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In this short note we recall the definition of an ample sheaf and an ample family of sheaves.
Our notes on ample sheaves are essentially just a translation of EGA II 4.5.2, while the notes on
ample families are based on Illusie’s SGA 6 Exposé II 2.2.3 and parts of Thomason & Trobaugh’s
“Higher Algebraic K-Theory of Schemes and of Derived Categories”.
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1 Ample Sheaves

Let X be a scheme and L an invertible sheaf. Given a global section f ∈ Γ(X, L ) the set
Xf = {x ∈ X | germxf /∈ mxLx} is open (MOS,Lemma 29). The inclusion Xf −→ X is affine
(RAS,Lemma 6) and in particular if X is an affine scheme then Xf is itself affine. Given a
sequence of global sections f1, . . . , fn the open sets Xfi cover X if and only if the fi generate L
(MOS,Lemma 32).

Lemma 1. Let (X,OX) be a quasi-compact ringed space and F a sheaf of modules of finite type.
If F is generated by global sections then it can be generated by a finite number of global sections.

Proof. See (MOS,Definition 2) for the definition of a sheaf of modules of finite type. Let {si}i∈I

be a nonempty family of global sections of F which generate. Let Λ be the set of all finite subsets
of I and for each λ ∈ Λ let Fλ be the submodule of F generated by the si belonging to λ. This is
a direct family of submodules and clearly F = lim−→λ

Fλ, so it follows from (MOS,Lemma 57) that
F = Fλ for some λ. In other words, F can be generated by a finite number of global sections.

Lemma 2. Let (X,OX) be a quasi-noetherian ringed space, F a sheaf of modules on X and
{Fα}α∈Λ a direct family of submodules of F . If U ⊆ X is quasi-compact then

Γ

(
U,
∑
α

Fα

)
=
∑
α

Γ(U,Fα)

Proof. By (COS,Proposition 23) the functor Γ(U,−) : Mod(X) −→ OX(U)Mod preserves direct
limits, and since Mod(X) and Ab are both grothendieck abelian the direct limit of a direct family
of subobjects is just their categorical union (that is, their internal sum). One can also give a direct
proof along the lines of (SGR,Lemma 12).

Given a scheme X and a fixed invertible sheaf L , we define F (n) = F ⊗L ⊗n for any n ∈ Z.
This notation does not reflect the sheaf L , but this is unlikely to ever cause any confusion. Note
that if F is a sheaf of modules of finite type then the same is true of F (n) for any n ∈ Z.

Proposition 3. Let X be a concentrated scheme and L an invertible sheaf on X. The following
conditions are equivalent:
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(a) The open sets Xf for all f ∈ Γ(X, L ⊗n) with n > 0 form a basis for X.

(b) There are sections f ∈ Γ(X, L ⊗n) with n > 0 such that the Xf form an affine basis for X.

(c) There are sections f ∈ Γ(X, L ⊗n) with n > 0 such that the Xf form an affine cover for X.

(d) For any quasi-coherent sheaf F and n > 0 let Fn denote the submodule of F (n) generated
by elements of Γ(X, F (n)). Then F is the sum of the submodules Fn(−n) for n > 0.

(d’) The property (d) for every quasi-coherent sheaf of ideals on X.

(e) For any quasi-coherent sheaf F of finite type, there exists N > 0 such that for all n ≥ N
the sheaf F (n) is generated by global sections.

(f) For any quasi-coherent sheaf F of finite type, there exist integers n > 0 and k > 0 such that
F is a quotient of L ⊗(−n) ⊗Ok

X .

(f ’) The property (f) for every quasi-coherent sheaf of ideals of finite type.

