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Abelian categories are the most general category in which one can develop homological algebra.
The idea and the name “abelian category” were first introduced by MacLane [Mac50], but the
modern axiomitisation and first substantial applications were given by Grothendieck in his famous
Tohoku paper [Gro57]. This paper was motivated by the needs of algebraic geometry, where the
category of sheaves over a scheme are a central example of an abelian category. Although the
purpose of this note is mainly to fix the background on abelian categories needed in our notes on
algebraic geometry, we take some time to give the foundations of category theory in some detail.
For a full introduction to the subject see [Bor94], [Sch72], [Mit65], [Ste75].
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1 Categories

In our approach to the subject, there are two “stages” in the definition of a category. First, we
define a category as an algebraic object consisting of sets and maps satisfying some properties. In
this stage a category is something akin to an abelian group, and the only set-theoretic background
required is standard ZFC. It is only in the second stage that we introduce grothendieck universes
and prepare ourselves for constructions like the “category of all sets”.
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Definition 1. A category is an ordered tuple C = (O,M, d, c, ◦) consisting of a set O of objects, a
set M of morphisms, and two functions d, c : M −→ O called the domain and codomain functions
respectively. If f is a morphism with d(f) = A, c(f) = B then we write f : A −→ B. If we define
D = {(f, g) | f, g ∈ M and d(f) = c(g)} then the final piece of data is a function ◦ : D −→ M ,
called the composition law. We require that the following conditions be satisfied:

1. Matching Condition: If f ◦ g is defined, then d(f ◦ g) = d(g) and c(f ◦ g) = c(f).

2. Associativity Condition: If f ◦ g and h ◦ f are defined, then h ◦ (f ◦ g) = (h ◦ f) ◦ g.

3. Identity Existence Condition: For each object A there exists a morphism e such that d(e) =
A = c(e) and

(a) f ◦ e = f whenever f ◦ e is defined, and

(b) e ◦ g = g whenever e ◦ g is defined.

Definition 2. Let (O,M, c, d, ◦) be a category. The opposite category of C is the tuple (O,M, c, d, ◦′)
where ◦′ maps a pair (g, f) to f ◦ g.

Definition 3. Let C = (O,M, d, c, ◦),D = (O′,M ′, d′, c′, ◦′) be categories. A covariant functor
F : C −→ D is an ordered tuple F = (ϕ,ψ) consisting of functions ϕ : O −→ O′ and ψ : M −→M ′

satisfying the following conditions

1. If g : A −→ A′ then ψ(g) : ϕ(A) −→ ϕ(A′).

2. If f ◦ g is defined in C then ψ(f ◦ g) = ψ(f) ◦′ ψ(g).

3. For each A ∈ O we have ψ(1A) = 1ϕ(A).

A natural transformation ϕ : F −→ G between covariant functors is a function O −→ M ′ which
assigns to every object A of O a morphism ϕA : F (A) −→ G(A) such that for f : A −→ B in M
we have G(f)ϕA = ϕBF (f).

Definition 4. Let C = (O,M, d, c, ◦),D = (O′,M ′, d′, c′, ◦′) be categories. A contravariant func-
tor F : C −→ D is an ordered tuple F = (ϕ,ψ) consisting of functions ϕ : O −→ O′ and
ψ : M −→M ′ satisfying the following conditions

1. If g : A −→ A′ then ψ(g) : ϕ(A′) −→ ϕ(A).

2. If f ◦ g is defined in C then ψ(f ◦ g) = ψ(g) ◦′ ψ(f).

3. For each A ∈ O we have ψ(1A) = 1ϕ(A).

A natural transformation ϕ : F −→ G between contravariant functors is a function O −→ M ′

which assigns to every object A of O a morphism ϕA : F (A) −→ G(A) such that for f : A −→ B
in M we have G(f)ϕB = ϕAF (f).

Definition 5. Let C,D be categories. We denote by [C,D] the category of all covariant functors
C −→ D with natural transformations as morphisms.

Note that at the level of sets, a contravariant functor A −→ B is the same thing as a covariant
functor Aop −→ B. If F,G : A −→ B are contravariant functors then a function O −→ M ′ is a
natural transformation F −→ G if and only if it is a natural transformation of covariant functors
Aop −→ B. Therefore the categories of covariant functors Aop −→ B and contravariant functors
A −→ B are the same categories in a strict set-theoretic sense.

For the definition of a grothendieck universe, U-set and U-class, see (FCT,Section 4). In the
next definition we introduce the concept of a U-category. This terminology also appears in SGA4,
but means something different there. We explain in (FCT,Section 4) why we have chosen to adopt
a different definition.

2

file:"FoundationsForCategoryTheory.pdf"
file:"FoundationsForCategoryTheory.pdf"


Definition 6. Let U be a grothendieck universe and C = (O,M, d, c, ◦) a category. We call C a
U-category if O,M are U-classes and if for every pair of objects A,B of C the set HomC(A,B) is
a U-set.

Throughout our notes we work with the logical foundation given by the first order theory
ZFCU, as described in (FCT,Section 4). We fix a universe U (which is always assumed to contain
N) and work with the notation of the conglomerate convention (CC) for U unless there is some
indication to the contrary. Under this convention, the term “category” will always mean a U-
category and the term “portly category” will always mean a category in the sense of Definition
1. The CC fixes the concepts of set, class and conglomerate which we will use freely. Just to be
clear, let us restate the definition of a category (that is, a U-category) using the new language.

Definition 7. A category is an ordered conglomerate C = (O,M, d, c, ◦) consisting of a class O of
objects, a class M of morphisms, and two functions d, c : M −→ O called the domain and codomain
functions respectively. If f is a morphism with d(f) = A, c(f) = B then we write f : A −→ B.
If we define the class D = {(f, g) | f, g ∈ M and d(f) = c(g)} then the final piece of data is a
function ◦ : D −→ M , called the composition law. We require that the following conditions be
satisfied:

1. Matching Condition: If f ◦ g is defined, then d(f ◦ g) = d(g) and c(f ◦ g) = c(f).

2. Associativity Condition: If f ◦ g and h ◦ f are defined, then h ◦ (f ◦ g) = (h ◦ f) ◦ g.

3. Identity Existence Condition: For each object A there exists a morphism e such that d(e) =
A = c(e) and

(a) f ◦ e = f whenever f ◦ e is defined, and

(b) e ◦ g = g whenever e ◦ g is defined;

4. Smallness of Morphism Class Condition: For any pair (A,B) of objects, the class

HomC(A,B) = {f ∈M | d(f) = A and c(f) = B}

is a set (possibly empty).

We say that a conglomerate is small if it is in bijection with a set. Observe that a class is
small if and only if it is a set.

Definition 8. Let C = (O,M, d, c, ◦) be a category. We say that C is small if the class O is a set.
Then since M can be written as an O×O-indexed union of sets, M is a set. It follows that d, c, ◦
are all sets, and therefore C is itself a set.

Lemma 1. Let C,D be categories with C small. Then

(i) Any functor F : C −→ D is a set.

(ii) The conglomerate of all functors C −→ D is a class.

(iii) If F,G : C −→ D are functors then the conglomerate of all natural transformations F −→ G
is a set.

Proof. (i) Since F is an ordered pair, it suffices by the axioms of a universe to show that if X,Y
are classes with X a set, then any function f : X −→ Y is a set. But we can write f as the
following union

f =
⋃
x∈X

{(x, f(x))}

so it suffices to show that (x, f(x)) is a set for each x ∈ X. But by assumption Y is a class, so
f(x) ∈ Y is a set and therefore so is the pair (x, f(x)). (ii) is trivial. (iii) Suppose that F,G
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are covariant (the same argument works if they are contravariant). By definition any natural
transformation is a subconglomerate of the following union⋃

x∈O
{{x} ×HomD(F (x), G(x))}

which is a set-indexed union of sets, and is therefore a set. Since any subconglomerate of a set is
a set, it follows that the conglomerate of all natural transformations F −→ G is a set.

Remark 1. Let C,D be categories with C small. By Lemma 1 the portly category [C,D] is actually
a category.

Remark 2. A category may be empty, but to avoid unnecessary hypothesis we will assume all
categories are nonempty unless explicitly stated otherwise.

Remark 3. We have the usual categories Sets,Ab,Rng,Top and so on. One must be careful
to note that Sets is the category of all sets (meaning elements of U ) not the category of all
conglomerates. Similarly Ab is the category of all abelian groups built from sets, and so on. So
the definition of these basic categories depends on the choice of universe U . When we want to
refer to abelian groups or rings built out of classes (or even conglomerates) we will indicate this
explicitly.

The set of endomorphisms of an object A is denoted End(A). If C is an object of A, then the
functor A −→ Sets given by D 7→ Hom(C,D) we denote alternatively by HC or HomA(C,−).
If A is a category, then we denote the opposite category by Aop. If A,B are categories, then the
category of covariant functors A −→ B, with natural transformations as morphisms, is denoted
BA. With this notation, the category of contravariant functors A −→ B is denoted BAop

.

Definition 9. Let C be a category. A subcategory is a functor F : A −→ C which on objects is the
inclusion of a subclass, and on morphisms is the inclusion of a subset HomA(A,B) ⊆ HomC(A,B)
for every pair of objects A,B.

Definition 10. If A is an object in a category, then a subobject of A is a monomorphism A′ −→ A,
and a quotient of A is an epimorphism A −→ A′′. Given subobjects α : B −→ A and β : C −→ A,
we say α precedes β, and write α ≤ β, if α factors through β.

If α, β are two subobjects of A such that α ≤ β and β ≤ α, then α and β are isomorphic and
we say that they are isomorphic as subobjects. This defines an equivalence relation on subobjects
of A, and we write α = β if the two subobjects are equivalent in this way. Notice that α = −α
for any subobject α.

Definition 11. For any object A in a category C, we let SubA denote the conglomerate of
equivalence classes of subobjects under this relation. This conglomerate is nonempty and is
partially ordered by the relation ≤. If SubA is in bijection with a set for each object A, we say
that C is locally small. Dually, the category C is colocally small if its dual is locally small.

Definition 12. A terminal object in a category C is an object 1 such that for any C ∈ C there is
precisely one morphism C −→ 1. Dually, an initial object is an object 0 such that for any C ∈ C
there is precisely one morphism 0 −→ C. A zero object is an object which is both a terminal and
initial object. We say C has a zero if it contains a zero object.

Definition 13. Let C be a small category and let F : C −→ Sets be a functor. A subfunctor of
F is a functor P : C −→ Sets together with a natural transformation i : P −→ F such that for
C ∈ C the map iC : P (C) −→ F (C) is the inclusion of a subset.

Definition 14. A generator for a category C is an object U with the following property: for any
two distinct morphisms f, g : A −→ B there is a morphism x : U −→ A such that fx 6= gx. A
family of generators for C is a nonempty set of objects {Ui}i with the following property: for any
two distinct morphisms f, g : A −→ B there is an object Ui in the collection and x : Ui −→ A
such that fx 6= gx.
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Definition 15. A functor F : A −→ B which is faithful and distinct on objects is called an
embedding.

Definition 16. A subcategory A of C is replete when it is closed under isomorphisms. That is,
whenever C ∈ C is isomorphic to some A in A, we must have C ∈ A. The replete closure of a full
subcategory A is the smallest full, replete subcategory of C containing A, obtained by taking as
objects all of A together with any object of C isomorphic to an object of A.

Definition 17. Let C be a small category. Then there is a covariant functor called the Yoneda
embedding

HomC(−, C) : C −→ SetsC
op

which takes an object C ∈ C to the representable functor HC = HomC(−, C), and a morphism
α : C −→ C ′ to the natural transformation Hα : HC −→ HC′ defined by

(Hα)D(f) = αf

It is not difficult to check that this is a full embedding.

Definition 18. Let C be a category and A an object of C. We say that A is compact (or sometimes
small) if whenever we have a morphism u : A −→

⊕
i∈I Ai from A into a nonempty coproduct,

there is a nonempty finite subset J ⊆ I and a factorisation of u of the following form

A −→
⊕
j∈J

Aj −→
⊕
i∈I

Ai

where the second morphism is canonical.

1.1 Limits and Colimits

If I is a set of indices and M is an object of a category we sometimes denote a coproduct
∐
i∈IM

by IM when it exists, and a product
∏
i∈IM by M I when it exists.

Definition 19. A diagram scheme Σ is a triple (I,M, d) where I is a set whose elements are
called vertices, M is a set whose elements are called arrows, and d is a function from M to I × I.
If d(f) = (i, j) we say f begins at i and ends at j and write f : i −→ j. Both I, M are allowed to
be empty. A composite arrow is a nonempty sequence m1, . . . ,mn of arrows such that for each i,
the arrow mi ends where mi+1 begins. The collection of all composite arrows beginning at i and
ending at j is denoted by κ(i, j).

A diagram in a category A over a scheme Σ is a function D which assigns to each vertex i ∈ I
an object Di ∈ A and to each arrow m : i −→ j a morphism D(m) : Di −→ Dj . A morphism of
diagrams D −→ D′ over a scheme Σ is a morphism Di −→ D′

i for each vertex i with the property
that for any arrows m : i −→ j the following diagram commutes

Di
//

D(m)

��

D′
i

D′(m)

��
Dj // D′

j

A cone on a diagram D is an object L together with morphisms pi : L −→ Di for each i ∈ I such
that for any arrow m : i −→ j of Σ we have D(m)pi = pj . A cocone on D is an object C together
with morphisms ui : Di −→ C for each i ∈ I such that for any arrow m : i −→ j of Σ we have
ujD(m) = ui.

A limit for D is a cone pi : L −→ Di with the property that if qi : L′ −→ Di is any other
cone there is a unique morphism t : L′ −→ L such that pit = qi for all i. A colimit for D is a
cocone ui : Di −→ C with the property that if vi : Di −→ C ′ is any other cocone there is a unique
morphism t : C −→ C ′ such that tui = vi for all i.
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We associate to any diagram Σ a category C called the path category of Σ. The objects of C are
the vertices of Σ (so C may be the empty category) and for vertices i, j the morphisms Hom(i, j)
are defined to be κ(i, j) if i 6= j and κ(i, i) ∪ {1i} where composition is defined by concatenation
with 1i as the identities. It is easy to check that C is a small category.

