was using inverse limits, so when
we constructed resolutions for bounded below complexes in Proposition 73 we were interested in
functoriality going “backwards” (i.e. left on the page). For the proof of the next major result, we
need functoriality going “forwards”, which is what we acquire in the next lemma.

Lemma 91. Let A be an abelian category and I a cosmothering class for A. Suppose we are
given a morphism f : X −→ Y of bounded below complexes and a quasi-isomorphism u : X −→ I
with I a bounded below complex in I. Then there exists a commutative diagram in K(A)

X

u

��

f // Y

v

��
I m

// J
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with v : Y −→ J a quasi-isomorphism and J a bounded below complex in I.

Proof. The idea is to take the homotopy pushout in K(A) and then resolve the “nose” of the
pushout. We have a morphism of complexes α = ( u

−f ) : X −→ Y ⊕ I of which we take the
mapping cone Cα. We have a commutative diagram in K(A)

X

u

��

f // Y

��
I // Cα

(46)

which is by construction a homotopy pushout in the sense of (TRC,Definition 15). Since u is
a quasi-isomorphism, we deduce from (TRC,Lemma 37) that Y −→ Cα is a quasi-isomorphism.
Now Cα is a bounded below complex, so we can by Proposition 73 find a quasi-isomorphism
Cα −→ J with J a bounded below complex in I. Attaching this to the nose of (46) we have the
required commutative diagram in K(A).

Remark 37. With the notation of Proposition 91 that there exists N ∈ Z with Xi = 0, Ii = 0
for i < N and Y i = 0 for i < N − 1. Going through the proof we observe that J can be found
such that J i = 0 for i < N − 1.

Proposition 92. Let A be an abelian category with exact coproducts and I a cosmothering class
that is closed under countable coproducts in A. Then every complex X in A admits a quasi-
isomorphism X −→ I with I a complex in I.

Proof. Let M be any complex in A and for n ≤ 0 let bM≥n be the brutal truncation of Definition
17. Since this complex is bounded below we can find by Proposition 73 a quasi-isomorphism
ρn : bM≥n −→ In with In a bounded below complex in I. In fact proceeding inductively and
using Lemma 91 at each stage we can choose these resolutions in such a way that we have a
commutative diagram in K(A)

bM≥0

��

//
bM≥−1

��

//
bM≥−2

��

// · · · //
bM≥n

��

// · · ·

I0 // I1 // I2 // · · · // In // · · ·

(47)

Take the homotopy colimits of these sequences in K(A). Then there is an induced morphism
holim−−−→bM≥n −→ holim−−−→In fitting into a morphism of triangles in K(A)

⊕
n≤0 bM≥n

⊕nρn

��

1−ν //
⊕

n≤0 bM≥n

⊕nρn

��

// holim−−−→bM≥n

holim−−−→ρn

��

// Σ
⊕

n≤0 bM≥n

��⊕
n≤0 In 1−ν

//
⊕

n≤0 In // holim−−−→In // Σ
⊕

n In

where we construct both homotopy colimits as mapping cones on the level of complexes. Since
A has exact coproducts the morphism holim−−−→ρn is a quasi-isomorphism. The top row of (47) is
a split direct system, with direct limit M = lim−→n≤0 b

M≥n. By Proposition 84 we have a quasi-
isomorphism of complexes g : M −→ holim−−−→bM≥n. Composing with holim−−−→ρn we have finally a
quasi-isomorphism M −→ holim−−−→In. Since I is closed under countable coproducts it is easy to see
that holim−−−→In is a complex in I, which completes the proof.

Corollary 93. Let A be a locally noetherian grothendieck abelian category. Then every complex
X in A admits a quasi-isomorphism X −→ I with I a complex of injectives.
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Proof. Let I be the class of all injective objects in A. This is certainly cosmothering, and it is
closed under coproducts in A by a well-known result. So the conclusion follows from Proposition
92. For a completely different proof of this result using Brown representability, see Krause’s paper
[Kra05].

Corollary 94. Let A be a locally noetherian grothendieck abelian category. Then every hoinjective
complex X in A is a retraction in K(A) of a complex of injectives.

Proof. Let I be a hoinjective complex, and take a quasi-isomorphism I −→ J with J a complex
of injectives. By Proposition 51 this must be a coretraction in K(A).

Example 7. Let X be a quasi-noetherian topological space and I the class of all quasi-flasque
sheaves of abelian groups on X. By (COS,Proposition 23) this is closed under arbitrary coproducts
in Ab(X). Since any injective sheaf of abelian groups is flasque, therefore quasi-flasque, I is a
cosmothering class for Ab(X). Therefore by Proposition 92 every complex X of sheaves of abelian
groups on X admits a quasi-isomorphism X −→ F with F a complex of quasi-flasque sheaves.

Similarly if (X,OX) is a quasi-noetherian ringed space the class I of all quasi-flasque sheaves
of modules is cosmothering and closed under coproducts, so every complex of sheaves of modules
has a resolution by a complex of quasi-flasque sheaves.

5.2 General Direct Limits

We saw in Proposition 65 that localising subcategories of D(A) are closed under a special kind
of direct limit in C(A). In this section we follow the proof of this statement for arbitrary direct
limits given in [ATJLSS00]. Throughout this section A denotes an abelian category.

Definition 32. A bicomplex in A is a collection of objects {Cij}i,j∈Z of A together with mor-
phisms ∂ij1 : Cij −→ C(i+1)j and ∂ij2 : Cij −→ Ci(j+1) for every i, j ∈ Z such that for every
i, j ∈ Z

∂
(i+1)j
1 ∂ij1 = 0, ∂

i(j+1)
2 ∂ij2 = 0, ∂

i(j+1)
1 ∂ij2 = ∂

(i+1)j
2 ∂ij1

In other words we have a two-dimensional grid of objects of A

// C(i−1)(j+1)

OO

// Ci(j+1)

OO

∂
i(j+1)
1 // C(i+1)(j+1) //

OO

// C(i−1)j

OO

// Cij

∂ij
2

OO

∂ij
1

// C(i+1)j

∂
(i+1)j
2

OO

//

// C(i−1)(j−1)

OO

// Ci(j−1)

OO

// C(i+1)(j−1) //

OO

OO OO OO

(48)

which we require to be commutative with each row and column a complex in A. Often we will just
say that C is a bicomplex, and leave the differentials ∂1, ∂2 implicit. A morphism of bicomplexes
ϕ : C −→ D is a collection of morphisms {ϕij : Cij −→ Dij}i,j∈Z such that for every i, j ∈ Z
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every face of the following cube commutes

Di(j+1)
∂

i(j+1)
1 // D(i+1)(j+1)

Ci(j+1)

ϕi(j+1)
99sssssssss ∂

i(j+1)
1 // C(i+1)(j+1)

ϕ(i+1)(j+1)
77ooooooooooo

Dij

∂ij
2

OO

∂ij
1 // D(i+1)j

∂
(i+1)j
2

OO

Cij

∂ij
2

OO

ϕij

99ssssssssss

∂ij
1

// C(i+1)j

∂
(i+1)j
2

OO

ϕ(i+1)j

77ooooooooooo

If we are given another morphism of bicomplexes ψ : D −→ E then it is clear that the morphisms
ψijϕij define a morphism of bicomplexes ψϕ : C −→ E. This defines the preadditive category
C2(A) of bicomplexes in A.

Definition 33. Let A be a cocomplete abelian category and C a bicomplex in A. The totalisation
complex Tot(C) of C is defined as follows. For n ∈ Z we have

Tot(C)n =
⊕
i+j=n

Cij

Let uij : Cij −→ Tot(C)i+j be the injection into the coproduct. Then for n ∈ Z we define a
morphism ∂n : Tot(C)n −→ Tot(C)n+1 on components by

∂nuij = u(i+1)j∂
ij
1 + (−1)iui(j+1)∂

ij
2

for any i, j ∈ Z with i+j = n. One checks easily that Tot(C) is indeed a complex in A. Intuitively
we are taking the direct sums along the diagonals in (48) and the differential does the obvious
thing: at every object of the (n+1)th diagonal there are two incoming morphisms from objects of
the nth diagonal, and at that point in our sequence we insert the sum of these two terms (modulo
a sign).

Given a morphism of bicomplexes ϕ : C −→ D we define a morphism of complexes Tot(ϕ) :
Tot(C) −→ Tot(D) by Tot(ϕ)n =

⊕
i+j=n ϕ

ij . This makes the totalisation complex into an
additive functor Tot(−) : C2(A) −→ C(A) from the category of bicomplexes in A to the category
C(A).