Proof. (a) ⇒ (b) Given a point x find an affine open neighborhood x ∈ U and f ∈ Γ(X, L ⊗n)
with x ∈ Xf ⊆ U . The inclusion Xf −→ X is affine so Xf must be affine. (b) ⇒ (c) is trivial.
(c) ⇒ (d) The invertible sheaf L ⊗(−n) is flat, so Fn(−n) is a submodule of F (n)(−n) ∼= F .
Let global sections fi ∈ Γ(X, L ⊗ki) for various ki ≥ 1 be given, such that the Xfi are an affine
open cover of X. Fix one of these global sections f ∈ Γ(X, L ⊗k). Any quasi-coherent sheaf on
an affine scheme is generated by its global sections, so F |Xf

can be generated by global sections.
Since X is concentrated we can apply (H, II.5.14) (see also EGAI 9.3.1) to see that every element
of Γ(Xf ,F ) corresponds under the canonical isomorphism F ∼= F (km)(−km) to a section of the
form

t|Xf
⊗̇ (f |−1

Xf
)⊗m

for some m > 0 and t ∈ Γ(X, F (km)). In other words, every element of Γ(Xf ,F ) belongs to
Fkm(−km) for some m > 0. It follows that F is the sum of the submodules Fn(−n), n > 0, as
required. (d) ⇒ (d′) is trivial. (d′) ⇒ (a) Given an open set U ⊆ X and x ∈ U let I be the ideal
sheaf of the closed set X \ U (SI,Definition 1). This is quasi-coherent and moreover

X \ U = Supp(OX/I )

so Ix = OX,x. We can therefore find n > 0 and f ∈ Γ(X, I (n)) such that f(x) 6= 0 (meaning
germxf /∈ mxI (n)x). Since I (n) ⊆ L ⊗n this f can be considered as a global section in
Γ(X, L ⊗n). By construction x ∈ Xf ⊆ U so the proof is complete (we have Xf ⊆ U since outside
U , Iy ⊆ my).

(c) ⇒ (e) Since X is quasi-compact we can find a finite number of fi ∈ Γ(X, L ⊗ni) such that
the Xfi

are affine and cover X. By (MOS,Lemma 38) we may as well assume all these powers
ni are equal to a single integer k > 0. For each i the restriction F |Xfi

can by Lemma 1 be
generated by a finite number of global sections hij , and by EGAI 9.3.1 there is mij > 0 such that
hij ⊗̇ (fi|Xfi

)⊗mij can be lifted to a global section tij of F (kmij). Once again we can assume the
mij do not vary with i or j, so they are all equal to some fixed m0 > 0. The germ of fi at any
point of Xfi

is a unit, so it follows that the global sections tij ∈ Γ(X, F (km0)) generate F (km0).
In fact the argument shows that F (km) is generated by global sections for any m ≥ m0.

The sheaves F (1), . . . ,F (k − 1) are also quasi-coherent of finite type, so we can apply the
same process to these sheaves and increase m0 if necessary to work for all of them simultaneously.
That is, for m ≥ m0 the sheaves

F (km),F (km + 1), . . . ,F (km + k − 1)

are generated by global sections. Clearly then F (t) is generated by global sections for all t ≥ km0,
as required. (e) ⇒ (f) and (f) ⇒ (f ′) are trivial.
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(f ′) ⇒ (d′) Suppose that (d′) holds for all quasi-coherent sheaves of ideals of finite type, and
let I be a quasi-coherent sheaf of ideals. By (MOS,Corollary 64) we can write I as the sum∑

β Iβ of its quasi-coherent submodules of finite type. It follows that for any n > 0

I (n) =
∑

β

Iβ(n)

and hence by Lemma 2 we have In =
∑

β Iβ,n. Twisting back we deduce In(−n) =
∑

β Iβ,n(−n)
and summing over n shows that I is the sum of its submodules In(−n). So it suffices to prove
(d′) for ideals of finite type. But in this case by (f ′) there is n > 0 such that I (n) is generated
by a finite number of global sections, so In(−n) = I (n)(−n) = I and I is trivially the sum of
all its submodules In(−n) for n > 0.

Definition 1. Let X be a concentrated scheme and L an invertible sheaf on X. We say that
L is ample if it satisfies the equivalent conditions of Proposition 3. This property is stable under
isomorphism.

It is worth checking that the present definition of an ample sheaf agrees with the one given in
Hartshorne, which occurs in our notes as (PM,Definition 6).

Lemma 4. Let X be a noetherian scheme and L an invertible sheaf on X. Then L is ample if
and only if for every coherent sheaf F there is N > 0 such that F ⊗L ⊗n is generated by global
sections for n ≥ N .