Lemma 2. Let Σ be a diagram scheme and C the path category. For a category A there is a
bijection between diagrams in A over Σ and covariant functors C −→ A, in such a way that
morphisms of diagrams correspond to natural transformations of functors.

Proof. Associated to a diagram D is the functor defined on vertices by i 7→ Di, on arrows by
m 7→ D(m) and on composite arrows and identities in the obvious way. Associated to a functor
F : C −→ A is the diagram Di = F (i), D(m) = F (m). This is clearly a bijection.

Definition 20. Let C be a small category (possibly empty), F : C −→ A a covariant functor. A
cone for F is an object L together with morphisms pi : L −→ F (i) for each object i ∈ C with
the property that for any morphism m : i −→ j of C we have F (m)pi = pj . A cocone for F is an
object C together with morphisms ui : F (i) −→ C for each object i ∈ C with the property that
for any morphism m : i −→ j of C we have ujF (m) = ui.

A limit for F is a cone pi : L −→ F (i) through which every other cone factors uniquely, in the
above sense. A colimit for F is a cocone ui : F (i) −→ C through which every other cocone factors
uniquely.

Lemma 3. Let Σ be a diagram scheme and C the path category. If D is a diagram over Σ in A
and F : C −→ A the associated functor, then there is a bijection between cones, cocones, limits
and colimits of D and F respectively.

Proof. In either case a cone is a family of morphisms pi : L −→ F (i) = Di indexed by the vertices
of Σ (= objects of C) satisfying a certain property. One checks easily that the two properties are
equivalent, so a collection of morphisms is a cone for the diagram iff. it is a cone for the functor.
Similarly for cocones. It is clear that a cone (cocone) is a limit (colimit) for the diagram iff. it is
a limit (colimit) for the functor.

Lemma 4. The following statements are equivalent for a category A

(i) Every functor F : C −→ A from a (possibly empty) small category C has a limit.

(ii) Every diagram in A has a limit.

In which case we say A is complete. If we replace “small” by “finite” and diagrams by finite
diagrams, the statements are still equivalent, and in that case we say A is finitely complete.
Similarly the following two statements are equivalent

(i) Every functor F : C −→ A from a (possibly empty) small category C has a colimit.

(ii) Every diagram in A has a colimit.

With the statements still being equal when we replace “small” by finite and diagrams by finite
diagrams.

Proof. (i) ⇒ (ii) is trivial. For (ii) ⇒ (i) take the diagram scheme Σ whose vertices are the
objects of C and whose arrows are the morphisms of C. The functor F gives a diagram in A over
this diagram scheme, which has a limit, and this is clearly a limit for F .

Definition 21. A preorder is a nonempty small category in which every morphism set has at
most one element. This is equivalent to giving a set with a binary relation ≤ which is reflexive
and transitive and we freely identify the two, writing i ≤ j if Hom(i, j) 6= ∅. A directed set is a
preorder with the property that for every i, j there is k with i ≤ k and j ≤ k.

If I is a directed set, a direct system over I in a category A is a functor I −→ A. This consists
of the following data: an assignment of an object of A to every object of I, and a morphism πij
to every relation i ≤ j with the property that πii = 1 for all i and πjkπij = πik for all i ≤ j ≤ k.
A direct limit of this direct system is a colimit of the functor.
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Definition 22. Let {ui : Ai −→ A}i∈I be a nonempty set of subobjects in a category A (i.e.
monomorphisms). As usual we write ui ≤ uj if ui factors through uj . This defines a reflexive,
transitive relation on the set I. If this makes I into a directed set (i.e. for every i, j there is k
with ui ≤ uk, uj ≤ uk) we say that {ui} is a direct family of subobjects. We call a colimit of the
direct system i 7→ Ai a direct limit of the family of subobjects.

Definition 23. Let F : A −→ B be a functor. We say that F preserves direct limits if for every
directed set I and functor G : I −→ A, if the object C together with morphisms G(i) −→ C is a
colimit for G then the object F (C) and morphisms FG(i) −→ F (C) are a colimit for FG.

Remark 4. Take a direct system of groups, rings or modules {Ai, πij}. Let C be the set of pairs
(i, a) with a ∈ Ai subject to the equivalence relation that says (i, a) ∼ (j, b) iff. πik(a) = πjk(b)
for some i ≤ k, j ≤ k. Then this can be given the structure of a group, ring or module in such a
way that the canonical maps Ai −→ C are all morphisms of groups, rings, or modules and are a
colimit in their respective categories.

Remark 5. If Mi is a diagram of modules and pi : L −→Mi morphisms of modules which form a
limit for the diagram as a diagram of abelian groups and group morphisms, then the pi are a limit
of modules. The pi are clearly a cone, and any other cone of module morphisms factors uniquely
through L via a morphism of abelian groups. To see that this factorisation is actually a morphism
of modules, use the limit morphisms.

Definition 24. A nonempty small category C is filtered if it satisfies the following conditions

(i) For any pair of objects x, y ∈ C there is an object z and morphisms f : x −→ z, g : y −→ z.

(ii) For any pair of parallel morphisms f, g : x −→ y there is a morphism α : y −→ z with
αf = αg.

A filtered system over C in a category A is a functor C −→ A, and a filtered colimit of this filtered
system is colimit of the functor. In particular any directed set is filtered, so direct systems and
direct limits are special cases of filtered systems and filtered colimits.

1.2 Functor Categories

Definition 25. Let A,B be categories with A small. Then the category [A,B] has as objects the
covariant functors A −→ B and as morphisms the natural transformations. If η : S −→ T is a
morphism in [A,B] we say that η is a pointwise isomorphism (resp. monomorphism,epimorphism)
if ηA is an isomorphism (resp. monomorphism, epimorphism) in B for every A ∈ A. If B is a
preadditive category and ϕ,ψ : S −→ T are natural transformations, we can define a morphism
ϕ+ ψ : S −→ T by (ϕ+ ψ)A = ϕA + ψA and this makes [A,B] a preadditive category.

Definition 26. If A,B are preadditive categories with A small we denote the full subcategory of
[A,B] consisting of the additive functors by (A,B). Observe that this subcategory is replete (i.e.
any functor isomorphic to an additive functor is additive). This is a preadditive category in the
usual way. The category (A,B) may be empty, although it is nonempty if B has a zero object.

Lemma 5. Let A be a small category and B any category. A natural transformation η : T −→ S
is an isomorphism in [A,B] if and only if it is a pointwise isomorphism. If η is a pointwise
epimorphism (resp. pointwise monomorphism) then it is an epimorphism (resp. monomorphism).

1.2.1 Pointwise Limits and Colimits

Throughout this section A,B are categories with A small.

Definition 27. For A ∈ A we define the evaluation functor EA : [A,B] −→ B by EA(F ) = F (A)
and EA(η) = ηA.
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Suppose that D is a diagram in [A,B] over a diagram scheme Σ. Then for each A ∈ A we define
a diagram D(A) in B by D(A)i = Di(A) and D(A)(m) = D(m)A. That is, we simply evaluate the
diagramD at A. Suppose that for every A ∈ A the morphisms ρi,A : L(A) −→ Di(A) are a limit for
the diagram D(A). For every morphism α : A −→ A′ of A, the morphisms Di(α) give a morphism
of diagrams D(A) −→ D(A′), which induces a morphism of the limits L(α) : L(A) −→ L(A′).
This defines a functor L : A −→ B and we can define natural transformations ρi : L −→ Di by
(ρi)A = ρi,A. One checks easily that the object L together with the morphisms ρi is a limit of the
diagram D in [A,B].

Similarly, suppose that for every A ∈ A the morphisms τi,A : Di(A) −→ C(A) are a colimit for
the diagram D(A). For every α : A −→ A′ we induce a morphism of the colimits C(A) −→ C(A′)
as before, and this defines a functor C : A −→ B. We define natural transformations τi : Di −→ C
by (τi)A = τi,A and the object C together with these morphisms is a colimit of the diagram D in
[A,B].

Proposition 6. Let Σ be a diagram scheme. If B is Σ-complete or Σ-cocomplete, so is [A,B]. In
particular, if B is finitely complete, finitely cocomplete, complete or cocomplete then the same is
true of [A,B].

Lemma 7. Let D be a diagram in [A,B] and suppose we have a functor X : A −→ B together
with morphisms {αi : X −→ Di}i∈D. If the morphisms (αi)A are a limit for the diagram D(A)
for every A ∈ A then the morphisms αi are a limit in [A,B].

Lemma 8. Let D be a diagram in [A,B] and suppose we have a functor X : A −→ B together
with morphisms {αi : Di −→ X}i∈D. If the morphisms (αi)A are a colimit for the diagram D(A)
for every A ∈ A then the morphisms αi are a colimit in [A,B].

Lemma 9. Let D be a diagram in [A,B] and suppose X together with morphisms αi : X −→ Di

is a limit for the diagram. Suppose also that the diagram D(A) has a limit for every A ∈ A. Then
for every A ∈ A the object X(A) together with the morphisms (αi)A is a limit for D(A) in B.

Lemma 10. Let D be a diagram in [A,B] and suppose X together with morphisms αi : Di −→ X
is a colimit for the diagram. Suppose also that the diagram D(A) has a colimit for every A ∈ A.
Then for every A ∈ A the object X(A) together with the morphisms (αi)A is a colimit for D(A)
in B.

Remark 6. Suppose that that A,B are preadditive and that B has a zero object. Let Σ be a
diagram scheme and D a diagram in the category (A,B) over Σ. Suppose that B is Σ-complete
(resp. Σ-cocomplete). Then any limit (resp. colimit) of D in [A,B] also belongs to (A,B) and is
the limit (reps. colimit) there. That is, limits (resp. colimits) of additive functors are additive,
provided the codomain has the necessary limits (resp. colimits). In particular if 0 is a zero object
of B the functor sending every object of A to 0 and every morphism to the identity is a zero object
of (A,B), and we denote it by 0 also.

Proposition 11. Let A,B be preadditive categories with A small, and suppose that B has a zero
object. If B is Σ-complete or Σ-cocomplete for some diagram scheme Σ, then so is (A,B) and
the limits (resp. colimits) are computed pointwise. In particular if B is finitely complete, finitely
cocomplete, complete or cocomplete then so is (A,B).

1.3 Adjoint Functors

Definition 28. Let F : A −→ B be a functor and B an object of B. A reflection of B along F
is a pair (LB , ηB) consisting of an object LB ∈ A and a morphism ηB : B −→ F (LB) with the
following universal property: given any A ∈ A and morphism b : B −→ F (A) there is a unique
morphism a : LB −→ A in A making the following diagram commute

B
ηB

xxppp
ppp

p
b

&&LLLLLL

F (LB)
F (a)

// F (A)
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Definition 29. A functor L : B −→ A is left adjoint to a functor F : A −→ B if there exists a
natural transformation η : 1B −→ FL such that for every B ∈ B the pair (L(B), ηB) is a reflection
of B along F . A natural transformation η with this property is called a left adjunction of L to F .

Definition 30. Let F : A −→ B be a functor and B an object of B. A coreflection of B along F
is a pair (RB , εB) consisting of an object RB ∈ A and a morphism εB : F (RB) −→ B with the
following universal property: given any A ∈ A and morphism b : F (A) −→ B there is a unique
morphism a : A −→ RB in A making the following diagram commute

F (A)

b &&LLLLLL
F (a) // F (RB)

εBxxppppppp

B

Definition 31. A functor R : B −→ A is right adjoint to a functor F : A −→ B if there
exists a natural transformation ε : FR −→ 1B such that for every B ∈ B the pair (R(B), εB)
is a coreflection of B along F . A natural transformation ε with this property is called a right
adjunction of F to R.

Lemma 12. Let F : A −→ B and G : B −→ A be functors. There is a bijection between left
adjunctions of G to F and right adjunctions of G to F . In particular G is left adjoint to F if and
only if F is right adjoint to G.

Proof. Suppose we are given a left adjunction η : 1 −→ FG of G to F . Given A ∈ A the morphism
1F (A) : F (A) −→ F (A) induces a unique morphism εA : GF (A) −→ A with F (εA)ηF (A) = 1F (A).
It is easily checked that ε is a natural transformation GF −→ 1, and in fact it is a right adjunction
of G to F .

Given a right adjunction ε : GF −→ 1 of G to F and B ∈ B the morphism 1G(B) : G(B) −→
G(B) induces a unique morphism ηB : B −→ FG(B) with εGBG(ηB) = 1G(B). Once again it is
easy to check that η is a left adjunction of G to F . These two maps are inverse to one another,
so we have the desired bijection.

Definition 32. Let F : A −→ B and G : B −→ A be functors. An adjunction G �F is a
pair (η, ε) consisting of a left adjunction η of G to F and a right adjunction ε of G to F with η, ε
corresponding under the bijection of Lemma 12.

Lemma 13. Let F : A −→ B and G : B −→ A be functors and let (η, ε) be an adjunction
G �F . Then the pair (εop, ηop) is an adjunction F op �

Gop .

Proof. That is, we have functors F op : Aop −→ Bop and Gop : Bop −→ Aop and natural transfor-
mations εop : 1 −→ GopF op and ηop : F opGop −→ 1, and one checks easily that this data defines
an adjunction.

Theorem 14. Let F : A −→ B and G : B −→ A be functors. Then the following are equivalent

1. G is left adjoint to F .

2. F is right adjoint to G.

3. There exist natural transformations η : 1B −→ FG and ε : GF −→ 1A such that

Fε ◦ ηF = 1F , εG ◦Gη = 1G

4. There exists a family of bijections {θA,B}A∈A,B∈B

θA,B : HomA(GB,A) −→ HomB(B,FA)

which is natural in both variables.
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Proof. In fact we will show that there is a bijection between (a) adjunctions G �F , (b) pairs
of natural transformations η, ε with the property of (3) and (c) families of bijections θ with the
property of (4).