Definition 34. Let A be an abelian category and D a complex in A. We define a bicomplex
Grid(D) by Grid(D)ij = Di+j and ∂ij1 = ∂ij2 = ∂i+jD . If ϕ : D −→ E is a morphism of complexes
then Grid(ϕ) : Grid(D) −→ Grid(E) defined by Grid(ϕ)ij = ϕi+j is a morphism of bicomplexes.
This defines a functor Grid(−) : C(A) −→ C2(A).

Let A be a cocomplete abelian category, so that C(A) is also cocomplete (DF,Lemma 65). Let
Γ be a directed set (AC,Definition 24) and let {Gs, µst | s ∈ Γ} be a direct system over Γ in C(A).
Given k ≥ 0 let W k be the set of strictly ascending chains in Γ of length k. That is, all chains of
the form s0 < s1 < · · · < sk. Our convention is that a chain of length zero is just an element of
Γ, so that W 0 = Γ. Given a strictly ascending chain w ∈W k we write wi for the element of Γ in
the ith position, so that w is w0 < · · · < wk. With this data, we construct a bicomplex B(G) as
follows. For j, k ∈ Z define

B(G)kj =

{
0 if k > 0⊕

w∈W−k Gjw0
if k ≤ 0
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If we write ujw : Gjw0
−→ B(G)kj for the injection, then for k < 0 and w ∈ W−k the horizontal

differential ∂kj1 : B(G)kj −→ B(G)(k+1)j is defined by

∂kj1 ujw = ujw1<···<w−k
µjw0w1

+
−k∑
i=1

(−1)iujw0<···<ŵi<···<w−k

where w0 < · · · < ŵi < · · · < w−k denotes w with the ith position deleted. The vertical differential
∂kj2 : B(G)kj −→ B(G)k(j+1) is defined for k ≤ 0 by ∂jk2 =

⊕
w∈W−k ∂jw0

where ∂s is the differential
of the complex Gs for every s ∈ Γ. One checks that this defines a bicomplex in C(A).

Now let Λ ⊆ Γ be a nonempty subset that is a directed set with the induced relation. Then
{Gp, µpq}p∈Λ is direct system over Λ in A, which we denote by GΛ. Given k ≥ 0 let W k

Λ denote
the set of strictly ascending chains in Λ of length k. Then W k

Λ ⊆ W k so we have a canonical
morphism of bicomplexes ρ : B(GΛ) −→ B(G).

Remark 38. If A is grothendieck abelian and U a generator for A, then a U -element x of Gjw
(that is, a morphism x : U −→ Gjw) can be denoted by (x;w) or (x;w0 < w1 < · · · < wk). With
this notation the horizontal differential takes the following form

∂kj1 (x;w0 < w1 < · · · < w−k) = (µw0w1(x);w1 < · · · < w−k)

+
−k∑
i=1

((−1)ix;w0 < · · · < ŵi < · · · < w−k)

Definition 35. Let A be a cocomplete abelian category and {Gs, µst}s∈Γ a direct system in C(A).
The homotopy direct limit of this system is the totalisation of the bicomplex B(G), which we denote
by hodlim−−−−→s∈ΓGs. For each s ∈ Γ there is a canonical morphism of complexes Gs −→ hodlim−−−−→s∈ΓGs
which for n ∈ Z is given by the following composite

Gns −→
⊕
s∈Γ

Gns = B(G)0n −→
⊕
k+j=n

B(G)kj = Tot(B(G))n

Remark 39. We use the notation hodlim−−−−→ rather than holim−−−→ in order to distinguish the object
we have just constructed from the homotopy colimits defined in (TRC,Section 3). The only real
difference is that our hodlim−−−−→ is constructed on the level of complexes, instead of in a triangulated
category where colimits are less well behaved.

Lemma 95. Let A be a cocomplete abelian category, F a finite directed set with maximum m and
let {Gs, µst}s∈F be a direct system in C(A). The canonical morphism of complexes ψ : Gm −→
hodlim−−−−→s∈FGs is a homotopy equivalence.

Proof. For each n ∈ Z the morphisms µnsm : Gns −→ Gnm induce a morphism
⊕

s∈ΓG
n
s −→ Gnm.

Compose with the projection Tot(B(G))n =
⊕

k+j=nB(G)kj −→ B(G)0n and we have defined a
morphism of complexes φ : hodlim−−−−→s∈FGs −→ Gm. It is clear that φψ = 1.

Given integers j + k = n with k ≤ 0 and w ∈ W−k we denote by vk,j,w the composite of
the wth injection Gjw0

−→
⊕

w∈W−k Gjw0
with the (k, j)th injection B(G)kj −→ Tot(B(G))n.

The morphisms {vk,j,w}j+k=n,k≤0,w∈W−k are obviously a coproduct in A. We define a morphism
Σn : Tot(B(G))n −→ Tot(B(G))n−1 on components by

Σnvk,j,w =

{
0 if w−k = m

(−1)kvk−1,j,w0<···<w−k<m if w−k 6= m

We claim that Σ is a homotopy 1 −→ ψφ. The proof is straightforward but very tedious, with
ample opportunity for error, so it seems prudent to include the details. For k ≤ 0, k + j = n,w ∈
W−k we set Λk,j,w = (∂n−1Σn + Σn+1∂n)vk,j,w to simply the notation. Then

Λk,j,w = ∂n−1Σnvk,j,w + Σn+1u(k+1)j∂
kj
1 ujw + (−1)kΣn+1uk(j+1)∂

kj
2 ujw (49)

We now divide into cases
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• Case k = 0. We have j = n and w is the sequence with one element w0. The differential ∂kj1

vanishes, so we have Λk,j,w = ∂n−1Σnvk,j,w + Σn+1uk(j+1)∂
kj
2 ujw. Using the definition of Σ

and ∂2 we obtain

Λk,j,w =

{
0 if w0 = m

∂n−1v−1,n,w0<m + v−1,j+1,w0<m∂
n
w0

if w0 6= m

Using the definition of ∂n−1 we calculate

∂n−1v−1,n,w0<m = u0n(unmµ
n
w0m − u

n
w0

)− v−1,j+1,w0<m∂
n
w0

So finally

Λk,j,w =

{
0 if w0 = m

u0n(unmµ
n
w0m − u

n
w0

) if w0 6= m

• Case k < 0 Expanding (49) using the definition of ∂1 and ∂2 we obtain

Λk,j,w = ∂n−1Σnvk,j,w0<···<w−k
+ Σn+1vk+1,j,w1<···<w−k

µjw0w1

+
−k−1∑
i=1

(−1)iΣn+1vk+1,j,w0<···<ŵi<···<w−k

+ (−1)kΣn+1vk+1,j,w0<···<w−k−1 + (−1)kΣn+1vk,j+1,w0<···<w−k
∂jw0

In the case where w−k = m all of these terms vanish except for the second last, which is
equal to −vk,j,w. Now assume that w−k 6= m and apply the definition of Σ to each term.
Expanding using the definitions of ∂1, ∂2 and simplyfing, we find that Λk,j,w = −vk,j,w once
again.

One checks more easily that (ψφ− 1)nvk,j,w agrees with Λk,j,w for all k ≤ 0, k+ j = n,w ∈W−k,
by again splitting into the cases k = 0 and k < 0. We have now shown that for n ∈ Z

ψnφn − 1 = ∂n−1Σn + Σn+1∂n

so Σ is a homotopy 1 −→ ψφ and the proof is complete.

Theorem 96. Let A be an abelian category with exact direct limits, and let {Gs, µst}s∈Γ be a
direct system in C(A). Then there is a canonical quasi-isomorphism hodlim−−−−→s∈ΓGs −→ lim−→s∈Γ

Gs.

Proof. Denote by M(Γ) the set of all finite subsets of Γ with maximum. This is a directed set
ordered by inclusion. If F ∈ M(Γ) then we denote by GF the direct system {Gp, µpq}p∈F . If
F ⊆ H then there is a canonical morphism of bicomplexes B(GF ) −→ B(GH) and therefore also
of the totalisations Tot(B(GF )) −→ Tot(B(GH)). This defines a direct system in C(A) over the
directed set M(Γ). The canonical morphisms Tot(B(GF )) −→ Tot(B(G)) are a cocone on this
system, and we claim they are actually a colimit in C(A).