Proof. Suppose that L is ample in the sense of Definition 1. Any coherent sheaf F is quasi-
coherent of finite type because it is locally finitely presented (MOS,Lemma 34), so Proposition
3(e) gives the desired property. Conversely, suppose that L is ample in the sense of Hartshorne
and let I be a quasi-coherent sheaf of ideals. This is trivially coherent, so it is easy to check that
condition (f) of Proposition 3 is satisfied for the sheaf I . Hence L is ample in the new sense,
and the proof is complete.

Example 1. Here are some examples of ample invertible sheaves:

• On an affine scheme any invertible sheaf is ample, because any quasi-coherent sheaf is gen-
erated by its global sections.

• Let X = Pn
k where k is a field. Up to isomorphism the only invertible sheaves on X are the

twisting sheaves O(`) for ` ∈ Z (DIV,Corollary 47), and of these it is precisely the ones with
` > 0 that are ample (PM,Example 2).

• Any quasi-projective scheme over a noetherian ring has an ample invertible sheaf (BU,Lemma
17).

2 Ample Families

Those schemes which admit ample invertible sheaves have many good properties. By generalising
the notion of an ample sheaf to an ample family of sheaves, we can extend many of these good
properties to a wider class of schemes. For the duration of the next proof, if we are given a family
of invertible sheaves {Lα}α∈Λ then we write F (α, n) for the sheaf F ⊗L ⊗n

α .

Proposition 5. Let X be a concentrated scheme and {Lα}α∈Λ a nonempty family of invertible
sheaves on X. The following conditions are equivalent:

(a) The open sets Xf for all f ∈ Γ(X, L ⊗n
α ) with α ∈ Λ, n > 0 form a basis for X.

(b) There is a family of sections f ∈ Γ(X, L ⊗n
α ) with α ∈ Λ, n > 0 such that the Xf form an

affine basis for X.
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(c) There is a family of sections f ∈ Γ(X, L ⊗n
α ) with α ∈ Λ, n > 0 such that the Xf form an

affine cover for X.

(d) For any quasi-coherent sheaf F and α ∈ Λ, n > 0 let Fα,n denote the submodule of
F (α, n) generated by the elements of Γ(X, F (α, n)). Then F is the sum of the submodules
Fα,n(α,−n) for α ∈ Λ, n > 0.

(d’) The property (d) for every quasi-coherent sheaf of ideals on X.

(e) For any quasi-coherent sheaf F of finite type there exist integers nα, kα > 0 and morphisms
ϕα : Okα

X −→ F (α, nα) such that for every x ∈ X some ϕα,x is surjective.

(e’) For any quasi-coherent sheaf F of finite type there exist integers nα, kα > 0 such that F is
a quotient of ⊕α(L ⊗−nα

α ⊗Okα

X ).

(e”) The property (e′) for every quasi-coherent sheaf of ideals of finite type.

Proof. The implications (a) ⇔ (b) ⇔ (c) ⇔ (d) ⇔ (d′) and (e′) ⇒ (e′′) ⇒ (d′) are either trivial or
follow in exactly the same way as in the proof of Proposition 3.

(c) ⇒ (e) Since X is quasi-compact we can find a finite number of fi ∈ Γ(X, L ⊗ni
αi

) such that
the Xfi

are affine and cover X. We can assume the ni are all equal to a fixed integer t > 0. Fix an
index α ∈ Λ occurring among the αi and argue as in Proposition 3 part (c) ⇒ (e) to see that we
can find an integer mα > 0 together with a finite number of global sections of F (α, tmα) which
generate this sheaf over every open set Xfi

for which αi = α. In other words, we have an integer
kα > 0 and a morphism

ϕα : Okα

X −→ F (α, tmα)

which is an epimorphism on stalks for every x ∈ Xfi
with αi = α. Setting nα = tmα we have

(e). Twisting back we have a morphism L ⊗−nα
α ⊗ Okα

X −→ F with the same property, and so
the induced morphism out of the coproduct over all α ∈ Λ is an epimorphism, which shows that
(e) ⇒ (e′) and completes the proof.