Given an adjunction (η, ε) : G �F it is clear that η, ε satisfy the condition of (3). Con-
versely, suppose that a pair of natural transformations η, ε is given satisfying this condition. It is
not difficult to check that η is a left adjunction of G to F and ε is a right adjunction of G to F ,
with η corresponding to ε under the bijection of Lemma 12. In other words, the pair (η, ε) is an
adjunction. This proves the bijection (a) ⇔ (b).

Let (η, ε) : G �F be an adjunction. For A ∈ A, B ∈ B define define maps

θA,B : HomA(GB,A) −→ HomB(B,FA), θA,B(a) = F (a)ηB
τA,B : HomB(B,FA) −→ HomA(GB,A), τA,B(b) = εAG(b)

One checks that τA,B = θ−1
A,B and that θ is natural in both variables. Conversely, given the natural

family of bijections θ, define ηB = θGB,B(1GB) and εA = θ−1
A,FA(1F (A)). One checks that (η, ε) is

an adjunction, and that these assignments are inverse to one another, establishing the bijection
(a) ⇔ (c) and completing the proof.

Lemma 15. Let F : A −→ B be a functor, and suppose G1, G2 : B −→ A are both left adjoint to
F , with adjunctions η1, η2. Then there is a canonical natural equivalence ρ : G1 −→ G2.

Proof. For every B ∈ B the following diagram

B
η2,B

wwooooooo η1,B

''OOOOOOO

FG2(B) FG1(B)

induces morphisms ρB : G1(B) −→ G2(B) and τB : G2(B) −→ G1(B) which are respectively
unique such that F (ρB)η1,B = η2,B and F (τB)η2,B = η1,B . One checks that ρ : G1 −→ G2 and
τ : G2 −→ G1 are natural transformations with ρτ = 1 and τρ = 1, so the proof is complete.

Remark 7. In particular if F : A −→ B and G : B −→ A are functors and η, η′ are the unit
transformations of two adjunctions G �F then there is a natural equivalence ρ : G −→ G
such that F (ρB)ηB = η′B . So up to canonical isomorphism, there is only one adjunction between
a given pair of functors.

Lemma 16. Let F : A −→ B be a functor, and suppose G1, G2 : B −→ A are both right adjoint
to F , with adjunctions ε1, ε2. Then there is a canonical natural equivalence ρ : G1 −→ G2.

Proof. For every B ∈ B the following diagram

FG1(B)

ε1,B ''OOOOOOO
FG2(B)

ε2,Bwwooooooo

B

induces morphisms ρB : G1(B) −→ G2(B) and τB : G2(B) −→ G1(B) which are respectively
unique such that ε2,BF (ρB) = ε1,B and ε1,BF (τB) = ε2,B . One checks that ρ : G1 −→ G2 and
τ : G2 −→ G1 are natural transformations with ρτ = 1 and τρ = 1, so the proof is complete.

Lemma 17. Let F : A −→ B and G : B −→ A be functors with F left adjoint to G. If F ∼= F ′

then F ′ is left adjoint to G, and if G ∼= G′ then G′ is right adjoint to F .

Proof. Let (η, ε) be an adjunction F �G and ρ : F −→ F ′ a natural equivalence. Then
ρG ◦ η : 1 −→ F ′G is a natural transformation and it is not difficult to check that it is a
left adjunction of F ′ to G. On the other hand if ρ : G′ −→ G is a natural equivalence then
ε ◦ Fρ : FG′ −→ 1 is a natural transformation and it is not difficult to check that it is a right
adjunction of F to G′.
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Proposition 18. Consider the following diagram of functors

A
F

44 B
G

ss

H

44 C
K

tt

where G is left adjoint to F and K is left adjoint to H. Then GK is left adjoint to HF .

Proof. Choose adjunctions G �
F and K

�
H represented by natural families of bijections

µ and θ respectively. For A ∈ A, C ∈ C we have the following bijection

HomA(GKC,A)
µA,KC // HomB(KC,FA)

θF A,C // HomC(C,HFA)

which is easily checked to be natural in both variables. This defines the required adjunction
between GK and HF .

Lemma 19. Let C,A be nonempty categories with C small. The functor ∆ : A −→ [C,A] defined
by ∆(A)(C) = A has a right adjoint if and only if every functor F : C −→ A has a limit.

Proof. Suppose every functor F : C −→ A has a limit. Choose one and denote it by L(F ). A
natural transformation of functors F −→ F ′ induces a morphism of the limits L(F ) −→ L(F ′)
and this defines the functor L : [C,A] −→ A (which is unique up to natural equivalence). The
natural transformation εF : ∆L(F ) −→ F defined to be pointwise the projection morphisms
L(F ) −→ F (C) of the limit, shows that L is right adjoint to ∆. On the other hand if ∆ has a
right adjoint L the object L(F ) together with the natural transformation εF : ∆L(F ) −→ F is a
limit for F .

Lemma 20. Let C,A be nonempty categories with C small. The functor ∆ : A −→ [C,A] of the
previous Lemma has a left adjoint if and only if every functor F : C −→ A has a colimit.

Proof. As before. If A admits colimits for all these functors, the functor [C,A] −→ A which takes
colimits is the left adjoint to ∆ (this functor is not unique, but any other choice is naturally
equivalent).

Proposition 21. Let A,B be categories and suppose we have functors F : A −→ B and G : B −→
A and an adjunction G

�
F with unit η : 1 −→ FG and counit ε : GF −→ 1. Then

(i) F is full iff. ε is a pointwise coretraction

(ii) F is faithful iff. ε is a pointwise epimorphism

and dually

(iii) G is full iff. η is a pointwise retraction

(iv) G is faithful iff. η is a pointwise monomorphism

Proof. By duality we need only prove (i) and (ii). For two objects C,D of A, consider the diagram

GF (C) //

εC

��

GF (D)

εD

��
C // D

and denote the natural isomorphism Hom(G(−),−) ∼= Hom(−, F (−)) by θ. Recall that for
α : C −→ D, we have F (α) = θ(αεC). If we put D = GF (C), then F (z) = ηF (C) for some z, and
it follows that zεC = 1C . Conversely, if q : F (C) −→ F (D) is given, let m = θ−1(q)z and observe
that F (m) = q. This proves (i).

For (ii), suppose αεC = βεC . Then F (α) = θ(αεC) = θ(βεC) = F (β), so α = β. Conversely,
if F (α) = F (β) then since θ is bijective, αεC = βεC , and if ε is pointwise epi, it follows that α = β
and F is faithful.

11



Proofs of the following results can be found in any decent reference on category theory.

Theorem 22. If A is a complete and locally small category with a cogenerator, then a functor
T : A −→ B has a left adjoint if and only if it is limit preserving.

Theorem 23. If A is a cocomplete and colocally small category with a generator, then a functor
T : A −→ B has a right adjoint if and only if it is colimit preserving.

Corollary 24. Let A be a complete locally small category with a cogenerator. Then A is cocom-
plete. Dually, any cocomplete colocally small category A with a generator is complete.

Proposition 25. Let F : C −→ D be a functor between abelian categories. Then

(i) If F has an exact left adjoint then F preserves injectives.

(ii) If F has an exact right adjoint then F preserves projectives.

Theorem 26. Let C,D be abelian categories, and assume that D has enough injectives. Let
F : C −→ D have right adjoint G. Then the following are equivalent:

(i) F is an exact functor.

(ii) G preserves injectives.

2 Abelian Categories

Definition 33. A preadditive category is a category C which has an abelian group structure on
each of its morphism sets such that composition is bilinear:

γ(α+ β) = γα+ γβ

(α+ β)γ′ = αγ′ + βγ′

These equations must be satisfied whenever the compositions make sense. The zero element of
a morphism set HomC(B,C) is denoted by 0BC or more often just by 0. If A is an object of a
preadditive category C, then HC and HC denote the group valued functors defined respectively
by D 7→ Hom(C,D) and D 7→ Hom(D,C).

Definition 34. An additive category is a preadditive category with finite products and coproducts.

We have the following simple consequences of the definition:

Lemma 27. The following hold in any preadditive category:

(i) For any objects A,B and C, 0BC0AB = 0AC ;

(ii) For any α : A −→ B, 0α = 0 and α0 = 0;

(iii) If the category has a zero object, the zero elements 0AB are the zero morphisms;

(iv) A morphism is monic iff. the zero morphism is its kernel, and epi iff. the zero morphism is
its cokernel;

(v) For any morphisms α, β,

α(−β) = −αβ
(−α)β = −αβ

(−α)(−β) = αβ

α(−1) = (−1)α = −α

(vi) The kernel of α−β is the equaliser of α and β, and similarly the cokernel is the coequaliser.
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Hence any preadditive category with zero and kernels (cokernels) has equalisers (coequalisers).
Notice that a ring is precisely a preadditive category with one object. In particular, the ring of
endomorphisms of any object in a preadditive category is a ring.

Definition 35. Given a commutative ring k a k-linear category is a preadditive category C
together with a left k-module structure on each abelian group HomC(X,Y ), such that the com-
position is bilinear. That is, so that we have

γ ◦ (r · α) = r · (γ ◦ α) = (r · γ) ◦ α

for any r ∈ k and composable morphisms γ, α.

Let {Ai}i∈I be a nonempty family of objects in a preadditive category. If
⊕
Ai is a coproduct

with injections ui, the morphisms 1Ai
: Ai −→ Ai and 0 : Aj −→ Ai, j 6= i, induce a morphism

pi :
⊕
Ai −→ Ai unique with the property that piuj = δij for any i, j. The morphism δij is

defined to be 1 if i = j and the zero morphism otherwise.

Definition 36. An object A and two nonempty families of morphisms ui : Ai −→ A, pi : A −→ Ai
in a category is called a biproduct of the Ai if the ui are a coproduct, the pi a product, and
piuj = δij for all i, j.

Proposition 28. Let A1, . . . , An be a finite collection of objects in a preadditive category. A
family of morphisms ui : Ai −→ A is a coproduct for the family iff. there is a family of morphisms
pi : A −→ Ai such that piuj = δij and

∑n
k=1 ukpk = 1A.

Proof. If A =
⊕
Ai with injections ui, the pj clearly exist. Also (

∑
ukpk)ui = ui = 1Aui so

the above equation holds. Conversely, if such pj exist, given morphisms fi : Ai −→ R, define
f : A −→ R by f =

∑
fkpk. Then fuk = fk and if f ′uk = fk,

f ′ = f ′1A = f ′
∑

ukpk =
∑

fkpk = f

as required.

The dual result is

Corollary 29. Let A1, . . . , An be a finite collection of objects in a preadditive category. A family of
morphisms pi : A −→ Ai is product for the family iff. there is a family of morphisms ui : Ai −→ A
such that piuj = δij and

∑n
k=1 ukpk = 1A.

Corollary 30. In a preadditive category every finite nonempty product and coproduct is a biprod-
uct.

Let C be a preadditive category. Given a positive integer n and an object A, we will use An

to denote a biproduct of n copies of A. Let I, J,K be finite nonempty sets. Consider a collection
of morphisms gij : Bj −→ Ci for i ∈ I, j ∈ J and suppose that biproducts

⊕
Bj ,

⊕
Ci exist. We

can fix j and then let the morphisms gij induce a morphism gj : Bj −→
⊕
Ci. The collection gj

then induce a morphism g :
⊕
Bj −→

⊕
Ci. This morphism is uniquely defined by the property:

pCi gi
B
j = gij ∀i, j

Where pCi , i
C
i and pBj , i

B
j denote the projections and injections for

⊕
Ci and

⊕
Bj respectively.

Let fjk : Ak −→ Bj be another collection of morphisms, suppose that the biproduct
⊕
Ak

exists and let f :
⊕
Ak −→

⊕
Bj the induced morphism. Let h be the composite h = gf . These

morphisms fit into the following diagram:

Ak bb
iAi ,p

A
i

""EE
EE

EE
EE

E Bj

iBj
��

Ci<<
iCi ,p

C
i

||zzzzzzzz

⊕
Ak

f // ⊕Bj
g //

pB
j

OO

pB
j′

��

⊕
Ci

Ak′

|| iA
i′ ,p

A
i′

<<yyyyyyyyy
Bj′

iB
j′

OO

Ci′
""iC

i′ ,p
C
i′

bbDDDDDDDD
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As a morphism between a coproduct and a product, h is uniquely determined by its components:

hik = pCi hu
A
k = pCi gfu

A
k

= pCi g(
∑
j

uBj p
B
j )fuAk =

∑
j

gijfjk
(1)

If we take the components gij of the morphism g and put them in an I × J matrix, where the
morphism in row i and column j is the component pCi gi

B
j , and do the same with the components

of f to produce a J ×K matrix, then (1) shows that the components of the composite gf are just
the entries in the matrix product.

Proposition 31. Let C be a preadditive category, A an object of C and n ≥ 1. Let An be a
biproduct of n copies of A. Then there is a canonical isomorphism of rings

Φ : EndC(An) −→Mn(R)
Φ(h)ij = pihuj

where R is the endomorphism ring of A and pi, ui are the projections and injections respectively.

Let {Ai}i∈I be a nonempty family of objects in a cocomplete preadditive category, and let the
coproduct

⊕
iAi have injections ui and projections pi. For any nonempty finite subset J ⊆ I

with coproduct
⊕

j∈J Aj , injections ûj and projections p̂j , it is not hard to check that the induced
monomorphism

⊕
j Aj −→

⊕
iAi is given by the sum∑

j∈J
uj p̂j

Definition 37. Let C be a category. An endomorphism θ : A −→ A is called idempotent if θθ = θ.
Clearly if θ is an idempotent in a preadditive category, then 1A − θ is also idempotent.

Proposition 32. Let u1 : A1 −→ A1

⊕
A2 and u2 : A2 −→ A1

⊕
A2 be the injections into the

coproduct in a preadditive category. Then u1p1 = θ is an idempotent, as is u2p2 = 1A − θ. Also,
u1 is the kernel of 1A − θ and u2 is the kernel of θ.