Suppose that for every F ∈M(Γ) we are given a morphism of complexes φF : Tot(B(GF )) −→
Q which is compatible with our direct system. Fix an integer n ∈ Z. Then for k ≤ 0, j ∈ Z with
k + j = n and w ∈W−k we can choose F ∈M(Γ) containing all the elements of w, and consider
the morphism

Gjw0
// B(GF )kj // Tot(B(GF ))n

φn
F // Qn

This morphism does not depend on the choice of F , and taken together these morphisms induce
a morphism B(G)kj −→ Qn. As k, j range over all integers with k ≤ 0 and k + j = n we induce
another morphism Tot(B(G))n −→ Qn. This defines a morphism of complexes φ : Tot(B(G)) −→
Q which is the required unique factorisation. This shows that Tot(B(G)) is a direct limit of the
Tot(B(GF )) in C(A).
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For each F ∈M(Γ) let mF denote the maximum of F . Then by Lemma 95 we have a canonical
homotopy equivalence

Tot(B(GF )) = hodlim−−−−→s∈FGs −→ GmF

It is easily checked that these morphisms are compatible with the morphisms in the direct sys-
tems {Tot(B(GF ))}F∈M(Γ) and {GmF

}F∈M(Γ). Taking direct limits and using the fact that co-
homology commutes with direct limits (DF,Lemma 68), we obtain the desired quasi-isomorphism
Tot(B(G)) −→ lim−→s∈Γ

Gs.

Definition 36. Let A be a cocomplete abelian category and X an object of A. A filtration of
X is a sequence of subobjects {ui : Xi −→ X}i≥0 in A with ui ≤ ui+1 for every i ≥ 0. This is
clearly a direct family of subobjects, and we say the filtration is exhaustive if X = lim−→i≥0

Xi.

Remark 40. Let A be an abelian category, X,Y two complexes in A. When we refer to a
morphism u : X −→ Y of graded objects we just mean a collection of morphisms un : Xn −→ Y n

(which do not necessarily commute with the differentials).

Lemma 97. Let A be a cocomplete abelian category and B a bicomplex in A which is bounded on
the right. That is, there exists i0 ≥ 0 with Bij = 0 for all i > i0. Then the complex Tot(B) has
an exhaustive filtration.

Proof. By the complex Bi• we mean the ith column of B. First we construct complexes Fn for
n ≥ 0, and then we show that they are a filtration of X = Tot(B) with the required property.
We let F0 be the complex Bi0•[−i0] (the shift is so that F0 will map into Tot(B)). There is a
morphism of complexes B(i0−1)•[−i0] −→ F0 and we let F1 be the mapping cone of this morphism.
Suppose that for some n > 0 we have constructed the complex Fn together with a triangle

B(i0−n)•[n− i0 − 1] −→ Fn−1 −→ Fn −→ B(i0−n)•[n− i0]

with the property that the composite B(i0−n−1)•[n − i0 − 1] −→ B(i0−n)•[n − i0 − 1] −→ Fn−1

vanishes. That is, the second morphism is the mapping cone of the first, and the third morphism
is the canonical projection from the mapping cone. The previous construction of F1 means that
we have already done this for n = 1.

There is a canonical morphism of graded objects B(i0−n)•[n − i0] −→ Fn which we compose
with the morphism of complexes B(i0−n−1)•[n− i0] −→ B(i0−n)•[n− i0] to obtain a morphism of
graded objects B(i0−n−1)•[n − i0] −→ Fn. One checks this is actually a morphism of complexes.
We define Fn+1 to be the mapping cone of this morphism, so that we have a triangle

B(i0−n−1)•[n− i0] −→ Fn −→ Fn+1 −→ B(i0−n−1)•[n− i0 + 1]

and it is clear that the first morphism vanishes on B(i0−n−2)•[n− i0] −→ B(i0−n−1)•[n− i0]. This
completes the inductive step, and shows how to construct the complex Fn for n ≥ 0.

The construction also provides a monomorphism Fn −→ Fn+1 for every n ≥ 0. In fact, for
k ∈ Z the object F kn+1 is the coproduct B(i0−n−1)(k+n−i0+1) ⊕ F kn . Using induction one shows
that for n ≥ 0 and k ∈ Z

F kn = B(i0−n)(k−i0+n) ⊕ · · · ⊕B(i0−1)(k−i0+1) ⊕Bi0(k−i0) (50)

which is a subobject of Tot(B)k in a canonical way. This defines a monomorphism of complexes
Fn −→ Tot(B) and the morphisms Fn −→ Fn+1 show that Fn ≤ Fn+1 as subobjects of Tot(B)
for n ≥ 1. This defines the filtration {Fn}n≥0, and it only remains to show that it is exhaustive.

By (DF,Lemma 3) it suffices to show that the morphisms F kn −→ Tot(B)k are a colimit in A
for every k ∈ Z. But the definition of F kn in (50) makes it obvious that lim−→n≥0

F kn =
⊕

i+j=k B
ij ,

so the proof is complete.

Theorem 98. Let A be a grothendieck abelian category, L a localising subcategory of D(A) and
{Gs, µst}s∈Γ a direct system in C(A) such that Gs ∈ L for every s ∈ Γ. Then the homotopy direct
limit hodlim−−−−→s∈ΓGs also belongs to L.
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Proof. By definition hodlim−−−−→s∈ΓGs is the totalisation Tot(B(G)). Here B(G) is a bicomplex whose
columns are either zero, or for k ≤ 0 are given by the following coproduct in C(A)

B(G)k• =
⊕

w∈W−k

Gw0

These complexes all belong to L, so once again applying Proposition 44 we see that the columns of
B(G) belong to L. By Lemma 97 the complex Tot(B(G)) is a direct limit Tot(B(G)) = lim−→n≥0

Fn

of certain complexes Fn, which we constructed earlier (in the present case i0 = 0). By Proposition
65 to complete the proof it suffices to show that each complex Fn belongs to L. The complex F0

is a column of Tot(B(G)), so this is trivial for n = 0. For n > 0 we have a triangle in D(A)

B(−n)•[n− 1] −→ Fn−1 −→ Fn −→ B(−n)•[n]

where by induction and our earlier comments the first two objects belong to L. Therefore so does
Fn, and the proof is complete.

As an immediate consequence we have the desired generalisation of Proposition 65.

Corollary 99. Let A be a grothendieck abelian category, L a localising subcategory of D(A) and
{Gs, µst}s∈Γ a direct system in C(A) such that Gs ∈ L for every s ∈ Γ. Then the direct limit
lim−→s∈Γ

Gs also belongs to L.

Proof. By Theorem 96 we have an isomomrphism hodlim−−−−→s∈ΓGs ∼= lim−→s∈Γ
Gs in D(A), so the claim

follows from Theorem 98.

6 Bousfield Subcategories

Among the thick localising subcategories of triangulated categories, the bousfield subcategories
(TRC,Definition 40) play a special role. In this section we prove some important results about
bousfield subcategories of derived categories, following [ATJLSS00]. The first is Proposition 102,
which says that if A is a grothendieck abelian category with enough projectives, then any localising
subcategory of D(A) generated by a set of objects is bousfield. The required background for this
section includes (TRC,Section 4).

In this section we will need to use some transfinite recursion arguments, so the careful reader
may want to see the introduction of our Triangulated Categories Part II notes, where we discuss
the interaction between ordinals, cardinals and universes. In particular we say what we mean by
a small ordinal.

One important insight in the theory of triangulated categories is the following: given a trian-
gulated category T and a triangulated subcategory S we have a sequence of triangulated functors

S F // T G // T /S

Often S is a category of “exact” complexes in some sense, so that morphisms in T whose mapping
cones belong to S are “quasi-isomorphisms”. A left adjoint toG takes objects of T to a “projective”
resolution and a right adjoint takes objects of T to an “injective” resolution. The existence of
adjoints to G is therefore equivalent with the existence of these types of resolutions, and we know
that (modulo some technical details) the functor G has a right (left) adjoint if and only if S is
bousfield (cobousfield). These conditions are therefore of great interest if we are to construct
derived functors, which make essential use of the existence of such resolutions.

