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Before proceeding, one should consult our notes on Hensel’s Lemma, where some subtle differ-
ences in definitions between Zariski & Samuel and Atiyah & Macdonald are discussed. In these
notes, a local ring is not assumed to be Noetherian and a ring is complete if every Cauchy se-
quence converges and the intersection ∩nmn is zero (these follow A&M, not Z&S). However, with
the conventions of Z&S the same statements with the same proofs are true. In Z&S local rings
are Noetherian but completeness does not include the intersection requirement. But all we need
is that A has one maximal ideal, limits for Cauchy sequences and ∩nmn = 0 - so either set of
hypothesis will do.

Definition 1. Let A be a local ring A with maximal ideal m. We call A an equicharacteristic
local ring if A has the same characteristic as its residue field A/m. A field of representatives for A
is a subfield L of A which is mapped onto A/m by the canonical mapping of A onto A/m. Since
L is a field, the restriction of this mapping to L gives an isomorphism of fields L ∼= A/m.

Lemma 1. Let A be an equicharacteristic local ring with maximal ideal m and characteristic
p 6= 0. If mp = (0) then A admits a field of representatives.

Proof. Let Ap be the set of all elements ap where a ranges over A. Then Ap is obviously a subring
of A. If ap is any nonzero element of A, then since mp = (0) we must have a /∈ m and consequently
a is a unit in A. If ay = 1 then yp is an inverse for xp in Ap, and therefore Ap is a subfield of A.
Among all the subfields of A containing Ap, Zorn’s Lemma produces a maximal subfield L. Let
ϕ : A −→ A/m be canonical. We claim that ϕ(L) = A/m.

Assume to the contrary that there is α ∈ A/m with α /∈ ϕ(L). Since αp ∈ ϕ(Ap) ⊆ ϕ(L) the
minimal polynomial of α over ϕ(L) is xp − αp (see our notes on purely inseparable extensions).
Let a ∈ A be a representative of α, ϕ(a) = α. Then a /∈ L and the isomorphism L ∼= ϕ(L) induces
a chain of ring isomorphisms

L[a] ∼= L[x]/(xp − ap) ∼= ϕ(L)[x]/(xp − αp) ∼= ϕ(L)(α)

Hence L[a] is a subfield of A, contradiciting the maximality of L. We conclude that ϕ(L) = A/m,
completing the proof.

Theorem 2. An equicharacteristic complete local ring A admits a field of representatives.

Proof. In the case in which A and A/m both have characteristic 0 the Theorem has already been
proved in a Corollary to Hensel’s Lemma. So we may assume that the characteristic of A and
A/m is a prime p 6= 0.

Since p ≥ 2 the maximal ideal m = m/m2 of the local ring A/m2 satisfies the condition
mp = (0). Clearly A/m2 satisfies the other conditions of the Lemma, so A/m2 admits a field of
representatives K2. For n ≥ 1 let ψn denote the canonical map A/mn+1 −→ A/mn, and notice
that

ψ−1
n (m/mn) = m/mn+1 (1)

For n ≥ 2 the ring A/mn is an equicharacteristic local ring. We now construct by induction on
n ≥ 2, a representative field Kn of A/mn such that ψn induces an isomorphism of Kn+1 onto Kn.

Suppose that Kn has already been constructed. The inverse image ψ−1
n (Kn) is a subring R

of A/mn+1 which contains the kernel p = mn/mn+1 of ψn. Let ξ be any element of R not in a.
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Then the image ξ′ of ξ under ψn is a nonzero element of Kn, and consequently is a unit in A/mn.
Hence ξ′ /∈ m/mn, and it follows from (1) that ξ /∈ m/mn+1, so ξ is a unit in A/mn+1. If η is the
inverse of ξ in A/mn+1 then ψn(η) ∈ Kn and so by definition η ∈ R. Thus ξ is invertible in R and
we have proved that R is a local ring with maximal ideal p. Since p = mn/mn+1 and m2n ⊆ mn+1