Definition 38. A category C is normal if every monomorphism is the kernel of some morphism,
and is conormal if every epimorphism is the cokernel of some morphism.

Definition 39. A category C has epi-mono factorisations if we can write any morphism f : A −→
B as an epimorphism followed by a monomorphism, as in a commutative triangle

C ��

��@
@@

@@
@@

A
f //

?? ??~~~~~~~
B

Definition 40. An abelian category is a preadditive category with zero, finite products, kernels
and cokernels, which is normal and conormal and has epi-mono factorisations.

Lemma 33. If ρ : A −→ C and φ : B −→ C are two morphisms in an arbitrary category, and
if the product A × B with projections pA, pB exists, then a morphism κ : D −→ A × B as in the
diagram

D //

��

κ

##FF
FF

FF
FF

F B

φ

��

A×B

pB

;;xxxxxxxxx

pA

{{xx
xx

xx
xx

x

A ρ
// C

is the equaliser of ρpA and φpB if and only if the outside square is a pullback.
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Hence any abelian category has pullbacks, and consequently all finite limits. Given a morphism
f : A −→ B and an epi-mono factorisation A −→ I −→ B of f , we call I an image of f , and
notice that it is the smallest subobject of B through which f factors, since

Lemma 34. Let A be an abelian category. Let f : A −→ B be a morphism with epi-mono
factorisation θψ. If f factors through any subobject B′ of B, I ≤ B′.

Proof. Let K −→ A be the kernel of f . Hence ψ is the cokernel of K −→ A. If f factors through
a subobject B′ −→ B, we must have K −→ A −→ B′ = 0, and hence I −→ B′ such that
A −→ B′ = A −→ I −→ B′. Since ψ is an epimorphism, it follows that I ≤ B′.

Definition 41. If f : A −→ B is a morphism and α : A′ −→ A is a monomorphism, we denote
by f(α) or f(A′) the image of the composite fα.

Lemma 35. Let A be an abelian category and suppose we have a diagram

A′ // A

��
B′ // B

where B′ −→ B is a monomorphism. The diagram can be completed to a pullback if and only if
A′ −→ A is the kernel of A −→ B −→ B/B′.

Definition 42. Let A be an object of an abelian category. If {αi : Ai −→ A}i∈I is a family of
subobjects of A (possibly empty), then a subobject γ : C −→ A is an intersection of the collection
if

(i) For all i ∈ I we have γ ≤ αi;

(ii) If δ is another subobject with δ ≤ αi for all i, then δ ≤ γ.

The intersection is uniquely determined up to equivalence of subobjects, and is denoted ∩αi or
by abuse of notation ∩Ai.

An abelian category has finite intersections since it has finite limits (take the limit of the
diagram consisting of all the morphisms αi : Ai −→ A. The morphism L −→ A out of the limit
is the intersection). If A is complete then it has intersections over any family of subobjects. A
subobject γ : C −→ A is an intersection in this sense iff. it is an intersection in the sense of
[Mit65] Chapter 1. If we replace the αi by equivalent subobjects then γ is still an intersection, so
“taking intersections” associates to any finite subset of SubA a well-defined element of SubA (if
A has all limits, then it associates an intersection to any subset). Notice that the intersection of
the empty family is the improper subobject 1A.

Definition 43. Let A be an object of an abelian category. If {αi : Ai −→ A}i∈I is a family of
subobjects of A (possibly empty), then a subobject γ : C −→ A is a union of the collection if

(i) For all i we have αi ≤ γ;

(ii) If δ is another subobject with αi ≤ δ for all i, then γ ≤ δ.

The union is uniquely determined up to equivalence of subobjects, and is denoted ∪αi or by abuse
of notation ∪Ai.

Any morphism 0 −→ A out of a zero object gives a union of the empty family. For a nonempty
family {αi : Ai −→ A}i∈I take a coproduct

⊕
iAi and induce

⊕
iAi −→ A. The image γ : I −→ A

of this morphism gives a union for the αi. Hence an abelian category has finite unions, and if A
is cocomplete it has arbitrary unions. It follows from [Mit65] II,2.8 that γ is also a union in the
more general sense of [Mit65] Chapter 1. Hence a subobject C −→ A is a union of a family {αi}
in our sense iff. it is a union in the sense of [Mit65]. This only works in an abelian category. If
we replace the αi by equivalent subobjects then γ is still a union, so “taking unions” associates
to any subset of SubA a well-defined element of SubA.
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Lemma 36. Suppose an object A of an abelian category has a nonempty family of subobjects
ui : Ai −→ A whose union is all of A. If λ : A −→ B is a morphism such that λui = 0 for all i,
then λ = 0.

Proof. The conditions imply that Ai ≤ Kerλ for each i. Hence A =
⋃
Ai ≤ Kerλ, implying that

λ = 0.

Proposition 37. Consider a pullback diagram

P
π2−−−−→ C2

π1

y yα2

C1 −−−−→
α1

C

in an abelian category. Then

(i) If α1 is a monomorphism, so is π2;

(ii) If α1 is an epimorphism, so is π2;

(iii) If α1 is the kernel of a morphism β : C −→ D, then π2 is the kernel of βα2.

Proof. We prove (ii) and leave (i) and (iii) as exercises. Form the product C1 × C2 and let
κ : P −→ C1 × C2 be Ker(α1p1 − α2p2):

P
π2 //

π1

��

κ

$$HHH
HHH

HHH
H C2

α2

��

C1 × C2

zz

i2,p2

::vvvvvvvvv

::
i1,p1

zzvvvvvvvvv

C1 α1
// C

notice that µ = α1p1−α2p2 is the morphism induced out of the coproduct by α1 and −α2. Hence
there is an exact sequence

0 −−−−→ P
κ−−−−→ C1 × C2

µ−−−−→ C −−−−→ 0

where µ is an epimorphism because µi1 = α1 is an epimorphism. Suppose ξ : C2 −→ X is a
morphism such that ξπ2 = 0. Then 0 = ξπ2 = ξp2κ implies that there is η : C −→ X with
ηµ = ξp2. This gives ηα1 = ηµi1 = 0, and α1 an epimorphism implies η = 0. But then ξp2 = 0,
and so ξ = 0.

Consider the particular case of the above where α1, α2 are monomorphisms. Then P is what we
called the intersection, and the image of the induced morphism C1 ×C2 −→ C is the union of α1

and α2. Since α1 = −α1 as subobjects, and since unions of equivalent subobjects are equivalent,
we may as well take the union to be the image of the morphism α1p1−α2p2. This means we have
an exact sequence

0 −−−−→ C1 ∩ C2 −−−−→ C1

⊕
C2

µ−−−−→ C1 + C2 −−−−→ 0

We say that the sum C1 + C2 is direct if the morphism C1 ⊕ C2 −→ C induced by the inclusions
is monic, and it follows that a union is direct iff. C1 ∩ C2 = 0.

Lemma 38. Let A,B be abelian categories. The following conditions on a functor F : A −→ B
are equivalent:

(i) F is additive;
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(ii) F preserves finite products;

(iii) F preserves finite coproducts.

Proof. Suppose F is additive. Then F preserves zero objects (since a zero object is characterised
by having its identity equal to its zero endomorphism), so it preserves the empty product and
coproduct. If {pi : A −→ Ai}ni=1 is a product with associated coproduct {ui : Ai −→ A}ni=1, then
pjui = δij and

∑
ukpk = 1A. Since F is additive we have F (pj)F (ui) = δij and

∑
F (uk)F (pk) =

1A, which means that the F (ui) are a coproduct and the F (pj) a product. It follows that F
preserves both finite products and coproducts.

Next we show that (ii) ⇔ (iii). Suppose F preserves finite products. Then F preserves zero
objects, and it preserves nonempty finite coproducts by the same argument used above. Similarly,
if F preserves finite coproducts then it preserves finite products.

It only remains to show (ii) ⇒ (i). Given α, β : A −→ B let ∆ : A −→ A ⊕ A be the
diagonal (so pi∆ = 1). Then α + β is the composite of ∆ with (α, β) : A ⊕ A −→ B. Since
F preserves finite products and coproducts, F (∆) : F (A) −→ F (A ⊕ A) is the diagonal and
F ((α, β)) = (F (α), F (β)). So in fact F (α+ β) = F (α) + F (β).

Let A be an abelian category with objects C1, . . . , Cn, D1, . . . , Dn and suppose we have mor-
phisms ϕi : Ci −→ Di. Take a biproduct {ui, pi} for the Ci and {vi, qi} for the Di. The coproduct
of the morphisms is the morphism induced C1⊕· · ·⊕Cn −→ D1⊕· · ·Dn out of the coproduct by
the composites viϕi and the product of the morphisms is the morphism into the product induced
by the composites ϕipi.

It is not difficult to check that
∑
i viϕipi satisfies both the properties which uniquely identify

the product and coproduct of the ϕi, so
∐
i ϕi =

∏
i ϕi and we denote both simply by ϕ1⊕· · ·⊕ϕn.

Remark 8. Let A be an abelian category. The product of monomorphisms is a monomorphism,
and the coproduct of epimorphisms is an epimorphism, so since finite products and coproducts
agree in A it follows that finite products and coproducts preserve both monomorphisms and
epimorphisms. Suppose we are given morphisms ϕ : A −→ B and ψ : A′ −→ B′. Then one checks
easily that Im(ϕ⊕ ψ) = Im(ϕ)⊕ Im(ψ) and Ker(ϕ⊕ ψ) = Ker(ϕ)⊕Ker(ψ). Moreover ϕ⊕ ψ
is an epimorphism (resp.monomorphism, isomorphism) if and only if both ϕ,ψ are epimorphisms
(resp. monomorphisms, isomorphisms). It follows that if we have two sequences

A
ϕ // B

ψ // C

A′
ϕ′

// B′
ψ′

// C ′

such that the following sequence is exact

A⊕A′
ϕ⊕ϕ′

// B ⊕B′
ψ⊕ψ′

// C ⊕ C ′

Then each of the original sequences is exact.

Definition 44. Let A be an abelian category. A subcategory B of A is an abelian subcategory
if it is abelian and the inclusion B −→ A is exact. In particular the inclusion preserves all finite
limits and colimits, monomorphisms and epimorphisms. It follows that a morphism in B is a
monomorphism (epimorphism) if and only if it is a monomorphism (epimorphism) in A, and a
sequence in B is exact in B if and only if it is exact in A.

Lemma 39. Let A be an abelian category, and let C be a full subcategory. Then C is an abelian
subcategory if and only if

(i) C contains a zero object of A;

(ii) For every morphism ϕ : A −→ B of objects of C, C contains some kernel and cokernel of ϕ
considered as a morphism of A;
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(iii) For every pair A,B of objects of C, some coproduct A⊕B in A belongs to C.

Proof. If C is an abelian subcategory, it is clear that these conditions must be satisfied. Conversely,
if C is a full subcategory with these properties, then C clearly has zero, finite products, kernels
and cokernels. If ϕ : A −→ B is a monomorphism in C, then its kernel in A is zero, so it must
also be a monomorphism in A. Similarly for epimorphisms. So C is trivially normal, conormal,
and has epi-mono factorisations.

Proposition 40. Let C be an abelian category. If C1 and C2 are subobjects of C, then there is a
canonical isomorphism

C1 + C2

C1

∼=
C2

C1 ∩ C2

Proof. With the use of Proposition 37 (iii) we get a commutative diagram with exact rows

0 // C1 ∩ C2

��

// C2

��

// (C1 + C2)/C1
// 0

0 // C1
// C1 + C2

// (C1 + C2)/C1
// 0

since the left square is a pullback. The exactness of the upper row gives the desired result.

Proposition 41. Let C be an abelian category, α2 : C2 −→ C a morphism and

0 −−−−→ C0
α0−−−−→ C1

α1−−−−→ C −−−−→ 0

an exact sequence. Then we can complete this to a commutative diagram with exact rows:

0 // C0
β0 // P

γ

��

β // C2

��

// 0

0 // C0 α0
// C1 α1

// C // 0

Proof. The right hand square is the pullback of α2 and α1, and β0 is induced into the pullback
by α0 and the zero morphism C0 −→ C2. To see that β0 is the kernel of β, let ξ : X −→ P be
such that βξ = 0. Then α1γξ = 0, so γξ = α0λ for some λ : X −→ C0. Now β0λ and ξ give the
same results when composed with γ and β, and hence ξ = β0λ. This shows that the upper row is
exact.

Theorem 42. Let B ≤ A2 ≤ A1 be subobjects of A1 in an abelian category. Then we have a
commutative diagram with exact rows:

0 // A2
//

��

A1
//

��

A1/A2
// 0

0 // A2/B // A1/B // A1/A2
// 0

In other words, A2/B is a subobject of A1/B and (A1/B)/(A2/B) = A1/A2.
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Proof. Apply the Nine Lemma [Mit65] I.16 to the diagram

0

��

0

��

0

��
0 // B

��

B //

��

0

��

// 0

0 // A2
//

��

A1
//

��

A1/A2
//

��

0

A2/B

��

A1/B

��

A1/A2

��
0 0 0

Lemma 43. Let F : A −→ B be an additive functor between abelian categories. If F preserves
direct limits then it preserves coproducts.

Proof. Suppose we are given a coproduct {ui : Xi −→ X}i∈I in A. Let Λ be the set of all finite
subsets of I ordered by inclusion. Then Λ is a directed set and the finite coproducts

⊕
j∈J Xj for

every J ∈ Λ form a direct system over Λ, with the induced morphism
⊕

j∈J Xj −→
⊕

k∈K Xk for
J ⊆ K. The canonical morphisms

⊕
j∈J Xj −→ X are a direct limit. Therefore we have

F (X) = F ( lim−→
J∈Λ

⊕
j∈J

Xj) ∼= lim−→
J∈Λ

⊕
j∈J

F (Xj) ∼=
⊕
i∈I

F (Xi)

as required.