Corollary 100. Let A be an abelian category with exact products and coproducts, a projective
generator and enough injectives. Then Z is a bousfield subcategory of K(A)

Proof. As usual Z denotes the exact complexes in A, which form a thick localising subcategory of
K(A) by Proposition 44. By definition K(I) = Z⊥ and Proposition 75 shows that the composite
Z⊥ −→ K(A) −→ K(A)/Z (which is always fully faithful) is an equivalence. It now follows from
(TRC,Proposition 99) that the subcategory Z is bousfield.
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Remark 41. In particular this means that if A is an abelian category satisfying the conditions
of Corollary 100 then the canonical triangulated functor K(A) −→ D(A) has a right triadjoint.

Corollary 101. Let A be a grothendieck abelian category with enough projectives. Then K(P ) is
a bousfield subcategory of K(A).

Proof. We showed in Proposition 71 that any complex X in A fits into a triangle in K(A) of
the form P −→ X −→ Z −→ ΣP with P ∈ K(P ) and Z ∈ Z ⊆ K(P )⊥. It follows from
(TRC,Proposition 99) that K(P ) is a bousfield subcategory of K(A).

Given the sea of technical detail the reader will soon encounter, it might be wise to briefly
read the proof of Proposition 102 and then refer to Remark 44 which explains the simple idea
underlying the proof.

Remark 42. Let C be a category, I, J two directed sets and {Di, µij}i∈I , {Ei, λij}i∈J two direct
systems in C over I, J respectively. We say these direct systems are equivalent if there is a bijection
f : I −→ J compatible with the ordering (that is, f(i) ≤ f(j) iff. i ≤ j) such that Di = Ef(i) and
µij = λf(i)f(j) whenever i ≤ j. In other words, the direct systems are made up of the same objects
and morphisms in C, indexed in the “same” way, up to some trivial colouring of the indices.

Remark 43. For the duration of this remark we drop the conglomerate convention (FCT,Definition
5). In the proof of Proposition 102 we are going to use a construction by transfinite recursion. To
do this carefully we have to define two “constructions” τ(x), µ(x) on all sets x (BST,Remark 3).
We define the construction τ as follows

(i) If x = (U,A, S,Q, α, {Bγ , µγτ}γ�α) is a tuple consisting of a universe U, a grothendieck
abelian category A with enough projectives, a nonempty set S ⊆ C(A), an assignment Q
of canonical set-indexed coproducts and direct limits to C(A) in which equivalent direct
systems receive the same colimit, a small ordinal α and a direct system {Bγ , µγτ}γ�α in
C(A) over α+ 1 with the obvious ordering (throughout the meaning of “category”, “small”
and “set” are relative to U) then we define τ(x) as follows: define the following set

Ω =
⋃

k∈Z,Y ∈S
HomC(A)(ΣkY,Bα)

Given a morphism s ∈ Ω let d(s) denote the domain of s. Let ϕ :
⊕

s∈Ω d(s) −→ Bα be the
induced morphism out of the canonical coproduct in C(A). That is, ϕus = s. Let Bα+1 be
the canonical mapping cone of ϕ, and µα(α+1) : Bα −→ Bα+1 be the canonical morphism
into the mapping cone. For γ ≺ α we define µγ(α+1) = µα(α+1)µγα. Then {Bγ , µγτ}γ�α+1

is a direct system in C(A) over α+ 2 and we define

τ(x) = (U,A, S,Q, α+ 1, {Bγ , µγτ}γ�α+1)

(ii) If x is not of this form, then τ(x) is the empty set.

We define the construction µ as follows

(a) If x is nonempty and consists of tuples of the form given in (i) above, all of which are equal
to each other in the first four places {(U,A, S,Q, α, {Bαγ , µαγτ}γ�α)}α, and if the following
conditions are satisfied

– The direct families are all “compatible” in the sense that for occurring ordinals α � β
the restriction of the direct family {Bβγ , µβγτ}γ�β to the vertices of α + 1 agrees with
the direct family {Bαγ , µαγτ}γ�α.

– The union λ of all the ordinals α occurring in tuples in x is small (with respect to the
common universe U of all the tuples).
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Then µ(x) is constructed as follows: for any γ ≺ λ choose α occurring in a tuple of x such
that γ ≺ α, and define Cγ = Bαγ . This does not depend on the choice of α. Given another
γ′ � γ we define µγ′γ = µαγ′γ , which again does not depend on α. This defines a direct
system {Cγ , µγ′γ}γ≺λ in C(A) over the directed set λ. Define

Cλ = lim−→
γ≺λ

Cλ

to be the canonical direct limit in C(A) of this direct system (if λ is empty, take Cλ to be a
canonical zero object). Define µγλ : Cγ −→ Cλ to be the injection into the colimit for any
γ ≺ λ. Then {Cγ , µγτ}γ�λ is a direct system in C(A) and we define

µ(x) = (U,A, S,Q, λ, {Cγ , µγτ}γ�λ)

(b) If x is not of this form, then µ(x) is the empty set.

Proposition 102. Let A be a grothendieck abelian category with enough projectives, S a nonempty
set of objects of C(A), and L = 〈S〉 the smallest localising subcategory of D(A) containing these
complexes. Then L is a bousfield subcategory of D(A).

Proof. Following [ATJLSS00] Proposition 4.5. By Proposition 71 every object of S is isomor-
phic in D(A) to a hoprojective complex, so we may as well assume that S consists of hoprojec-
tive complexes. Therefore for every k ∈ Z and Y ∈ S the complex ΣkY is hoprojective, and
HomD(A)(ΣkY,X) ∼= HomK(A)(ΣkY,X) by Corollary 50. We infer from (TRC,Proposition 99)
that to complete the proof it is enough to show that for any M ∈ D(A) there is a triangle in D(A)

NM −→M −→ BM −→ ΣNM

with NM ∈ L and BM ∈ L⊥. We construct the object BM by transfinite recursion. Choose an
assignment Q of set-indexed coproducts and direct limits to C(A), which we can arrange so that
equivalent direct systems (in the sense of Remark 42) receive the same colimit. We define z to be
the following conglomerate

z = (U,A, S,Q, 0, {M})

where U is our fixed grothendieck universe. Using (BST,Theorem 17) with initial conglomerate z
we produce a function fα for every ordinal α. For every small ordinal α one checks by transfinite
induction that

fα(α) = (U,A, S,Q, α, {Bαγ , µαγτ}γ�α)

for some direct system in the last position, and we define Bα = Bαα . Let us make the following
observations:

• For small ordinals α � β there is a morphism of complexes µαβ = µβαβ : Bα −→ Bβ . We have
µαα = 1 and µαβµγα = µγβ . In particular B0 = M so we have a morphism of complexes
µ0α : M −→ Bα.

• For any small limit ordinal λ we have Bλ = lim−→α≺λBα by construction, and for α ≺ λ the
morphism µαλ : Bα −→ Bλ is the canonical injection into the colimit.

• It follows by transfinite induction and (AC,Corollary 54) that for any small ordinals α � β
the morphism µαβ : Bα −→ Bβ is a monomorphism.

• For small ordinals α ≺ β, any k ∈ Z, Y ∈ S and morphism f : ΣkY −→ Bα the morphism
µαβf is null-homotopic. This was the whole point of defining τ above in the way we did.

Let U be a projective generator of A and κ be the cardinal successor of the cardinality of the
set
⊔
p∈Z,Y ∈S HomA(U, Y p) (this is the disjoint union of sets). Then κ is a small infinite regular

cardinal (TRC2,Lemma 1) (BST,Proposition 38) and we claim that the complex BM = Bκ has
the required properties. First we check that BM is L-local. By Lemma 55 it is enough to check
that HomD(A)(ΣkY,BM ) ∼= HomK(A)(ΣkY,BM ) = 0 for every k ∈ Z and Y ∈ S.
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Given k ∈ Z, Y ∈ S and a morphism of complexes g : ΣkY −→ BM we have to show that g
is null-homotopic. By construction of the morphisms µαβ it would suffice to show that g factors
through some µiκ : Bi −→ BM with i ≺ κ. That is, we want to show that Im(g) ⊆ Bi for some
i ≺ κ. Construct the following pullback diagram for every ordinal i � κ

B′i

��

µ′iκ // Im(g)

��
Bi µiκ

// BM

and µ′ij : B′i −→ B′j for ordinals i � j � κ by the universal property of the pullback. Clearly
µ′ii = 1 and µ′jsµ

′
ij = µ′is. In fact, since C(A) is grothendieck abelian, for any limit ordinal t � κ

we have

lim−→
i≺t

B′i =
∑
i≺t

(Bi ∩ Im(g)) =

(∑
i≺t

Bi

)
∩ Im(g) = Bt ∩ Im(g) = B′t

That is, the morphisms µ′it : B′i −→ B′t are a direct limit of the direct system {B′i, µ′ij}i≺t. In
particular the morphisms µ′iκ are a direct limit. We want to show that µ′sκ is an isomorphism for
some s ≺ κ. For this it would be enough to show that µ′st (which is already a monomorphism)
is an epimorphism for every ordinal t with s � t ≺ κ. Suppose for a contradiction that for every
s ≺ κ there exists some s ≺ t ≺ κ with µ′st not an epimorphism. We claim that for every s ≺ κ
there is s � t ≺ κ wth µ′t(t+1) not an epimorphism.