Definition 2. Let X be a concentrated scheme and {Lα}α∈Λ a nonempty family of invertible
sheaves on X. We say that this is an ample family if it satisfies the equivalent conditions of
Proposition 5. Clearly a single invertible sheaf L is ample if and only if it is an ample family.

Definition 3. We say that a concentrated scheme X is divisorial if there exists an ample family
of invertible sheaves on X. In particular a scheme admitting an ample invertible sheaf is divisorial.

Remark 1. Recall from (DIV,Definition 12) the definition of a locally factorial scheme. We refer
the reader to SGA for the proof of the following result: a separated noetherian scheme which is
locally factorial is divisorial. In particular a regular separated noetherian scheme is divisorial, and
therefore so is any nonsingular variety over a field.

Remark 2. Let X be a concentrated scheme and {Lα}α∈Λ an ample family of invertible sheaves.
It follows from Proposition 5(c) that we can find a finite subset Lα1 , . . . ,Lαn

which is also an
ample family. The advantage of having a finite family is that we can cover X with open sets on
which the Lαi are simultaneously free. Hence an arbitrary coproduct of tensor powers of the Lαi

will be a locally free sheaf (locally finitely free if the coproduct is finite).

A famous result of Serre says that on a projective scheme over a noetherian ring, every coherent
sheaf is a quotient of a finite direct sum of twisting sheaves O(n). This result is crucial in the
calculation of cohomology on a projective scheme, because it allows us to reduce to these twisting
sheaves which are very well-behaved. On an arbitrary scheme with an ample family of invertible
sheaves we have a similar result.

Proposition 6. Let X be a divisorial scheme. Then

(a) For any quasi-coherent sheaf F there is an epimorphism E −→ F with E locally free.
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(b) For any quasi-coherent sheaf F of finite type there is an epimorphism E −→ F with E
locally finitely free.

If {Lα}α∈Λ is a finite ample family of invertible sheaves then in both cases E may be taken to be
a coproduct of tensor powers of sheaves in the ample family.

Proof. We can by Remark 2 find a finite ample family {Lα}α∈Λ. If F is a quasi-coherent sheaf of
finite type then it is immediate from Proposition 5(e′) that F is a quotient of a finite coproduct of
(negative) tensor powers of sheaves from the ample family. This is by Remark 2 a locally finitely
free sheaf, which proves (b).

We can by (MOS,Corollary 64) write any quasi-coherent sheaf F as the sum of all its quasi-
coherent submodules Fβ of finite type. If we write each Fβ as a quotient of a locally free sheaf
Eβ using (b), then it is clear that the canonical morphism E = ⊕βEβ −→ F is an epimorphism.
We can assume that E is a coproduct of tensor powers of the sheaves in the ample family, which
ensures that E is locally free and proves (a).

Corollary 7. If X is a divisorial scheme and F a quasi-coherent sheaf then there is an epimor-
phism P −→ F with P quasi-coherent and flat.

If X is a scheme then the abelian category Mod(X) is generated by the sheaves OU corre-
sponding to open subsets U ⊆ X (MRS,Corollary 31). If X is concentrated then Qco(X) is
grothendieck abelian, and it is generated by a representative set of quasi-coherent sheaves of fi-
nite type (MOS,Proposition 66). This is a very large and impersonal set of generators, which is
improved on on the next result.

Lemma 8. Let X be a concentrated scheme and {Lα}α∈Λ an ample family of invertible sheaves.
The following set of quasi-coherent sheaves

C = {L ⊗n
α |α ∈ Λ, n ∈ Z}

generates Qco(X).

Proof. Let ϕ : F −→ G be a nonzero morphism of quasi-coherent sheaves. By Proposition 6
there is an epimorphism E −→ F where E is a coproduct of objects from C. We deduce a
morphism µ : L ⊗n

α −→ F for some α, n with ϕµ 6= 0, as required. Actually when you study the
proof of Proposition 6 it is clear that the set {L ⊗n

α }α∈Λ,n<0 actually generates Qco(X), as the
non-negative tensor powers are not necessary.
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