2.1 Functor Categories

Proposition 44. Let A,B be categories with A small and B abelian. Then the preadditive category
[A,B] is abelian and a sequence of functors

F ′ −→ F −→ F ′′

is exact in [A,B] if and only if for every A ∈ A the following sequence is exact in B

F ′(A) −→ F (A) −→ F ′′(A)

Proof. We already know that [A,B] is preadditive with zero. It is finitely complete and cocomplete
since B is. Let φ : S −→ T be a morphism in [A,B] and for each A ∈ A let ψA : K(A) −→ S(A)
be a kernel of φA. Then for each A we have a pullback diagram

K(A)
ψA //

��

S(A)

φA

��
0 // T (A)

For a morphism α : A −→ A′ of A there is an induced morphism K(α) : K(A) −→ K(A′)
between the kernels, and defines a functor K : A −→ B together with a natural transformation
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ψ : K −→ S. By our notes on pointwise limits, ψ is a kernel of φ. Similarly, for each A let
τA : T (A) −→ C(A) be a cokernel of φA. Then we have a pushout diagram

S(A)

φA

��

// 0

��
T (A)

τA

// C(A)

We induce C on morphisms as above, and the functor C together with the morphism τ is a cokernel
for φ. This also proves the following facts

• If φ : S → T and ψ : K −→ S are morphisms in [A,B] then ψ is a kernel of φ if and only if
ψA is a kernel of φA for every A ∈ A.

• If φ : S → T and τ : T −→ C are morphisms in [A,B] then τ is a cokernel of φ if and only
if τA is a cokernel of φA for every A ∈ A.

Since kernels and cokernels are computed pointwise, it is clear that a morphism φ in [A,B] is
a monomorphism (resp. epimorphism) iff. it is a pointwise monomorphism (resp. pointwise
epimorphism). Since B is normal and conormal, it follows easily that the same is true of [A,B].
To show that [A,B] is abelian, it only remains to show that every morphism φ : S −→ T has
an epi-mono factorisation. For every A ∈ A let iA : I(A) −→ T (A) be the image of φA and let
jA : S(A) −→ I(A) be the factorisation, so that φA = iAjA. For a morphism α : A −→ A′ there
is a unique morphism I(A) −→ I(A′) making the following diagram commute

I(A)

##GG
GG

GG
GG

G

��

S(A)

;;wwwwwwwww
//

��

T (A)

��

I(A′)

##GG
GG

GG
GG

G

S(A′)

;;wwwwwwwww
// T (A′)

This defines a functor I and natural transformations j : S −→ I, i : I −→ T . It is clear that this
is an epi-mono factorisation of φ, as required. The statement about exact sequences is now easily
checked.

Corollary 45. Let A,B be preadditive categories with A small and B abelian. Then the preadditive
category (A,B) is an abelian subcategory of [A,B]. In particular a sequence in (A,B) is exact if
and only if it is pointwise exact.

Proof. We already know that (A,B) is preadditive with zero. It is finitely complete and cocomplete
since B is. If φ : S −→ T is a morphism in (A,B) then any kernel K −→ S in [A,B] is additive
and is a kernel in (A,B). Similarly for cokernels. It follows that a morphism K −→ S in (A,B) is
a kernel of φ in (A,B) if and only if it is the kernel in [A,B] (same for cokernels). In particular φ
is a monomorphism (resp. epimorphism) in (A,B) if and only if it is a pointwise monomorphism
(resp. pointwise epimorphism). Normality and conormality are easily checked, and any image of
φ in [A,B] is also additive, so we get epi-mono factorisations. Therefore (A,B) is abelian. We
have also showed that the inclusion (A,B) −→ [A,B] is exact, so (A,B) is an abelian subcategory
of [A,B].

Lemma 46. Let A be an abelian category and {ϕi : Ai −→ Bi}1≤i≤n a finite set of morphisms.
Then
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(a) Ker(
∏n
i=1 ϕi) =

∏n
i=1Ker(ϕi). If A is complete this is true for any product.

(b) Coker(
⊕n

i=1 ϕi) =
⊕n

i=1 Coker(ϕi). If A is cocomplete this is true for any coproduct.

(c) Im(
⊕n

i=1 ϕi) =
⊕n

i=1 Im(ϕi).

Proof. (a) is a special case of Lemma 19, while (b) is a special case of Lemma 20. (c) follows from
the fact that taking finite coproducts (which are also finite products) preserves monomorphism
and epimorphisms.

Let A be a cocomplete abelian category and I a directed set. The functor category [I,A] is
abelian and the colimit functor C : [I,A] −→ A preserves all colimits. A morphism of [I,A] is a
monic (resp. epi) iff. it is pointwise monic (resp. epi).

2.2 Grothendieck’s Conditions

In [Gro57] Grothendieck introduced several conditions on abelian categories, which have since
found a central place in homological algebra. The only conditions we will use are Ab4 and Ab5
(since Ab3 simply says that an abelian category A is cocomplete, and we prefer this terminology).

Definition 45. We say an abelian category A satisfies Ab4, or has exact coproducts, if it is
cocomplete and if for every nonempty set I and family of monomorphisms {ui : Ai −→ Bi}i∈I the
induced morphism between the coproducts

⊕
iAi −→

⊕
iBi is a monomorphism. Equivalently,

the “take coproducts” functor [I,A] −→ A, which is always right exact, is exact. This condition
is equivalent to the condition C1 given in [Mit65] Chapter 3.

Dually we say that A satisfies Ab4∗ if the dual abelian category Aop satisfies Ab4. To be clear,
we write this definition out in full.

Definition 46. We say an abelian category A satisfies Ab4∗, or has exact products, if it is
complete and if for every nonempty set I and family of epimorphisms {ui : Ai −→ Bi}i∈I the
induced morphism

∏
iAi −→

∏
iBi is an epimorphism. Equivalently, the “take products” functor

[I,A] −→ A, which is always left exact, is exact.

Example 1. The categories Ab and RMod,ModR for a ring R clearly have exact coproducts
and products. That is, they satisfy Ab4 and Ab4∗.

Definition 47. We say an abelian category A satisfies Ab5, or has exact direct limits, if it is
cocomplete and if for every directed set I the colimit functor [I,A] −→ A is exact. Equivalently,
this functor preserves monomorphisms for all directed sets I. This condition is equivalent to the
condition C3 given in [Mit65] Chapter 3.

Lemma 47. Let A be a small category and B an abelian category. If B has exact products, exact
coproducts or exact direct limits then so does the abelian category [A,B]. If in addition A is
preadditive then the same statements apply to (A,B).

Proof. Using the fact that limits and colimits in these categories are computed pointwise, these
statements are easily checked.

2.3 Grothendieck Categories

Definition 48. An abelian category C is grothendieck if it satisfies Ab5 and has a generator. This
property is stable under equivalence of categories.

Remark 9. In a cocomplete abelian category C the existence of a generator U is equivalent to
the existence of a generating set {Ui}i∈I , since the coproduct of a set of generators is a generator.

Theorem 48. Any grothendieck abelian category A has the following properties

(i) A is locally small and colocally small.
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(ii) A has enough injectives.

(iii) A has an injective cogenerator.

(iv) A is complete.

Proof. (i) [Mit65] Theorem II 15.1 and Proposition I 14.2. (ii) [Mit65] Theorem III 3.2. (iii)
[Mit65] Corollary III, 3.4. (iv) follows from (LOR,Corollary 27) or alternatively Corollary 24.

Theorem 49. Let T : A −→ B be a functor between grothendieck abelian categories. Then

(i) T has a right adjoint if and only if it is colimit preserving.

(ii) T has a left adjoint if and only if it is limit preserving.

Proof. Theorem 22 and its dual Theorem 23 with Theorem 48.

Proposition 50. Let A be a grothendieck abelian category with a set of generators {Ui}i. An
object E is injective if and only if for every monomorphism α : C −→ Ui and morphism ϕ : C −→
E, there exists ϕ′ : Ui −→ E such that ϕ′α = ϕ.

Proof. For a proof see [Ste75] V. 2.9.

Proposition 51. Let A be a grothendieck abelian category. Given any family of objects {Ai}i∈I
the induced morphism

⊕
i∈I Ai −→

∏
i∈I Ai is a monomorphism.

Proof. For a proof see [Mit65] III. 1.3.

Proposition 52. Let A be a grothendieck abelian category. If {Ai}i is a direct family of subobjects
of A and f : B −→ A is a morphism, then

f−1(
⋃
Ai) =

⋃
f−1Ai

Proof. For a proof see [Mit65] III. 1.6.

Proposition 53. Let A be a grothendieck abelian category, {Ai, µij}i∈I a direct system in A, and
{πi : Ai −→ A}i∈I a direct limit of the system. Then for i ∈ I we have

Ker(πi) =
⋃
i≤j

Ker(µij)

Proof. For a proof see [Mit65] III. 1.7.

Corollary 54. Let A be a grothendieck abelian category, {Ai, µij}i∈I a direct system in A, and
{πi : Ai −→ A}i∈I a direct limit of the system. If each µij is a monomorphisms, so is each πi.

Proposition 55. Let A,B be categories with A small and B grothendieck abelian. Then [A,B] is
grothendieck abelian.

Proof. We already know that [A,B] is cocomplete abelian by Proposition 44 and Proposition 6.
Using the fact that direct limits are computed pointwise, it is not hard to check that [A,B] satisfies
Ab5, so it only remains to show that this category has a set of generators. Choose a generator U
of B and define for every A ∈ A a functor SA : A −→ B by

SA(Q) = Hom(A,Q)U

That is, take a coproduct of copies of U indexed by the elements of the set Hom(A,Q) (if this
set is empty, then SA(Q) is the empty coproduct 0). We denote the injection of the copy of U
corresponding to a morphism f : A −→ Q by uf : U −→ SA(Q). Given a morphism ϕ : Q −→ Q′

let SA(ϕ) : SA(Q) −→ SA(Q′) be the unique morphism with SA(ϕ)◦uf = uϕf for every morphism
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f : A −→ Q. It is not difficult to check that this defines a functor SA : A −→ B, and we claim
that {SA}A∈A is a set of generators for [A,B].

Let a nonzero morphism f : S −→ T of [A,B] be given, and let A ∈ A be such that fA :
S(A) −→ T (A) is nonzero. Then by definition there is a morphism g : U −→ S(A) in B with
fAg 6= 0. For each Q ∈ A define a morphism tQ : SA(Q) −→ S(Q) to be the unique morphism
with tQ ◦ uf = S(f)g for every morphism f : A −→ Q. This defines a natural transformation
t : SA −→ S and it is easy to see that ft 6= 0, as required.

Proposition 56. Let A,B be preadditive categories with A small and B grothendieck abelian.
Then (A,B) is an abelian category satisfying Ab5.

Proof. We already know that (A,B) is a cocomplete abelian category by Corollary 45 and Propo-
sition 11. One checks the condition Ab5 as in Proposition 55.

Lemma 57. Any grothendieck abelian category has exact coproducts.

Proof. A grothendieck abelian category is complete by Theorem 48, so the result is [Mit65] Corol-
lary III, 1.3.

Example 2. It follows from Lemma 57 that for any topological space X the category Ab(X) of
sheaves of abelian groups on X has exact coproducts. Similarly if (X,OX) is a ringed space then
the category Mod(X) of sheaves of OX -modules has exact coproducts (one can show this directly
by looking at stalks). In general these categories do not have exact products.

2.4 Portly Abelian Categories

Let C be a portly category. It is clear what we mean if we say that C is preadditive, additive, or even
abelian. If C,D are portly categories then from Definition 5 we have the portly category [C,D],
which has a canonical preadditive structure if D is preadditive. The analogues of Proposition 44
and Corollary 45 are also true:

Proposition 58. Let A,B be portly categories with B abelian. Then the preadditive portly category
[A,B] is abelian and a sequence is exact if and only if it is pointwise exact.

Corollary 59. Let A,B be preadditive portly categories with B abelian. Then the preadditive
portly category (A,B) is an abelian subcategory of [A,B]. In particular a sequence in (A,B) is
exact if and only if it is pointwise exact.

3 Reflective Subcategories

Definition 49. Let C be a category. A reflective subcategory of C is a full, replete subcategory
A such that the inclusion i : A −→ C has a left adjoint. The left adjoint, generally denoted by
a : C −→ A, is called the reflection.

That is, A is full, closed under isomorphisms, and for each C ∈ C there is a canonical choice
of aC ∈ A and a morphism ηC : C −→ aC such that any other morphism from C to an element
of A factors uniquely through C −→ aC. Since A is full, we can assume that the reflection aA of
any A ∈ A is itself, and hence that ηA = 1A for all A ∈ A. It then follows that aα = α for any
morphism α between objects of A.

Some authors do not require repleteness in Definition 49. To see that this is unnecessary,
suppose that A is a full subcategory of C whose inclusion has a left adjoint. Let A′ be the replete
closure of A. To see that this is a reflective subcategory, we assign to C ∈ C the same object
aC ∈ A ⊆ A′ and the same morphism C −→ aC. It is easy to see that the necessary uniqueness
property still holds, and hence that A′ is reflective.

Lemma 60. Let A be a subcategory of C whose inclusion has a left adjoint. Let A′ be the full,
replete subcategory formed from A by adding any object isomorphic to an object of A. Then A′ is
a reflective subcategory of C.
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One reason reflective subcategories are nice because of the relationship between their limits,
and limits in the ambient category:

Lemma 61. A morphism in a reflective subcategory A ⊆ C is a monomorphism if and only if it
is a monomorphism in C.

Proposition 62. Let A be a reflective subcategory of C. If a diagram D in A has a limit in C,
then this limit is in A and is the limit for D in A.

Proof. Let αi : L −→ Di be a limit for D in C and let L′ = a(L). Then by definition of a reflective
subcategory, there are morphisms α′i : L′ −→ Di such that α′iηL = αi, where η : 1 −→ ia is
canonical. It is easy to see that α′i defines a compatible family for the diagram in C, and thus
induces a morphism α : L′ −→ L. For each i we have αiαηL = α′iηL = αi, and consequently
αηL = 1L. We wish to show that ηLα = 1L. Since ηL′ = 1L′ , a(ηL) = 1L′ . Then we have

ηLα = a(α)ηL′ = a(αηL) = a(1L) = 1L′

this proves that ηL is an isomorphism, and consequently α′i : L′ −→ Di is a limit for D in A.
Since A is replete, it also follows that L ∈ A and is the limit for D there.