Proof of claim. Fix an ordinal s ≺ κ and assume to the contrary that for every
s � t ≺ κ the morphism µ′t(t+1) is an isomorphism. By our standing hypothesis there
is some s ≺ t ≺ κ for which µ′st is not an epimorphism. We may as well assume t
is minimal with this property. That is, whenever s ≺ q ≺ t the morphism µ′sq is an
isomorphism. If t = q + 1 were a successor ordinal then µ′st would be the composite
µ′q(q+1)µ

′
sq which is an isomorphism, a contradiction. Therefore t is a limit ordinal.

The ordinals q with s ≺ q ≺ t form a cofinal subset of all ordinals in t, and we have

B′t = lim−→
q≺t

B′q = lim−→
s≺q≺t

B′q

Given ordinals s ≺ q ≺ q′ ≺ t the morphisms µ′sq, µ
′
sq′ are isomorphisms, and therefore

so is µ′qq′ = µ′sq′(µ
′
sq)
−1. Since B′t is the colimit of a direct system of isomorphisms, for

s ≺ q ≺ t the morphism µ′qt : B′q −→ B′t is an isomorphism. But µ′sq is an isomorphism,
and hence so is µ′st, which is the desired contradiction.

Having proved the claim, we know that for every s ≺ κ the set

Js = {t ≺ κ | t � s and µ′t(t+1) is not an epimorphism}

is nonempty. In particular J = J0 is a nonempty cofinal subset of κ. Since κ is regular we have
cf(κ) = κ, and therefore |J | = κ by definition of cofinality. For each t ∈ J there exists p ∈ Z such
that (µ′t(t+1))

p is not an epimorphism, so we can choose a morphism ht : U −→ (B′t+1)
p which

does not factor through (B′t)
p. Define

φ : J −→
⊔
p∈Z

HomA(U, Im(g)p)

by mapping t ∈ J to the composite (µ′(t+1)κ)
pht. This morphism is injective, since if φ(t) = φ(q)

with t 6= q then wlog t ≺ q and so also t+ 1 � q. One deduces easily that U −→ (B′q+1)
p factors

through (B′t+1)
p and therefore also (B′q)

p, a contradiction. So we have shown

κ = |J | ≤ card
(⊔
p∈Z

HomA(U, Im(g)p)) < κ
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where the last inequality follows from the fact that Im(g)p is a quotient of Y k+p (here we use the
fact that U is projective). This contradiction shows that µ′sκ : B′s −→ Im(g) is an isomorphism for
some s ≺ κ. Hence g : ΣkY −→ BM factors through Bs, which implies that g is null-homotopic.
This completes the proof that BM is L-local in D(A).

For every small ordinal i we have a triangle in D(A) of the following form

Ni // M
µ0i // Bi // ΣNi

where by Proposition 20 we can take Bi −→ ΣNi to be the cokernel in C(A) of µ0i. On the level
of chain complexes for i � j the µij induce morphisms Ni −→ Nj making the obvious diagrams
commute. Since cokernels commute with direct limits we deduce that for any small limit ordinal t
these morphisms are a direct limit Nt = lim−→i≺tNi. We claim that Ni ∈ L for any small ordinal i.

Since N0 = 0 we have N0 ∈ L trivially. Suppose that i is a small ordinal with Ni ∈ L. By
definition of Ni, Ni+1 and Bi+1 we have the following triangles in D(A)

M
µ0i // Bi // ΣNi // ΣM

M
µ0(i+1)// Bi+1

// ΣNi+1
// ΣM

Bi
µi(i+1)// Bi+1

// Σ
⊕

s∈Ωi
d(s) // ΣBi

By the octahedral axiom (TRC,Proposition 30) we deduce a triangle in D(A)

ΣNi −→ ΣNi+1 −→ Σ
⊕
s∈Ωi

d(s) −→ Σ2Ni

the first and third objects in this triangle belong to L, and therefore so does Ni+1, which is what
we wanted to show. Now suppose that t is a small limit ordinal and that Ni ∈ L for every i ≺ t.
Since Nt = lim−→i≺tNi it follows from Corollary 99 that Nt ∈ L. By transfinite induction this shows
that Ni ∈ L for every small ordinal i. In particular if we set NM = Nκ then NM ∈ L and we have
a triangle in D(A)

NM −→M −→ BM −→ ΣNM

with NM ∈ L, BM ∈ L⊥, so the proof is complete.

Remark 44. We make a few comments to clarify the technique used in the proof of Proposition
102. The idea is actually very simple. We are given a complex M and we want to construct a
morphism M −→ BM in D(A) with BM an 〈S〉-local complex. The idea is that we begin with
M and then keep “modding out” all the morphisms from objects of S. That is, we form the set
Ω of all morphisms ΣkY −→ M for various Y ∈ S, and let ϕ :

⊕
s∈Ω d(s) −→ M be the induced

morphism, where d(s) denotes the domain of s. Then we form the triangle⊕
s∈Ω

d(s) −→M −→ B1 −→ Σ
⊕
s∈Ω

d(s)

We apply the same procedure to B1 to produce B2, and in this way produce the sequence M =
B0, B1, B2, . . .. We define Bω by taking the direct limit of this sequence, then produce Bω+1, Bω+2

and so on. This defines a complex Bκ for any ordinal κ, and by taking a sufficiently enormous
cardinal κ one forces Bκ to be 〈S〉-local, because any morphism from a Y ∈ S to Xκ has to factor
through some smaller Bλ.

Remark 45. In fact Proposition 102 is true even without the hypothesis that A have enough
projectives, as we will see in a moment.

Recall that a ringoid R is a small preadditive category, and a right R-module is an additive
functor Rop −→ Ab. We denote by ModR the category of right R-modules and refer the
reader to our Rings with Several Objects (RSO) notes for further details. In particular ModR

64

file:"TriangulatedCategories.pdf"


is a grothendieck abelian category with enough projectives. Throughout we use the notation of
our RSO notes. An additive topology on a ringoid R is a right additive topology J as defined
in (LOR,Definition 4). Associated to any additive topology is the corresponding localisation
Mod(R, J) which is a giraud subcategory of ModR (LOR,Corollary 17). This defines a bijection
between additive topologies on R and giraud subcategories of ModR (LOR,Theorem 21).

Remark 46. We work in the generality of ringoids since there is no reason not to, but the
reader who wants to work only with rings is perfectly welcome to do so. All the results will go
through, since the Gabriel-Popecu theorem needs only a module category over a ring to embed
any grothendieck abelian category.

Suppose we are given a ringoid R and an additive topology J and let D = Mod(R, J) be
the associated giraud subcategory. By definition the inclusion i : D −→ModR has an exact left
adjoint a and this adjunction extends by Lemma 25 to a triadjunction of the homotopy categories

K(D)

K(i)

**
K(ModR)

K(a)

jj K(a) � K(i) (51)

By Lemma 45 the functor K(a) preserves coproducts, so its kernel KJ is a thick localising sub-
category of K(ModR). Since a : ModR −→ D is exact it lifts to a triangulated functor
D(a) : D(ModR) −→ D(D) which by Lemma 46 must preserve coproducts. Its kernel LJ is
therefore a thick localising subcategory of D(ModR). By Remark 13 the subcategories KJ ,LJ
depend only on the topology J and not on the choice of exact left adjoint a. Also observe that
since ai ∼= 1 there is a trinatural equivalence K(a)K(i) ∼= 1.

Lemma 103. Let R be a ringoid and J an additive topology. Then the thick localising subcategory
KJ ⊆ K(ModR) is bousfield.