we have p2 = (0). Clearly both R and R/p ∼= Kn have characteristic p, so the Lemma shows the
existence of a representative field Kn+1 of R. Since R/p ∼= Kn it is easy to see that ψn induces an
isomorphism of Kn+1 onto Kn, and the canonical morphism A/mn+1 −→ A/m is the composition
of ψn and A/mn −→ A/m, so the fact that Kn is a representative field of A/mn implies that Kn+1

is a representative field of A/mn+1.
Since A is complete we have ring isomorphisms A ∼= Â ∼= lim←−A/m

n. So given any sequence
of elements (ηn)n≥1 with ηn ∈ A/mn there is precisely one element y ∈ A admitting ηn as an
mn-residue for all n. Set K1 = A/m and let η = η1 be any element of K1. Consider the elements

η2 = ψ−1
1 (η1), η3 = ψ−1

2 (η2), . . . ηn+1 = ψ−1
n (ηn), . . .

with ηi ∈ Ki for all i ≥ 1. Denote by u(η) the unique element of A defined by this sequence. It is
readily verified that u(0) = 0, u(1) = 1 and u(η+ η′) = u(η) + u(η′), u(ηη′) = u(η)u(η′), so u(K1)
is a subring of A. Furthermore, for every η 6= 0 in K1 there exists an element η′ in K1 such that
ηη′ = 1 whence u(η′) is the inverse of u(η) in u(K1). Therefore u(K1) is a subfield of A, and
by construction ϕ(u(K1)) = K1 = A/m where ϕ : A −→ A/m is canonical, so we have found a
representative field of A.

The following is Proposition 10.24 of A&M and Theorem 7 in Section 3 of Ch. VIII in Z&S.

Lemma 3. Let B be a ring, a an ideal of B, M an B-module, (Mn) an a-filtration of M . Suppose
that B is complete in the a-topology and that M is Hausdorff in its filtration topology. Suppose
also that G(M) is generated over G(B) by a finite set of homogenous elements ξ1, . . . , ξn of degrees
n(i). If xi ∈Mn(i) is equal to ξi in Mn(i)/Mn(i)+1 then the elements x1, . . . , xn generate M over
B.

Corollary 4. An equicharacteristic complete regular local ring A is either a field or has dimension
d ≥ 1 and is isomorphic to a formal power series ring over a field in d variables.

Proof. A regular local ring of dimension zero is a field, so assume d ≥ 1, let m be the maximal
ideal of A and let a1, . . . , ad be a regular system of parameters with m = (a1, . . . , ad). By the
previous Theorem, A admits a representative field K. From our notes on Analytic Independence
there is a morphism of rings

ϕ : K[[x1, . . . , xd]] −→ A

which is injective by Corollary 2 to Theorem 21, Section 9 (see our Regular local ring notes). The
subring B = K[[a1, . . . , ad]] of A is a complete regular local ring with maximal ideal n generated by
a1, . . . , ad (in B), so we have m∩B = n. Considering A as a B-module, we are in the situation of
the preceeding Lemma. We claim that Gm(A) is generated as a Gn(B)-module by the homogenous
element 1 of order zero. We have

Gn(B) = B/n⊕ n/n2 ⊕ . . .
Gm(A) = A/m⊕m/m2 ⊕ . . .

It is standard that Gm(A) = (A/m)[a1, . . . , ad]. So it suffices to show that any monomial
kan1

1 . . . and

d in the ai (which is a homogenous element of order
∑
ni in Gm(A)) belongs to the

submodule generated by 1. But the ai all belong to n and since K is a representative field
B/n ∼= K ∼= A/m, so we can manufacture such a monomial in Gn(B) and simply multiply it by
1 ∈ Gm(A) to produce the desired result. The preceeding Lemma now implies that A is generated
over B by 1, that is, A = B. So A is isomorphic to a formal power series ring over a field in d
variables, as required.
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