Proposition 63. Let A be a reflective subcategory of C. If a diagram D in A has a colimit
Di −→ L in C, then a colimit for D in A is given by the family Di −→ L −→ aL.

Proof. Since a has a right adjoint, it preserves colimits. Since by assumption a is the identity on
A, and ηA = 1A for A ∈ A, the family aDi −→ aL is a colimit for the diagram a(D) = D in A.
Since

aDi −→ aL = Di −→ L −→ aL

we are done.

In particular, any terminal object of the ambient category ends up in A, and the reflection of
an initial object is an initial object. Reflective subcategories are intimately related to localisation,
both in abelian categories and topoi. In these cases, it is a special type of reflective subcategory
that is of interest:

Definition 50. Let C be a category. A giraud subcategory of C is a reflective subcategory for
which the left adjoint a to the inclusion functor preserves finite limits.

Recall ([Mit65] II, 6.7) that a functor between abelian categories preserves finite limits if and
only if it preserves kernels. Such functors are called left exact. Hence in this case a giraud
subcategory is a full replete subcategory for which the inclusion has an exact left adjoint.

Theorem 64. Let A be a giraud subcategory of an abelian category C. Then A is an abelian
category. If C is Ab5 then so is A.

Proof. The zero object of C is a terminal object, hence belongs to A, and is clearly a zero object
there. By Propositions 62 and 63 A has kernels, cokernels and finite biproducts. To prove A
abelian it suffices to show that A is normal and conormal (see [Mit65] I, 20.1). Let A −→ B be
a monomorphism in A, hence in C. Then A −→ B is the kernel of some morphism B −→ B′

in C. By assumption on a, this means that aA −→ aB is the kernel in A of aB −→ aB′. But
aA −→ aB is just A −→ B. This shows that A is normal.

For conormality, let A −→ B be an epimorphism in A. Then its cokernel in A is zero. By
Proposition 63 this cokernel is the composition B −→ B′ −→ aB′ where B −→ B′ is the cokernel
in C. Hence aB′ = 0. Consider the sequence

A′ −→ A −→ I −→ B −→ B′

where I is the image of A −→ B in A and A′ −→ A is the kernel in either A or C. Then aI −→ aB
is the kernel of aB −→ aB′ by assumption on a. But since aB′ = 0, this shows that aI −→ aB
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is an isomorphism. Since a is cokernel preserving, aA −→ aI is the cokernel in A of aA′ −→ aA.
Since aA −→ aI −→ aB = aA −→ aB = A −→ B and

aA′ −→ aA = A′ −→ A

this establishes that A is conormal.
Now suppose that C is Ab5. To prove that A is Ab5, it suffices to show that if D −→ D′

is a monomorphism of direct systems in A, then the induced morphism of the colimits in A
is a monomorphism. We know that the induced morphism L −→ L′ of the colimits in C is a
monomorphism, since C is Ab5. But the induced morphism in A is just aL −→ aL′, which is a
monomorphism since a preserves kernels. Hence A is Ab5.

Corollary 65. A giraud subcategory of a Grothendieck category is itself a Grothendieck category.

Proof. One need only show that the reflection of a generator is a generator, which is trivial.

Again, we gain no extra generality by considering subcategories which are not replete:

Lemma 66. Let A be a subcategory of C whose inclusion has an exact left adjoint. Let A′ be the
full, replete subcategory formed from A by adding any object isomorphic to an object of A. Then
A′ is a giraud subcategory of C.

Proof. We already know that A′ is reflective, where the reflection of C into A′ is simply the
composite of C −→ A followed by the inclusion A −→ A′. This composite is exact, since it is clear
that if a morphism is monic in A it is also monic in A′.

4 Finiteness Conditions

In the theory of modules, objects satisfying certain finiteness conditions play a central role. For
example: noetherian modules, artinian modules, modules of finite length and finitely generated
modules. To generalise these conditions to an arbitrary grothendieck abelian category, we must
first understand the subobject lattices of objects. As we observed in Definition 11 the conglomerate
SubA of subobjects up to equivalence is not necessarily a set. So in this section we temporarily
drop the conglomerate convention. That is, there will no reference to “classes” or “conglomerates”
and the term “set” has its usual meaning in ZFC. In particular, a “category” is just a special kind
of tuple of sets, as defined in Definition 1.

Definition 51. Let P be a partially ordered set and S ⊆ P a subset (possibly empty). An
intersection for the set S is an element z ∈ P with z ≤ s for every s ∈ S, with the property that
if t ≤ s for every s ∈ S then t ≤ z. If an intersection exists it is unique, and we denote it by

∧
S.

A union for the set S is an element z ∈ P with s ≤ z for every s ∈ S, with the property that if
s ≤ t for every s ∈ S then z ≤ t. If a union exists it is unique, and we denote it by

∨
S.

Definition 52. A lattice P is a nonempty partially ordered set with binary unions and intersec-
tions. Equivalently, P has all nonempty finite unions and intersections. A morphism of lattices
f : P −→ Q is a function with f(x ∨ y) = f(x) ∨ f(y) and f(x ∧ y) = f(x) ∧ f(y) for every pair
x, y ∈ L. It is clear that the operations ∧ and ∨ are commutative and associative.

Remark 10. Let P be a lattice, and observe that given x, y ∈ P we have x ≤ y if and only if
x∧y = x if and only if x∨y = y. In particular any lattice morphism f : P −→ Q has the property
that if x ≤ y then f(x) ≤ f(y). It is clear that a morphism of lattices is an isomorphism if and
only if it is a bijection with the property that f(x) ≤ f(y) implies x ≤ y.

Definition 53. A sublattice of P is a nonempty subset Q of P with the induced partial order,
which is closed under binary unions and intersections. Then Q is clearly a lattice, and the inclusion
Q −→ P is a morphism of lattices.
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Any nonempty partially ordered set P becomes a category in the usual way, and we will
refer to it as a category without further mention. In this context, an intersection for a (possibly
empty) subset S ⊆ P is the same thing as a product, and a union is a coproduct. So a lattice
is a nonempty partially ordered set with binary products and coproducts, and a morphism of
lattices is as a functor preserving binary products and coproducts. If a lattice has an initial (resp.
terminal) object we denote it by 0 (resp. 1).

Definition 54. Let L be a lattice with initial and terminal objects. If a ∈ L, then a complement
of a in L is an element c ∈ L such that a ∧ c = 0 and a ∨ c = 1. If every element of L has a
complement we say that L has complements.

Example 3. Let L be a lattice and a, b elements of L with a ≤ b. Then

[a, b] = {x ∈ L | a ≤ x ≤ b}

is a sublattice of L, called the interval between a and b.

4.1 Modular Lattices

Definition 55. Let L be a lattice. Given elements x, a, b ∈ L it is clear that

(x ∧ b) ∨ a ≤ (x ∨ a) ∧ b for all x ∈ L and a ≤ b

We say that L is a modular lattice if this is always an equality. It is clear that any interval in
a modular lattice is a modular lattice. The property of being modular is stable under lattice
isomorphism.

Proposition 67. Let a and b be elements of a modular lattice. Then there is a lattice isomorphism
[a ∧ b, a] −→ [b, a ∨ b].

Proof. Define α : [a ∧ b, a] −→ [b, a ∨ b] as α(x) = x ∨ b and define β : [b, a ∨ b] −→ [a ∧ b, a] as
β(y) = y ∧ a. Then βα(x) = (x ∨ b) ∧ a = (a ∧ b) ∨ x = x by modularity, since x ≤ a. Dually,
αβ(y) = (y ∧ a)∨ b = (a∨ b)∧ y = y. The map β is thus the inverse of α. As order isomorphisms,
α, β are also lattice isomorphisms.

Proposition 68. If L is a modular lattice with complements, then every interval of L also has
complements.

Proof. Let a ≤ b in L and d ∈ [a, b] and suppose d has a complement c in L. Then one verifies
that a ∨ (c ∧ b) = b ∧ (a ∨ c) is a complement of d in [a, b].

We now give a very useful characterisation of modular lattices:

Proposition 69. A lattice L is modular if and only if every interval I of L has the following
property: if c ∈ I has two complements a, b in I with a ≤ b, then a = b.

Proof. If L is modular then so is every interval, so for the necessity part of the proof we may
assume I = L. Then

b = b ∧ 1 = b ∧ (a ∨ c) = a ∨ (b ∧ c) = a ∨ 0 = a

Conversely, if a, b, c are elements of L with a ≤ b, then we have the modular inequality

a1 = (c ∧ b) ∨ a ≤ (c ∨ a) ∧ b = a2

Then a1 ∧ c = ((c ∧ b) ∨ a) ∧ c ≥ (c ∧ a) ∨ (c ∧ b) = c ∧ b, and a1 ≤ b implies a1 ∧ c = c ∧ b.
Also, a2 ∧ c = (c ∨ a) ∧ b ∧ c = b ∧ c. Further we have a1 ∨ c = (c ∧ b) ∨ a ∨ c = a ∨ c and finally
a2 ∨ c = ((c∨ a)∧ b)∨ c ≤ (b∨ c)∧ (c∨ a) = a∨ c, and a ≤ a2 implies a2 ∨ c = a∨ c. Thus a1 and
a2 are complements of c in [b ∧ c, a ∨ c], and by hypothesis they must be equal. This proves that
L is modular.
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4.2 Subobject Lattices

In this section we return to the conglomerate convention. In this notation, a lattice is a special
kind of partially ordered conglomerate.

Example 4. Let C be an abelian category. We have seen how to define the union and intersection
of two subobjects of an object A. The formation of these intersections and unions depends only
on the equivalence class of the subobjects under the “equivalent subobject” relation. Hence the
conglomerate SubA of these equivalence classes forms a lattice. The 0 subobject of A is an initial
object for the lattice, and the subobject 1A : A −→ A is a terminal object.

Let A be an abelian category. For any morphism f : A −→ B we can define two functors

f−1(−) : SubB −→ SubA

f(−) : SubA −→ SubB

The first is defined by pullback along f : given a subobject X −→ B, f−1B′ is the left hand side
of the pullback

f−1X

��

// X

��
A

f
// B

If X ≤ Y as subobjects of B then f−1X ≤ f−1Y as subobjects of A, so f−1 is a well-defined
functor SubB −→ SubA. The second functor f(−) is defined on a subobject X −→ A to be
the image of the composite X −→ A −→ B, as in the diagram. Once again, if X ≤ Y then
f(X) ≤ f(Y ), so this is a well-defined functor. Given subobjects X −→ A and Y −→ B it is easy
to see that

X ≤ f−1Y ⇐⇒ f(X) ≤ Y

In other words, the functor f(−) is left adjoint to f−1(−). It is trivial that both of these functors
are faithful.

Corollary 70. Let A be an abelian category and Ai −→ A a nonempty family of subobjects of an
object A. If f : A −→ B is a morphism, then

f
(⋃

Ai

)
=

⋃
f(Ai)

f−1
(⋂

Ai

)
=

⋂
f−1(Ai)

whenever these unions and intersections exist.

Proof. Since f(−) has a right adjoint, it preserves all coproducts as a functor SubA −→ SubB,
and therefore must preserve all unions that exist. A similar argument applies to f−1(−).

Proposition 71. Let A be an abelian category and f : A −→ B a morphism. Then

(i) f is an epimorphism if and only if f−1(−) is a full embedding.

(ii) f is a monomorphism if and only if f(−) is a full embedding.

Proof. Observe that to show either functor is a full embedding it suffices to show that it is full,
since then distinctness on objects is immediate. (i) If f is an epimorphism, then for any subobject
Y −→ B consider the diagram

f−1Y

��

//

%%JJJJJJJJJ Y

��

f(f−1Y )

;;wwwwwwwww

##HHHHHHHHH

A
f

// B
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Since the pullback of an epimorphism is an epimorphism the induced morphism f(f−1Y ) −→ Y
is an isomorphism. In other words, we have an equality of subobjects Y = f(f−1Y ) from which
it follows that the functor f−1(−) is a full embedding.

Conversely, if f−1(−) is a full embedding then f−1(Im(f)) = A = f−1B so we have B =
Im(f), which shows that f is an epimorphism.

(ii) If f is a monomorphism then f(−) acts by composition with f . If X −→ A and X ′ −→ A
are subobjects and f(X) ≤ f(X ′) then it is easy to see that X ≤ X ′. Therefore f(−) is a full
embedding. Conversely, suppose that f(−) is a full embedding and let K −→ A be the kernel of
f . Then f(K) = 0 = f(0), and hence K = 0 which implies that f is a monomorphism.

Remark 11. Let A be an abelian category. If f : A −→ B is an isomorphism then f(−) and
f−1(−) are mutually inverse, and define a lattice isomorphism SubA −→ SubB.

Corollary 72. Let A be an abelian category and C −→ A a subobject. There is a canonical lattice
isomorphism of SubC with the interval [0, C] of SubA, and of Sub(A/C) with the interval [C,A].

Proof. Let f : C −→ A be a monomorphism. By Proposition 71 the functor f(−) : SubC −→
SubA is a full embedding whose image is clearly the interval [0, C]. It therefore induces a lattice
isomorphism SubC −→ [0, C] as required.

Let g : A −→ A/C be a cokernel of f . Then g−1(−) : Sub(A/C) −→ SubA is a full embedding,
so it only remains to show that a subobject of A is the pullback of a subobject of A/C precisely
when it contains C. Firstly, it follows from Proposition 41 that the pullback of a subobject of
A/C contains C.