Proof. Set A = ModR and observe that by Lemma 38 we can consider K(D) as a fragile trian-
gulated subcategory of K(A), whose inclusion has a left adjoint. Let C denote its replete closure
(that is, all objects of K(A) isomorphic to an object of K(D)). Firstly we show that C = K⊥J . If
X ∈ KJ and Y ∈ K(D) then we have

Hom(X,Y ) = Hom(X, iY ) ∼= Hom(aX, Y ) = 0

so it is clear that C ⊆ K⊥J . Let η : 1 −→ ia denote the unit of the adjunction a �i . In
Section 3.1 we saw how this unit gives rise in the obvious way to the unit of the adjunction
K(a) �

K(i). Let X be a complex in A and ηX : X −→ aX the unit morphism, which we can
extend to a triangle in K(A)

X −→ aX −→ Y −→ ΣX (52)

Since a(ηX) is an isomorphism (LOR,Lemma 15), it is clear that Y ∈ KJ . If X happens to belong
to K⊥J then we can we can apply Hom(Y,−) to this triangle and deduce from the resulting exact
sequence that HomK(A)(Y, Y ) = 0. Therefore Y = 0 and X ∼= aX in K(A), which proves that
C = K⊥J . Shifting (52) we see that every object X ∈ K(A) fits into a triangle

N −→ X −→ B −→ ΣN

with N ∈ KJ , B ∈ K⊥J , so by (TRC,Proposition 99) the subcategory KJ is bousfield.

Lemma 104. A complex X belongs to LJ if and only if all its cohomology objects are J-torsion.
That is, X ∈ LJ if and only if aHj(X) = 0 for every j ∈ Z.

Proof. The complex X belongs to LJ if and only if aX is exact, which is if and only if Hj(aX) = 0
for j ∈ Z. Exactness of a implies aHj(X) ∼= Hj(aX) so the proof is complete.

In a moment we will prove that LJ can be generated by a set of objects. But first we record
some categorical trivialities that we will make use of in the proof.
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Lemma 105. Let F be a nonzero J-torsion right R-module. Then there is A ∈ R and a ∈ J(A)
together with a nonzero monomorphism HA/a −→ F .

Proof. In some sense the quotients HA/a with a in the topology generate the subcategory of
torsion objects. Recall that F is J-torsion if and only if aF = 0 (LOR,Lemma 14). Since F is
nonzero, there is A ∈ R and a nonzero morphism x : HA −→ F , whose kernel Ann(x) belongs to
J(A) by assumption. The factorisation HA/Ann(x) −→ F is the desired monomorphism.

Lemma 106. Let A be an abelian category and suppose we are given a pullback diagram in which
the horizontal morphisms are monomorphisms

A′

��

// B′

��
A // B

The induced morphism B′/A′ −→ B/A is a monomorphism.

Proof. By the embedding theorem (DCAC,Theorem 1) (DCAC,Lemma 2) we can reduce to the
case where A = Ab, which is trivial.

Remark 47. We can avoid the use of embedding theorems in the proof of Lemma 106 if we
assume A has a generating family of projectives, in which case the proof proceeds in the obvious
way.

Definition 37. Let R be a ringoid. The size of R is the cardinality of its set of morphisms, and
we denote this by size(R). If F is a right R-module then the size of F , also denoted by size(F ),
is defined to be the cardinality of the following disjoint union

size(F ) = card
( ⊔
A∈R

F (A)
)

The cardinal size(R) is small, as is size(F ) for any right R-module F .

Theorem 107. Let R be a ringoid and J an additive topology. Then the thick localising subcat-
egory LJ ⊆ D(ModR) is bousfield.

Proof. Following [ATJLSS00] Proposition 5.1. We prove the result by showing that there is a set
of objects S ⊆ D(ModR) with LJ = 〈S〉, and then applying Proposition 102.

Set A = ModR and let β be a small infinite cardinal with β ≥ size(R) and select a set Q
with |Q| = β. Since coproducts in A can be computed pointwise, for any given set-indexed family
of objects {Fi}i∈I of A we have a canonical coproduct

⊕
i∈I Fi in A. We say that a complex

E ∈ C(A) is cloned if it has the following properties

(i) Ej = 0 for j > 0. Here we mean that Ej is actually equal to the canonical zero object.

(ii) E0 = HA for some A ∈ R.

(iii) For j < 0 the object Ej is the canonical coproduct
⊕

i∈I HAi
for some nonempty family of

objects {Ai}i∈I of R, with I ⊆ Q.

(iv) aHj(E) = 0 for all j ∈ Z. That is, the cohomology objects are torsion.

It is clear that the class S ⊆ C(A) of all cloned complexes is small (here we use (AC,Proposition
51) to see that the differentials in E can be written in terms of components). We must show that
LJ = 〈S〉. The functor a is exact, so for any E ∈ S we have Hj(aE) ∼= aHj(E) = 0, so aE is an
exact complex and is therefore zero in D(D). It is therefore clear that 〈S〉 ⊆ LJ , and it remains
to prove the reverse inclusion.

Given M ∈ LJ there is by Proposition 102 a triangle in D(A) of the form

N −→M −→ B −→ ΣN
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with N ∈ 〈S〉 and B ∈ 〈S〉⊥. Since M,N ∈ LJ we have B ∈ LJ . To show that M ∈ 〈S〉
it therefore suffices to show that B is an exact complex. If B is not exact, then there exists
some k ∈ Z with Hk(B) 6= 0. Since aHk(B) = 0 we are in the situation of Lemma 105: the
right R-module Hk(B) is nonzero but J-torsion, so there exists A ∈ R, a ∈ J(A) and a nonzero
monomorphism g : HA/a −→ Hk(B). Using g we will construct a nonzero morphism in D(A)
from a complex in 〈S〉 to B, which is impossible. This contradiction shows that B is exact and
completes the proof.

Consider the following diagram

0 // a

��

// HA
//

��

HA/a

g

��

// 0

0 // Im(∂k−1
B ) // Ker(∂kB) // Hk(B) // 0

Where we use projectivity of HA to find a morphism HA −→ Ker(∂kB) making the right hand
square commute, and then induce a morphism a −→ Im(∂k−1

B ) on the kernels. It is clear that
size(a) ≤ size(R) ≤ β, so we can find a nonempty family {Ai}i∈Ik−1 of objects of R indexed
by a set Ik−1 ⊆ Q and an epimorphism P k−1 =

⊕
i∈Ik−1

HAi
−→ a, where P k−1 is clearly

projective. Define P k = HA, let fk : P k −→ Bk be the composite HA −→ Ker(∂kB) −→ Bk and
let fk−1 : P k−1 −→ Bk−1 be some lifting of the composite P k−1 −→ a −→ Im(∂k−1

B ). Then we
have the following commutative diagram

P k−1

fk−1

��

∂k−1
P // P k

fk

��

// 0 //

��

· · ·

· · · // Bk−2 // Bk−1 // Bk // Bk+1 // · · ·

Observe that a(P k/Im(∂k−1
P )) ∼= a(HA/a) = 0 since a ∈ J(A) and vanishing of such quotients

characterises the ideals in the topology (LOR,Theorem 21). The idea is to iterate this construction.
Suppose that for some j < k we have constructed a cloned complex P down to degree j (that

is, modules P j , . . . , P k and morphisms ∂jP , . . . , ∂
k−1
P such that the resulting sequence satisfies

conditions (i), (ii), (iii) and (iv) of a cloned complex, with the understanding that (iv) is applied
at positions > j) together with a morphism P −→ B. Form the following diagram

Cj

��

q // Ker(∂jP )

��

// P j

fj

��
Im(∂j−1

B ) // Ker(∂jB) // Bj

where the right hand square is induced on kernels on the usual way, and the left hand square is
formed by pullback. Therefore q is a monomorphism and we have

size(Cj) ≤ size(P j) = size(
⊕
i∈Ij

HAi
)

= card
( ⊔
A∈R

⊕
i∈Ij

HomR(A,Ai)
)

≤ card
( ⊔
A∈R

∏
i∈Ij

MorR
)

≤ card
(
R× Ij ×MorR

)
≤ β · β · β = β
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where we use in a crucial way the fact that β is an infinite cardinal. We can therefore find a
nonempty family {Ai}i∈Ij−1 of objects of R indexed by a set Ij−1 ⊆ Q and an epimorphism
P j−1 =

⊕
i∈Ij−1

HAi
−→ Cj . Define the morphisms ∂j−1

P and f j−1 in the obvious way. By
Lemma 106 the cohomology Hj(P ) is a subobject of Hj(B) and therefore aHj(P ) ⊆ aHj(B) = 0
must vanish, so we have extended our complex P to degree j−1. Since this recursive step involves
noncanonical choices, we invoke Zorn’s Lemma to guarantee the construction of a complex P and
a morphism of complexes f : P −→ B. As P is the shift of a cloned complex, we have P ∈ 〈S〉.