For the converse, suppose C ≤ D. Then the intersection C ∩ D is just C, and so from
Proposition 37 (iii) we conclude that C −→ D is the kernel of D −→ A −→ A/C. Hence it is the
kernel of Im(D −→ A/C). This is summarised by the diagram

0 // C // D

��

// D/C

��

// 0

0 // C // A // A/C // 0

where D/C unambiguously denotes both the cokernel of the monomorphism C −→ D and the
image of the morphism D −→ A/C. From Theorem 42 we deduce that the cokernel of D/C −→
A/C is A/C −→ A/D, and D −→ A is the kernel of A −→ A/C −→ A/D. By Proposition 37
the right hand square is a pullback, which shows that g−1(−) induces a lattice isomorphism of
Sub(A/C) with [C,A] as required.

Proposition 73. Let A be an abelian category. For any object A ∈ A the subobject lattice SubA
is modular.

Proof. We use Proposition 69. Since by Proposition 72 an interval [B1, B2] of Sub(C) is isomor-
phic to the lattice Sub(B1/B2), it suffices to consider subobjects B1 ≤ B2 of C with common
complement C ′. Let i1 : B1 −→ C, i2 : B2 −→ C and j : C ′ −→ C be the inclusions, and let
i1 factor through i2 as i1 = i2α. Then there are two morphisms q, q′ : C −→ C ′ and morphisms
p1 : C −→ B1, p2 : C −→ B2 such that i1, p1, j, q and i2, p2, j, q

′ form biproducts, as in the diagram

B1

α

��

oo i1,p1 // C

B2

��

i2,p2

??~~~~~~~~~~~~~~~~
C ′

j

^^

��

q,q′

28



Then i1p1 + jq = 1C = i2p2 + jq′. On composing both sides with p2 and replacing i1 with i2α we
have

p2i2αp1 + p2jq = p2i2p2 + p2jq
′

αp1 = p2

Since p1, p2 are both cokernels of j it follows that α is an isomorphism, and hence B1 = B2 as
required.

4.3 Finiteness Conditions

Definition 56. Let L be a modular lattice. We say two intervals of L are similar if there exist
elements a, b ∈ L such that one of the intervals is [a ∧ b, b] and the other is [b, a ∨ b]. Proposition
67 shows that similar intervals are isomorphic lattices.

We also say two intervals I and J are projective if there exists a chain I = I0, I1, . . . , In = J
of intervals with n ≥ 1 such that Ii−1 and Ii are similar for all i. Projective intervals are clearly
isomorphic lattices.

Example 5. Let A be an abelian category and A ∈ A. In the modular lattice L = SubA if two
intervals [C1, C2] and [D1, D2] are similar in SubA, it follows from Proposition 40 that

C2/C1
∼= D2/D2

Definition 57. Let L be a modular lattice. We call two chains (m,n ≥ 1)

a = a0 ≤ a1 ≤ . . . ≤ am = b (2)
a = b0 ≤ b1 ≤ . . . ≤ bn = b (3)

between the same pair of elements of L equivalent if m = n and there is a permutation π of
{1, . . . , n} such that the intervals [ai−1, ai] and [bπ(i)−1, bπ(i)] are projective. A refinement of a
chain is obtained by inserting further elements in the chain.

The following result is known as the “Schreier refinement theorem”.

Proposition 74. Any two finite chains between the same pair of elements in a modular lattice
have equivalent refinements.

Proof. See [Ste75] III 3.1.

Definition 58. Let L be a modular lattice. A composition chain between elements a, b ∈ L is a
chain a = a0 < a1 < . . . < am = b with m ≥ 1 which has no nontrivial refinement. The integer m
is the length of the chain.

Corollary 75. Any two composition chains between the same pair of elements in a modular lattice
are equivalent.

Definition 59. A modular lattice L with 0 and 1 has finite length if there is a composition
chain between 0 and 1. We define the length of L to be the uniquely determined length of such a
composition chain. This property is stable under lattice isomorphism.

Proposition 76. In a modular lattice of finite length, every chain can be extended to a composition
chain between 0 and 1.

Proof. Immediate from Proposition 74.

Definition 60. A lattice L is noetherian (or satisfies the ascending chain condition) if there are
no infinite stricly ascending chains a0 < a1 < · · · in L, and is artinian (or satisfies the descending
chain condition) if there are no infinite strictly decreasing chains a0 > a1 > · · · in L. These
properties are stable under lattice isomorphism.
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These chain conditions have equivalent formulations as maximum (minimum) conditions. Re-
call a maximal element of a nonempty subset S ⊆ L of a partially ordered conglomerate L is an
element a ∈ S such that if a ≤ x for any x ∈ S, then x = a. Similarly one defines a minimal
element.

Proposition 77. A lattice L is noetherian (artinian) if and only if every nonempty subset of L
has a maximal (minimal) element.

Proposition 78. A modular lattice with 0 and 1 is of finite length if and only if it is both
noetherian and artinian.

Proof. If L has finite length m, then every strictly ascending (descending) chain in L consists of
at most m+1 elements, so L is noetherian and artinian. Suppose conversely that L is noetherian.
For every a 6= 0 in L there exists by Proposition 77 a maximal element b such that b < a. By
repeated use of this observation we get a descending chain 1 > a1 > a2 > . . .. If L is also artinian,
this chain stops after a finite number of steps, and we obtain a composition chain between 1 and
0, showing that L has finite length.

Proposition 79. Let a be an element of a modular lattice L with 0 and 1. Then L is noetherian
(artinian) if and only if both intervals [0, a] and [a, 1] are noetherian (artinian).

Proof. If L is noetherian or artinian, then clearly every interval of L is likewise. Suppose conversely
that the intervals [0, a] and [a, 1] are noetherian, and let b1 < b2 < . . . be a strictly ascending
chain in L. Then there exists an integer n such that

bn ∧ a = bn+1 ∧ a = c

bn ∨ a = bn+1 ∨ a = d

Applying Proposition 69 to the element a in [c, d], we obtain bn = bn+1. Hence L must be
notherian. Similarly for the artinian case.

There are many different finiteness conditions that we can place on objects of an abelian
category. Many of these conditions have an internal version (which is some condition on the
subobject lattice) and an external or “functorial” version, which is a condition on the Hom functors
associated to the object.

Definition 61. Let A be an abelian category and C ∈ A an object. We say an object C is

• Noetherian if the lattice SubC is noetherian. That is, there are no strictly ascending infinite
chains of subobjects C0 < C1 < C2 < · · · .

• Artinian if the lattice SubC is artinian. That is, there are no strictly descending infinite
chains of subobjects C0 > C1 > C2 > · · · .

• Finite length if the lattice SubC is of finite length, or equivalently if C is both noetherian
and artinian.

• Finitely generated if whenever C =
∑
i∈I Ci for a direct family of subobjects Ci of C, there

is an index i0 ∈ I such that C = Ci0 .

• Finitely presented if the additive functor Hom(C,−) : A −→ Ab preserves direct limits.

• Compact if any morphism from C to a nonempty coproduct
⊕

i∈I Ai factors through some
finite subcoproduct

⊕n
i=1Ai.

These properties are all stable under isomorphism. Any zero object has all of these properties.

Lemma 80. Let A be a grothendieck abelian category and suppose we have an exact sequence
0 −→ C ′ −→ C −→ C ′′ −→ 0. Then

(i) If C is finitely generated, so is C ′′.
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(ii) If C ′ and C ′′ are finitely generated, so is C.

Proof. (i) Suppose C ′′ is equal to the direct union
∑
C ′′i . Each C ′′i is Ci/C ′ for some subobject

Ci of C containing C ′. Since C is Ab5 we can pullback direct unions to see that C =
∑
Ci, and

since C is finitely generated, C = Ci0 for some index i0. Hence C ′′ = C/C ′ = Ci0/C
′ = C ′′i0 .

(ii) Let Ci be a directed family of subobjects of C with C =
∑
Ci. Then Ci ∩C ′ is a directed

family of subobjects of C ′ with C ′ = C ′ ∩ C = C ′ ∩
∑
Ci =

∑
C ′ ∩ Ci. If µ : C −→ C ′′ is the

cokernel, then (Ci + C ′)/C ′ = µ(Ci) form a direct family of subobjects of C ′′ with C ′′ = µ(C) =
µ(

∑
Ci) =

∑
µ(Ci) =

∑
(Ci + C ′)/C ′. Since C ′ and C ′′ are finitely generated and the sums are

directed, we may find a single index k with C ′ = C ′ ∩ Ck and C ′′ = µ(Ck). Hence by Corollary
72 we have C = Ck.

Corollary 81. Let A be a grothendieck abelian category. Then

(i) Any finite direct sum of finitely generated objects is finitely generated.

(ii) Any finite sum of finitely generated subobjects is finitely generated.

Proof. Follows immediately from Lemma 80.

Lemma 82. Let A be a grothendieck abelian category. An object C is finitely generated if and
only if for any direct family of subobjects Di of an object D, any morphism C −→

∑
Di factors

through some Dk.

Proof. Suppose C is finitely generated. Then if α : C −→
∑
Di, Imα is a finitely generated

subobject of
∑
Di by Lemma 80. But then

Imα = Imα ∩
∑

Di =
∑

Imα ∩Di

and it follows that Imα is contained in some Dk. The converse is trivial.

Proposition 83. Let A be a grothendieck abelian category. An object C is finitely generated if
and only if the functor HomA(C,−) : A −→ Ab preserves direct unions.

Proof. More precisely, C is finitely generated if and only if the canonical homomorphism

Φ : lim−→Hom(C,Di) −→ Hom(C,
∑

Di)

is an isomorphism for every direct family Di of subobjects of any object D. Since Hom(C,−)
preserves monomorphisms and direct limits are exact, Φ is a monomorphism. Considering the
definition of direct limits in Ab, we see that Φ is an epimorphism iff. every morphism C −→

∑
Di

factors through some Dk, which is iff. C is finitely generated by Lemma 82.

Corollary 84. Let A be a grothendieck abelian category. If an object C is finitely presented then
it is finitely generated.

Lemma 85. Let A be an abelian category. Given finitely presented objects X,Y and an exact
sequence X −→ Y −→ Z −→ 0 it follows that Z is finitely presented.

Proof. Let a direct system {Ai, ϕij}i∈I in A be given together with a direct limit A = lim−→i
Ai.

Using exactness of direct limits we have a commutative diagram of abelian groups with exact rows

0 // lim−→i
Hom(Z,Ai) //

γ

��

lim−→i
Hom(Y,Ai) //

α

��

lim−→i
Hom(X,Ai)

β

��
0 // Hom(Z,A) // Hom(Y,A) // Hom(X,A)

By hypothesis α, β are isomorphisms and therefore so is γ, which completes the proof.

31



Lemma 86. Let C be a preadditive category and suppose we have a morphism α : A −→
⊕

i∈I Ai.
Given a nonempty finite subset J ⊆ I and a coproduct

⊕
j∈J Aj the morphism α factors through⊕

j∈J Aj −→
⊕

i∈I Ai if and only if α = (
∑
j∈J ujpj)α where {ui, pi}i∈I are the canonical injec-

tions and projections respectively.

Proof. Denote by u′j , p
′
j the injections and projections into

⊕
j∈J Aj . The induced morphism

uJ :
⊕

j∈J Aj −→
⊕

i∈I Ai is easily checked to be
∑
j∈J ujp

′
j . So if α factors through uJ we have

α = (
∑
j∈J ujp

′
j)β for some morphism β. Composing both sides with pj for j ∈ J we deduce that

pjα = p′jβ. Therefore α = (
∑
j∈J ujpj)α. If conversely α = (

∑
j∈J ujpj)α then β =

∑
j∈J u

′
jpjα

is a factorisation of α through the finite coproduct.

Proposition 87. Let C be an additive category. An object A is compact if and only if the functor
Hom(A,−) : C −→ Ab preserves coproducts.

Proof. Let {Ci}i∈I be a nonempty family of objects in C for which a coproduct
⊕

i Ci exists. The
induced morphism τ :

⊕
i∈I Hom(A,Ci) −→ Hom(A,

⊕
i∈I Ci) given by (αi)i∈I 7→

∑
i uiαi is

always injective. Suppose that A is compact, then by Lemma 86 any morphism β : A −→
⊕

i Ci is∑
j∈J ujpjβ for some finite nonempty subset J ⊆ I, so τ is surjective and therefore an isomorphism.

This shows that Hom(A,−) preserves coproducts.
Conversely if Hom(A,−) preserves coproducts, then τ must be an isomorphism. It is then

easy to see that any morphism β : A −→
⊕

i Ci must factor through a finite subcoproduct.

Lemma 88. In any abelian category a finite coproduct of compact objects is compact.

Proof. It suffices to prove that if C,D are compact objects, then so is their coproduct C ⊕D. If
α : C ⊕D −→

⊕
i∈I Ai is a morphism of their coproduct into another coproduct, notice that by

Corollary 70 we have Imα = α(C ∪D) = αC ∪αD. But both αC and αD are subobjects of some
finite subcoproduct of the Ai. Hence so is Imα, as required.

Definition 62. A grothendieck abelian category A is locally finitely generated if it has a set of
finitely generated generators.

Lemma 89. A grothendieck abelian category A is locally finitely generated if and only if every
object is the union of finitely generated subobjects.

Proof. Suppose that {Gi}i∈I is a generating set of finitely generated objects. Then for C ∈ A we
have C =

∑
Im(α) where α ranges over all morphisms α : Gi −→ C for i ∈ I. If not, the quotient

µ : C −→ C/
∑
Im(α) would be a nonzero morphism for which there exists no α : Gi −→ C with

µα 6= 0. As quotients of finitely generated objects the Im(α) are all finitely generated, so the
condition is necessary.

To that it is also sufficient, let U be an arbitrary generator for A. Then U can be written as
the union U =

∑
i Vi of finitely generated subobjects, and it is clear that the Vi form a generating

family for A.

Proposition 90. Let A be an abelian category and 0 −→ C ′ −→ C −→ C ′′ −→ 0 an exact
sequence. Then C is noetherian if and only if both C ′, C ′′ are noetherian.

Proof. The subobject lattices SubC ′, SubC and SubC ′′ are modular by Proposition 73, and we
have lattice isomorphisms SubC ′ ∼= [0, C ′] and SubC ′′ ∼= [C ′, C] by Corollary 72. Therefore the
desired result follows from Proposition 79.

In particular any finite direct sum of noetherian objects is noetherian, and therefore any finite
sum of noetherian subobjects is noetherian.

Lemma 91. If A is an abelian category then the full replete subcategory noeth(A) of noetherian
objects is an abelian subcategory of A.

Proof. Follows from Lemma 39 and Proposition 90.
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Lemma 92. Let A be an abelian category. An object C is noetherian if and only if every subobject
of C is finitely generated.

Proof. First we observe that any noetherian object is finitely generated, since if we can write
C =

∑
i∈I Ci for a direct family of subobjects Ci, then this direct family has a maximal element

Ci0 . Therefore C = Ci0 and C is finitely generated. It now follows from Proposition 90 that if C
is noetherian then every subobject is noetherian, therefore finitely generated.

Conversely, suppose every subobject of C is finitely generated and let C0 < C1 < · · · be a
strictly ascending infinite chain of subobjects. This is a direct family of subobjects of the union∑
i Ci, which is therefore equal to some Ck since it is finitely generated. This contradiction shows

that C is noetherian.

Proposition 93. Let A be a grothendieck abelian category. Then

(i) Every finitely generated object is compact.

(ii) Any quotient of a compact object is compact.

Definition 63. A grothendieck abelian category A is locally noetherian if it has a set of noetherian
generators. By Lemma 92 a locally noetherian category is locally finitely generated. If A is locally
noetherian then every object is the direct union of noetherian subobjects, and every finitely
generated object is noetherian.

4.4 Finiteness Conditions for Modules

Throughout this section let R be an arbitrary ring (not necessarily commutative) and let A be
either RMod or ModR. In this case we already have definitions of finiteness conditions in A
and we want to check they agree with the ones given in the previous section. To avoid confusion
we refer to the finiteness conditions of Definition 61 by saying that an object X is “categorically
finitely generated” or “categorically finitely presented”.

Lemma 94. An object in A is categorically finitely generated if and only if it is a finitely generated
R-module in the usual sense.

Proof. Let M be a categorically finitely generated R-module. The finitely generated submodules
form a direct system with union M , so by definition M is equal to one of them and thus finitely
generated. Conversely if M is a finitely generated R-module with M =

∑
i∈I Ci for some direct

system {Ci}i∈I of submodules then a finite generating set of M clearly belongs to some Ck, from
which we deduce that Ck = M as required.

Lemma 95. Suppose we have an exact sequence in A of the form

0 −→ X −→ Y −→ Z −→ 0

where Y is finitely presented and X finitely generated. Then Z is finitely presented.

Proof. We can find a short exact sequence 0 −→ K −→ F −→ Y −→ 0 with F a finite coproduct
of copies of R and K finitely generated. If f : F −→ Y is the second morphism in this sequence
then it is not difficult to check that we have two exact sequences

0 −→ K −→ f−1X −→ X −→ 0

0 −→ f−1X −→ F −→ Z −→ 0

From the first we deduce that f−1X is finitely generated and therefore the second shows that Z
is finitely presented.

Lemma 96. Any direct summand of a finitely presented R-module is finitely presented.
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Proof. Let X be a finitely presented R-module and suppose we have a split exact sequence

0 −→ K −→ X −→ Y −→ 0

Since this is split we deduce an epimorphism X −→ K which implies that K is finitely generated.
Therefore Lemma 95 applies to show Y finitely presented.

Proposition 97. An object in A is categorically finitely presented if and only if it is a finitely
presented R-module in the usual sense.

Proof. If M is a finitely presented R-module then there is an exact sequence in A of the form

Rm −→ Rn −→M −→ 0

Clearly any free module is categorically finitely presented, so we deduce from Lemma 85 that M
is categorically finitely presented. Now let M be a categorically finitely presented object of A.
From Lemma 94 and Corollary 84 we deduce that M is finitely generated, so there is an exact
sequence

0 −→ K −→ Rm −→M −→ 0

for some finite m ≥ 1. Writing K as the direct limit of its finitely generated submodules Kλ,
taking cokernels of the inclusions Kλ −→ Rm and using exactness of direct limits we can write M
as the direct limit of a family of finitely presented R-modules Mλ. From

Hom(M,M) = Hom(M, lim−→
λ

Mλ) ∼= lim−→
λ

Hom(M,Mλ)

we deduce that one of the colimit morphisms Mµ −→ M is a retraction. It now follows from
Lemma 96 that M is finitely presented.

5 Simple objects

Definition 64. A nonzero object A in an abelian category is simple if its only subobjects are 0
and A. Equivalently, A is simple if and only if the modular lattice SubA contains precisely two
elements. An object is semisimple if it is the coproduct of a nonempty collection of simple objects.

Let S, S′ be simple objects in an abelian category A. If α : S −→ S′ is a morphism then
Kerα is a subobject of S and Imα is a subobject of S′. It follows that either α = 0 or α is an
isomorphism. From this we deduce the following useful result

Lemma 98 (Schur). The endomorphism ring of a simple object in an abelian category is a
division ring.

Lemma 99. Let {Si}i∈I be a nonempty family of simple objects in a grothendieck abelian category.
If S is simple subobject of

⊕
i Si, then S is isomorphic to some Si.

Proof. Let γ : S −→
⊕

i Si be a monomorphism. Since S is nonzero and we are working in a
grothendieck abelian category, piγ is nonzero for some projection pi :

⊕
i Si −→ Si. Hence S is

isomorphic to Si.

Lemma 100. Let S, T, L be subobjects of an object X in an abelian category A, such that

S ∩ (L+ T ) = 0 and L ∩ T = 0

then S ∩ T = 0 and L ∩ (S + T ) = 0.

Proof. Since T ≤ L + T certainly S ∩ T = 0. Since L ∩ T = S ∩ T = 0, L + T and S + T are
biproducts, and we get a monic L ∩ (S + T ) −→ S ∩ (L+ T ) = 0. Hence L ∩ (S + T ) = 0.
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Recall that the sum of a collection of subobjects Ci −→ C is said to be direct if the induced
morphism out of the coproduct

⊕
i∈I Ci −→ C is a monomorphism. In that case we have a

canonical isomorphism
⊕

i∈I Ci −→
∑
i∈I Ci and we also say that the sum

∑
i∈I Ci is direct.

Equivalently, the morphisms Ci −→
∑
i∈I Ci are a coproduct.

Proposition 101. Let C1, . . . , Cn be subobjects of C in an abelian category A. The sum is direct
if and only if for i = 1, . . . , n

Ci ∩

∑
i 6=j

Cj

 = 0

Corollary 102. Let A be a grothendieck abelian category and {Ci}i∈I a family of subobjects of
C (not necessarily finite). Then the sum

∑
Ci is direct if and only if for each finite subset J ⊆ I

and k /∈ J ,

Ck ∩

∑
j∈J

Cj

 = 0

Proposition 103. Let A be a grothendieck abelian category and suppose that M =
∑
i∈I Si is

a nonempty sum of simple subobjects. If L is a subobject of M then there is a nonempty subset
J ⊆ I such that

M = L⊕
⊕
j∈J

Sj

Proof. Let S be the collection of all subsets J ⊆ I with the following list of properties:

(i) The sum
∑
j∈J Sj is direct.

(ii) The sum of L and
∑
j∈J Sj is direct.

Partially order the set S by inclusion. The empty set clearly belongs to S, so S is nonempty.
If the collection {Jk}k∈K form a chain in S, put J ′ =

⋃
k Jk. By the previous Corollary, the

sum
∑
j∈J′ Sj is direct, so J ′ has property (i). To see that it satisfies (ii), notice that the sums∑

j∈Jk
Sj form a directed family of subobjects of M whose union is

∑
j∈J′ Sj .

L ∩
∑
j∈J′

Sj = L ∩
∑
k

∑
j∈Jk

Sj =
∑
k

L ∩ ∑
j∈Jk

Sj

 = 0

Hence J ′ ∈ S. By Zorn’s lemma there is a maximal element J of S. If L +
∑
j∈J Sj were not

equal to M , then there would be some Sq not contained in it. Hence

Sq ∩

L+
∑
j∈J

Sj

 = 0

since Sq is simple. It follows from Lemma 100 that

L ∩

∑
j∈J′

Sj + Sq

 = 0

which contradicts the maximality of J . Hence M is the sum of L and
∑
j∈J Sj . Since all the

involved sums are direct, this is same as M = L⊕
⊕

j∈J′ Sj .

Corollary 104. Let A be a grothendieck abelian category and suppose that M =
∑
i∈I Si is a

nonempty sum of simple subobjects. Then there is a nonempty subset J ⊆ I such that

M =
⊕
j∈J

Sj

Proof. That is, we can find a subcollection of the Si for which the sum is direct, and is still all of
M . For the proof, just put L = 0 in Proposition 103.
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6 Injectives

Throughout this section A is a fixed abelian category. For omitted proofs see [Mit65].

Definition 65. A monomorphism X −→ A is an essential extension if for any nonzero subobject
Y −→ A we have X ∩ Y 6= 0. We say X −→ A is a proper extension if it is not an isomorphism.

Lemma 105. If A is grothendieck abelian then an object Q is injective if and only if it admits
no proper essential extensions.

Definition 66. An injective envelope for an object A is an essential extension A −→ Q with Q
injective. In light of the next result, this object is unique up to (noncanonical) isomorphism, and
we will sometimes denote it by E(A).

Lemma 106. Let u : A −→ Q and u′ : A −→ Q′ be injective envelopes of A. Then there is an
isomorphism (not necessarily unique) θ : Q −→ Q′ such that θu = u′.

Proposition 107. If A is grothendieck abelian then every object has an injective envelope.

Remark 12. Let A −→ Q be an injective envelope, and A −→ I a monomorphism with I
injective. Then there is a morphism Q −→ I such that the following diagram commutes

A

$$III
III

I // Q

��
I

and Q −→ I is a monomorphism since A −→ Q is essential. So an injective envelope embeds in
any injective object containing A.

Lemma 108. Let A be a grothendieck abelian category, M −→M ′ and N −→ N ′ subobjects, and
let p1 : M ′ ⊕N ′ −→M ′ and p2 : N ′ ⊕M ′ −→ N ′ be the projections. Then

p−1
1 (M) ∩ p−1

2 (N) = M ⊕N

Lemma 109. Suppose we are given a morphism f : A −→ B and subobjects A′ −→ A,B′ −→ B.
Then

f(A′) ∩B′ = 0 ⇐⇒ f−1(B′) ∩A′ = 0

Proposition 110. Let A be grothendieck abelian and suppose we are given objects C1, . . . , Cn.
The monomorphism C1 ⊕ · · · ⊕ Cn −→ E(C1)⊕ · · · ⊕ E(Cn) induces an isomorphism

E(C1 ⊕ · · · ⊕ Cn) −→ E(C1)⊕ · · · ⊕ E(Cn)

Definition 67. An nonzero object C ∈ A is called indecomposable if it cannot be written as the
direct sum of two nonzero subobjects. A subobject B −→ C is irreducible in C if it cannot be
written as the intersection of two strictly bigger subobjects of C. We say that C is coirreducible
if any two nonzero subobjects of C have a nonzero intersection. It is clear that B is irreducible in
C if and only if C/B is a coirreducible object.

Proposition 111. Let A be grothendieck abelian and E injective. Then the following are equiv-
alent:

(a) E is indecomposable.

(b) Each subobject of E is coirreducible.

(c) E is an injective envelope of a coirreducible object.

(d) E is an injective envelope of each one of its nonzero subobjects.

For locally noetherian categories there is a nice decomposition theory for injective objects.
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Proposition 112. Let A be a locally finitely generated category. Then A is locally noetherian if
and only if every coproduct of injective objects is injective.

Proof. Suppose that A is locally noetherian and let {Ei}i∈I be a family of injective objects.
To show that ⊕iEi is injective it suffices by (AC,Proposition 50) to consider a monomorphism
α : B −→ C of noetherian objects and extend every morphism ϕ : B −→ ⊕iEi. But B is finitely
generated so ϕ factors through a finite subcoproduct B −→ ⊕ni=1Ein . This can clearly be extended
to a morphism on C, and the composite C −→ ⊕ni=1Ein −→ ⊕iEi extends ϕ as required.

Assume conversely that every coproduct of injective objects is injective. We will show that
every finitely generated object C is noetherian. Suppose there exists a strictly ascending chain
C1 < C2 < · · · of subobjects of C and let Ei = E(C/Ci) be the injective envelopes. By hypothesis
the object E = ⊕∞j=1Ei is injective. For each Cn and j ≤ n we let ϕnj : Cn −→ E denote the
composite

Cn −→ C −→ C/Cj −→ Ej −→ E

and set ϕn =
∑n
j=1 ϕnj . These morphisms are compatible with the inclusions in the ascending

sequence, so we have an induced morphism ϕ :
∑
n Cn −→ E which lifts by injectivity to a

morphism Φ : C −→ E. By hypothesis C is finitely generated, therefore compact, so Φ factors
through a finite subcoproduct E1 ⊕ · · · ⊕ Ek. It follows that Ck+1 = Ck+2 as subobjects of C,
which is the desired contradiction.

Definition 68. Let C be a category and X an object of C. We say that X is compact for injectives
if every morphism X −→ ⊕λIλ from X to an arbitrary nonempty coproduct of injective objects
in C factors through a finite subcoproduct.

Corollary 113. Let A be a locally noetherian category. For C ∈ A the following conditions are
equivalent:

(i) C is finitely generated.

(ii) C is noetherian.

(iii) C is compact.

(iv) C is compact for injectives.

Proof. The only nontrivial implication is (iv) ⇒ (ii). If C is compact for injectives then the
second part of the proof of Proposition 112 shows that C is noetherian.

Proposition 114 (Matlis). If A is a locally noetherian category then every nonzero injective
object is a coproduct of indecomposable injective objects.
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