Hoprojectivity of P means that to check f is nonzero in D(A) it suffices by Corollary 50
to check it is nonzero in K(A), that is, it is not null-homotopic. If it were, then in particular
the morphism f0 : HA −→ Ker(∂kB) −→ Bk would factor through Bk−1, and it follows that
HA −→ Ker(∂kB) factors through Im(∂k−1

B ). Then g composed with HA −→ HA/a is zero, which
contradicts the fact that g is nonzero.

Therefore f is a nonzero morphism in D(A) from an object of 〈S〉 to B ∈ 〈S〉⊥, which is a
contradiction. This shows that B is exact, and completes the proof.

7 Existence of Resolutions

Let A be a grothendieck abelian category, so that we have a sequence of triangulated functors

Z // K(A)
Q // D(A)

The subcategory Z of exact complexes is bousfield if and only if Q has a right adjoint, which by
the formalism of bousfield subcategories means that for every complex X in A there is a triangle
in K(A) of the form

Z −→ X −→ I −→ ΣZ

with I ∈ Z⊥ and Z an exact complex. This a resolution of X by a hoinjective complex, so that if
the subcategory Z is bousfield then A has enough hoinjectives. In this section we show, following
[ATJLSS00], that any grothendieck abelian category A satisfies this condition.

Throughout this section R is a ringoid, J an additive topology on R, D = Mod(R, J) the
associated giraud subcategory with inclusion i : D −→ModR and exact left adjoint a. As before
we write KJ for the kernel of the triangulated functor K(a) : K(ModR) −→ K(D), which is a
thick localising subcategory of K(ModR). We write LJ for the kernel of D(a), which is a thick
localising subcategory of D(ModR). The reader should be familiar with the notion of a weak
verdier quotient (TRC,Section 2.3).

Proposition 108. The triangulated functor K(a) : K(ModR) −→ K(D) is a weak verdier
quotient of K(ModR) by KJ .

Proof. Set A = ModR and recall that by Lemma 103 the subcategory KJ ⊆ K(ModR) is
bousfield. As in the proof of Lemma 103 we write C for the replete closure in K(A) of K(D),
which we know is also equal to K⊥J . If we write j : C −→ K(A) for the inclusion and Q :
K(A) −→ K(A)/KJ for the verdier quotient, then Qj is a triequivalence (TRC,Corollary 100).
Let r : K(A)/KJ −→ C be a triangulated functor together with trinatural equivalences rQj ∼=
1, Qjr ∼= 1. Then in the proof of (TRC,Corollary 100) we showed that rQ is left triadjoint to j.

Denote by q the inclusion K(D) −→ C. This is a triequivalence: that is, there is a triangulated
functor q′ : C −→ K(D) together with trinatural equivalences qq′ ∼= 1, q′q ∼= 1.

Since K(a) is left triadjoint to the inclusion K(D) −→ K(A) and q is left triadjoint to q′

(TRC,Remark 36), the functor qK(a) is left triadjoint to j (TRC,Proposition 46) (TRC,Lemma
45). We deduce a trinatural equivalence qK(a) ∼= rQ (TRC,Lemma 43) and so finally we have a
trinatural equivalence K(a) ∼= q′rQ. The functor q′rQ is a weak verdier quotient of K(A) by KJ ,
since it is the composite of a weak verdier quotient Q (TRC,Proposition 74) with a triequivalence
q′r (TRC,Proposition 76). Therefore K(a) is also a weak verdier quotient (TRC,Lemma 77) and
the proof is complete.
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Corollary 109. There is a canonical triequivalence K(ModR)/KJ −→ K(D).

Proof. Both functors K(ModR) −→ K(ModR)/KJ and K(a) are weak verdier quotients, so
the unique triangulated functor T making the following diagram commute (using the universal
property of the verdier quotient)

K(ModR)

ttiiiiiiii
((RRRRRRR

K(ModR)/KJ
T

// K(D)

is a triequivalence, by the “weak” uniqueness property of the weak verdier quotient.

Proposition 110. The triangulated functor D(a) : D(ModR) −→ D(D) is a weak verdier quo-
tient of D(ModR) by LJ .

Proof. Set A = ModR and observe that we have the following commutative diagram of triangu-
lated functors

K(A)

Q

��

K(a) // K(D)

P

��
D(A)

D(a)
// D(D)

(53)

Suppose we are given a triangulated functor G : D(A) −→ S into a portly triangulated category
with LJ ⊆ Ker(G). Then GQ sends objects of KJ to zero so by Proposition 108 there is a
triangulated functor H : K(D) −→ S and a trinatural equivalence HK(a) ∼= GQ. Suppose we are
given an exact complex X in D. Since K(a)K(i) ∼= 1 we have X ∼= aX and therefore we deduce
from commutativity of (53) that X ∈ LJ . Hence

H(X) ∼= HK(a)(X) ∼= GQ(X) = 0

since by assumption G vanishes on LJ . The functor H therefore factors uniquely (as a triangulated
functor) through P . Let H ′ : D(D) −→ S be this factorisation. Then we have a trinatural
equivalence

H ′D(a)Q = H ′PK(a) = HK(a) ∼= GQ

and since Q is itself a weak verdier quotient we infer from (TRC,Remark 52) that there is a
trinatural equivalence H ′D(a) ∼= G. This proves the existence of weak factorisations. To show
weak uniqueness, suppose that H ′′ : D(D) −→ S is another triangulated functor together with a
trinatural equivalence H ′′D(a) ∼= G. Then we have a trinatural equivalence

H ′′PK(a) = H ′′D(a)Q ∼= GQ ∼= HK(a) = H ′PK(a)

By Proposition 108 the functor K(a) is a weak verdier quotient, so we deduce a trinatural equiv-
alence H ′′P ∼= H ′P . But P is also a weak verdier quotient, so there is a trinatural equivalence
H ′′ ∼= H ′ as required.

Corollary 111. There is a canonical triequivalence D(ModR)/LJ −→ D(D).

Proof. Same proof as Corollary 109.

Corollary 112. The triangulated functor D(a) : D(ModR) −→ D(D) has a right triadjoint.

Proof. Set A = ModR. By Theorem 107 the subcategory LJ ⊆ D(ModR) is bousfield, so the
verdier quotient Q : D(A) −→ D(A)/LJ has a right triadjoint M (TRC,Corollary 100). But by
Corollary 111 there is a commutative diagram of triangulated functors

D(A)

vvmmmmmmm
''NNNNNN

D(A)/LJ
T

// D(D)
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with T a triequivalence. Let T ′ : D(D) −→ D(A)/LJ be a triangulated functor together with
natural triequivalences TT ′ ∼= 1, T ′T ∼= 1. Then T ′ is right triadjoint to T (TRC,Remark 36) and
therefore MT ′ is right triadjoint to TQ = D(a) (TRC,Proposition 46) as required.

Remark 48. If we knew a priori thatD had enough hoinjectives, then it would follow immediately
from (TRC,Theorem 122) that D(a) had a right adjoint, namely the right derived functor R(i)
where i : D −→ ModR is the inclusion. But in our approach it is Corollary 112 that allows us
to prove the existence of hoinjective resolutions for D. We will return to this point after we have
developed the theory of derived functors in (DTC2,Section 2).

One should be very careful to note that the right adjoint of D(a) is not a lift of the inclusion i
to the derived category. In general no such lift can exist, because i is not exact (for example, the
inclusion of sheaves in presheaves). Nonetheless the right derived functor of D(a) does have some
good properties, as we will show in Lemma 116.

Earlier we proved the existence of hoinjective resolutions only under very restrictive hypothesis
(see Proposition 75). We are now prepared to prove the major theorem, which establishes the
existence of hoinjective resolutions for arbitrary grothendieck abelian categories.

Theorem 113. If C is a grothendieck abelian category then the exact complexes Z form a bousfield
subcategory of K(C).

Proof. Following [ATJLSS00] Theorem 5.4. We know from Proposition 44 that Z is a thick
localising subcategory of K(C), and we have to show that the canonical functor K(C) −→ D(C)
has a right adjoint. Choose a family of generators for C, and let R be the small full subcategory
whose objects are the generators. By the Gabriel-Popescu theorem (LOR,Theorem 25) there is
an additive topology J on R and an equivalence

` : C −→Mod(R, J)

If we set D = Mod(R, J) then by Remark 13 there is an induced commutative diagram of
triangulated functors in which the rows are triequivalences

K(C)

��

K(`) // K(D)

Q′

��
D(C)

D(`)
// D(D)

Equivalences are both left and right adjoint to their inverses and we can compose adjoints, so to
prove that K(C) −→ D(C) has a right adjoint, it suffices to show that Q′ : K(D) −→ D(D) has a
right adjoint. We have a commutative diagram of triangulated functors

K(ModR)

Q

��

K(a) // K(D)

Q′

��
D(ModR)

D(a)
// D(D)

The abelian category ModR satisfies the conditions of Corollary 100 and therefore the functor
K(ModR) −→ D(ModR) has a right triadjoint. By Corollary 112 the functor D(a) has a right
triadjoint and by Proposition 108 the functor K(a) is a weak verdier quotient. We deduce that
the composite Q′K(a) = D(a)Q has a right triadjoint (TRC,Proposition 46). We are now in the
situation of (TRC,Proposition 79) which implies that Q′ has a right triadjoint and completes the
proof.

Remark 49. For any grothendieck abelian category C we have the following consequences of
Theorem 113
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• The canonical triangulated functor K(C) −→ D(C) has a right triadjoint.

• The composite K(I) −→ K(C) −→ D(C) is a triequivalence, and in particular by Remark
22 every complex in C has a hoinjective resolution. In other words, any grothendieck abelian
category has enough hoinjectives.

• The inclusion K(I) −→ K(C) has a right triadjoint and ⊥K(I) = Z. That is, a complex
Z is exact if and only if every morphism of complexes Z −→ I with I hoinjective is null-
homotopic.

• The inclusion K(P ) −→ K(C) has a right triadjoint.

Corollary 114. If C is a grothendieck abelian category then the portly triangulated category D(C)
has small morphism conglomerates.

Proof. Since C has enough hoinjectives, this is a consequence of Lemma 61.

Lemma 115. Let T be a triangulated category and (`, η) a localisation in T . Given a triangulated
functor `′ : T −→ T and a trinatural equivalence m : ` −→ `′, the pair (`′,m ◦ η) is also a
localisation.

Proof. See (TRC,Definition 39) for the definition of a localisation in a triangulated category.
Verification of the claim is straightforward.

Lemma 116. Suppose that i is right triadjoint to D(a) with unit η and counit ε

D(ModR)
D(a)

,,
D(D)

i

mm (η, ε) : D(a) � i

Then we have the following

(i) (iD(a), η) is a localisation of D(ModR) with kernel LJ .

(ii) The image of the functor i is contained in L⊥J and the induced functor D(D) −→ L⊥J is a
triequivalence.

(iii) ε : D(a)i −→ 1 is a trinatural equivalence and ηX : X −→ iD(a)X is an isomorphism if and
only if X ∈ L⊥J .

Proof. Using Lemma 115 we may as well assume the right triadjoint i is constructed as in Corollary
112. That is, we have a commutative diagram of triangulated functors

D(ModR)

uukkkkkkk
((QQQQQQQQ

D(A)/LJ
T

// D(D)

together with a triangulated functor T ′ : D(D) −→ D(ModR)/LJ and trinatural equivalences
ν : 1 −→ T ′T, ρ : TT ′ −→ 1, which we can assume are the unit and counit of a triadjunction
T �

T ′ . We choose a right triadjoint M of Q with triadjunction (η′, ε′) and set i = MT ′.
Then i is right triadjoint to D(a) with unit η : 1 −→ iD(a) given by η = (MνQ) ◦ η′ and counit
ε : D(a)i −→ 1 given by ε = ρ ◦ (Tε′T ′).

It follows from (TRC,Remark 61) that the pair (MQ, η′) is a localisation of D(ModR) with
kernel LJ . But MνQ is a trinatural equivalence MQ −→ MT ′TQ = iD(a), so we deduce from
Lemma 115 that the pair (iD(a), η) is a localisation of D(ModR) with kernel LJ . It is now
straightforward to check the remaining claims.
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Remark 50. Let F : T −→ T ′ be a triequivalence of triangulated categories. If S ⊆ T is a
triangulated subcategory, we write F [S] for the replete closure in T ′ of the class {F (S) |S ∈
S}. One checks that this is a triangulated subcategory of T ′. In fact this sets up a bijection
between triangulated subcategories of T and T ′, which identifies thick subcategories with thick
subcategories. For any triangulated subcategory S ⊆ T we have F [S⊥] = F [S]⊥.

If T , T ′ have coproducts and S is localising then F [S] is localising, so we have a bijection
between localising subcategories as well. This bijection identifies bousfield subcategories with
bousfield subcategories. Given a nonempty class Q ⊆ T it is clear that F [〈Q〉] = 〈F (Q)〉 is the
smallest localising subcategory of T ′ containing the class {F (k) | k ∈ Q}.

Remark 51. Let F : T −→ T ′ be a triangulated functor. If S is a triangulated subcategory
of T ′ then so is the full subcategory of T whose objects are those X ∈ T with F (X) ∈ S. We
denote this triangulated subcategory by F−1S. If S is thick then so is F−1S, and if F preserves
coproducts then S localising implies F−1S localising.

We can now prove the most general version of Proposition 102.

Theorem 117. Let C be a grothendieck abelian category, S a nonempty set of objects of C(C),
and L = 〈S〉 the smallest localising subcategory of D(C) containing these complexes. Then L is a
bousfield subcategory of D(C).

Proof. Following [ATJLSS00] Theorem 5.7. By the Gabriel-Popescu theorem and Remark 50 it
suffices to prove this in the case where C = D is the localisation of a category of modules over a
ringoid R. Set A = ModR and adopt the standard notation of this section. By Corollary 112
the triangulated functor D(a) has a right triadjoint, which we denote by i. So we have a diagram
of triangulated functors

D(A)
D(a)

,,
D(D)

i

ll

Let η and ε be the unit and counit of this triadjunction. Then by Lemma 116 the triangulated
functor ` = iD(a) together with η is a localisation of D(A) with kernel LJ , and ε is a trinatural
equivalence of D(a)i with the identity.

We showed in the proof of Theorem 107 that LJ = 〈E〉 for some object E ∈ C(A) (by taking
coproducts over the set of cloned complexes). It also suffices to consider the case where S = {Y }
consists of a single object. Let M be the smallest localising subcategory of D(A) containing the
complexes E, iY . By Proposition 102 this is bousfield, so for any X ∈ D(D) there is a triangle in
D(A)

N −→ X −→ B −→ ΣN

with N ∈M and B ∈M⊥. Applying the triangulated functor D(a) we have a triangle in D(D)

aN −→ X −→ aB −→ ΣaN

Applying the observation of Remark 51 it is clear that D(a) sends objects of M into L. In
particular aN ∈ L, and it only remains to show that aB ∈ L⊥. But for k ∈ Z we have

HomD(D)(ΣkY,D(a)B) ∼= HomD(A)(ΣkiY, iD(a)B) ∼= HomD(A)(ΣkiY,B) = 0

since i is fully faithful and η is an isomorphism on objects of L⊥J (and clearly M⊥ ⊆ L⊥J ). It
follows from Lemma 55 that aB ∈ L⊥, as required.

If we are willing to restrict ourselves to compact objects, we can prove the same result but
for arbitrary triangulated categories. The reader not familiar with Brown representability can
provide an elementary proof of the next result along the lines of (HRT,Theorem 33).

Theorem 118. Let T be a triangulated category with coproducts, S ⊆ T a nonempty set of
compact objects, and L = 〈S〉 the smallest localising subcategory of T containing S. Then L is a
bousfield subcategory of T .
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Proof. The triangulated category L is compactly generated (TRC3,Definition 9) by the set of
suspensions {ΣkY |Y ∈ S, k ∈ Z} and therefore satisfies the representability theorem. It is now
clear that L is a bousfield subcategory (TRC3,Lemma 29).

References

[ATJLSS00] Leovigildo Alonso Tarŕıo, Ana Jeremı́as López, and Maŕıa José Souto Salorio, Lo-
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